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Manifolds as Atlases or as Spaces?

Let us begin by considering a generalized version of topological
manifolds:

Definition

A topological space X is a real manifold if X has a covering by
open sets Ui , such that each Ui is homeomorphic to an open
subset of some Rn.

This seems nice...where do atlases come in?
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Smooth Manifolds as Atlases

One problem is when you try to define “smooth” manifold. You
would like to say the following:

Definition

A topological space X is a smooth manifold if X has a covering
of open sets Ui , such that each Ui is diffeomorphic to an open
subset of some Rn.
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Smooth Manifolds as Atlases

One problem is when you try to define “smooth” manifold. You
would like to say the following:

Definition

A topological space X is a smooth manifold if X has a covering
of open sets Ui , such that each Ui is diffeomorphic to an open
subset of some Rn.

Except it doesn’t make sense (an arbitrary topological space has no
notion of smoothness)! So, instead, you have to consider “charts”
(open subsets of Rn) together with their transition functions, and
ask that each transition function be smooth.
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Smooth Manifolds as Spaces

Eventually, some clever people found ways around this:

an open subset of Rn can be represented by the sheaf of
smooth functions (an R-algebra) on it, so we can define a
smooth manifold as a sheaf of R-algebras which locally looks
like the sheaf of smooth functions on an open subset of Rn;
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Smooth Manifolds as Spaces

Eventually, some clever people found ways around this:

an open subset of Rn can be represented by the sheaf of
smooth functions (an R-algebra) on it, so we can define a
smooth manifold as a sheaf of R-algebras which locally looks
like the sheaf of smooth functions on an open subset of Rn;

“diffeological spaces” (we will review these later) have an
inherent notion of smoothness, and every open subset of Rn

is naturally a diffeological space, so we can define a smooth
manifold to be a diffeological space which locally looks like an
open subset of Rn.

But can we do this type of thing for every notion of atlas?
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Atlases again

For example:

a recent notion of Kriegl and Michor is that of a “convenient
vector space”: a locally convex space with a nice notion of
smooth map between them;
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Atlases again

For example:

a recent notion of Kriegl and Michor is that of a “convenient
vector space”: a locally convex space with a nice notion of
smooth map between them;

one can then look at atlases of convenient vector spaces,
giving a definition of smooth manifolds modelled on infinite
dimensional vector spaces;
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Atlases again

For example:

a recent notion of Kriegl and Michor is that of a “convenient
vector space”: a locally convex space with a nice notion of
smooth map between them;

one can then look at atlases of convenient vector spaces,
giving a definition of smooth manifolds modelled on infinite
dimensional vector spaces;

but the algebra of smooth functions to R need not determine
the convenient vector space, so the “manifold as a sheaf of
algebras” approach will not work!
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Idea of the talk

This is one specific example: what if another definition of
“manifold as an atlas of [some modelling spaces]” is defined? Can
we be sure that such atlases always look like spaces?
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Idea of the talk

This is one specific example: what if another definition of
“manifold as an atlas of [some modelling spaces]” is defined? Can
we be sure that such atlases always look like spaces? To answer
the question, we’ll look at two things:

What does it mean to say that an object is an altas of other
objects? (Grandis’ construction)

Can every category of atlases be realized as a category of
“spaces” which locally look like the modelling spaces?

I’ll show that two possibilities exist for Grandis’ general notion of
“atlas”.
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Restriction Categories

The “transition functions” of an atlas are partial maps, so to
define categories of atlases, we need a good notion of categories of
partial maps.
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Restriction Categories

The “transition functions” of an atlas are partial maps, so to
define categories of atlases, we need a good notion of categories of
partial maps.

Definition

Given a category, X, a restriction structure on X gives for each,

A
f

−→ B , a restriction arrow, A
f

−→ A, that satisfies four axioms:

[R.1] f f = f ;

[R.2] If dom(f ) = dom(g) then g f = f g ;

[R.3] If dom(f ) = dom(g) then g f = g f ;

[R.4] If dom(g) = cod(f ) then f g = fg f .

A category with a specified restriction structure is a restriction
category.
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Examples

Some examples:

set: sets and partial functions, with

f (x) =

{

x if f (x) defined

undefined otherwise.
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Examples

Some examples:

set: sets and partial functions, with

f (x) =

{

x if f (x) defined

undefined otherwise.

top: topological spaces and partial continuous functions;
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Examples

Some examples:

set: sets and partial functions, with

f (x) =

{

x if f (x) defined

undefined otherwise.

top: topological spaces and partial continuous functions;

loc: locales and partial locale maps;
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Examples

Some examples:

set: sets and partial functions, with

f (x) =

{

x if f (x) defined

undefined otherwise.

top: topological spaces and partial continuous functions;

loc: locales and partial locale maps;

fdCts: objects N , arrow f : n // m is a cts function
f : U ⊆ Rn

// Rm (U open);
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Examples

Some examples:

set: sets and partial functions, with

f (x) =

{

x if f (x) defined

undefined otherwise.

top: topological spaces and partial continuous functions;

loc: locales and partial locale maps;

fdCts: objects N , arrow f : n // m is a cts function
f : U ⊆ Rn

// Rm (U open);

fdSmooth: objects N , arrow f : n // m is a smooth function
f : U ⊆ Rn

// Rm (U open).
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Aspects of Restriction Categories

Some important definitions on a restriction category X:

To each object X ∈ X is associated the set of restriction
idempotents,

O(X ) := {e : X // X : e = e}

think of these as the “open subsets” of X : though each
restriction idempotent is not neccesarily associated to an
object of X (eg., fdCts or fdSmooth).
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Aspects of Restriction Categories

Some important definitions on a restriction category X:

To each object X ∈ X is associated the set of restriction
idempotents,

O(X ) := {e : X // X : e = e}

think of these as the “open subsets” of X : though each
restriction idempotent is not neccesarily associated to an
object of X (eg., fdCts or fdSmooth).

Say that a map f : X // Y is a partial isomorphism if there
exists g : Y // X such that fg = f and gf = g .
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Aspects of Restriction Categories

Some important definitions on a restriction category X:

To each object X ∈ X is associated the set of restriction
idempotents,

O(X ) := {e : X // X : e = e}

think of these as the “open subsets” of X : though each
restriction idempotent is not neccesarily associated to an
object of X (eg., fdCts or fdSmooth).

Say that a map f : X // Y is a partial isomorphism if there
exists g : Y // X such that fg = f and gf = g .

Given two maps f , g : X // Y , write f ≤ g if f g = f , and
write f ⌣ g if f g = g f .
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Partial Map Categories

Some restriction categories can be defined as a “category of partial
maps”:

Definition

If C is a category, a stable system of monics M is a class of
monics which is closed under composition, pullbacks, and contains
all isomorphisms.
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Partial Map Categories

Some restriction categories can be defined as a “category of partial
maps”:

Definition

If C is a category, a stable system of monics M is a class of
monics which is closed under composition, pullbacks, and contains
all isomorphisms.

If we have such a pair (C,M), there is a natural category of partial
maps Par(C,M) with the same objects, where a morphism is an
equivalence class of spans, with one leg a monic from M.



Introduction Generalized Atlases The scheme construction, generalized The diffeology construction, generalized Conclusion

Examples of Partial map categories

cRingop has an important class of monics given by
localizations of rings.
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Examples of Partial map categories

cRingop has an important class of monics given by
localizations of rings.

Any restriction category X has a canonical partial map
category into which it fully and faithfully embeds: given a
restriction category X, define K (X) to have

objects (X , e) for e ∈ O(X );
a map f : (X , e) // (Y , d) is a map f : X // Y such that
f = e and ef = d .

These have a natural class of monics (the restriction monics).

This category K (X) will be very important!
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Join Restriction Categories

To be able to define atlases, the restriction categories of
“modelling spaces” must have one other property: the able to join
compatible partial maps together.
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Join Restriction Categories

To be able to define atlases, the restriction categories of
“modelling spaces” must have one other property: the able to join
compatible partial maps together.

Definition

Let X be a restriction category. We say that X is a join
restriction category if for any family of pairwise compatible maps
(fi : X // Y )i∈I , there is a map

∨

i∈I fi : X // Y such that
∨

fi is the join of the fi ’s under the partial ordering of maps in
a restriction category;

these joins are compatible with composition: that is, for any
h : Z // X ,

h

(

∨

i∈I

fi

)

=
∨

i∈I

hfi .
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Atlases

Now we can give Grandis’s definition (slightly modified by
Cockett):

Definition

If X is a join restriction category, an atlas of objects from X

consists of a set of objects Xi ∈ X, together with a series of maps

Xi

φij
// Xj such that:

1 φiiφij = φij ;

2 φijφjk ≤ φik ;

3 φij has partial inverse φji .
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Atlases

Now we can give Grandis’s definition (slightly modified by
Cockett):

Definition

If X is a join restriction category, an atlas of objects from X

consists of a set of objects Xi ∈ X, together with a series of maps

Xi

φij
// Xj such that:

1 φiiφij = φij ;

2 φijφjk ≤ φik ;

3 φij has partial inverse φji .

Each map φii : Xi
// Xi is a restriction idempotent, and represents

the “open subset” of Xi that the chart is using. The maps φij

define how these charts overlap.
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Morphisms of Atlases

There is a natural notion of morphism of these:

Definition

If (Ui , φij) and (Vk , ψkh) are atlases of X, then an atlas morphism

A consists of a family of maps Ui
Aik

// Vk such that:

1 φiiAik = Aik ;

2 φijAjk ≤ Aik ;

3 Aikψkh = Aik Aih

The last condition ensures the maps glue together correctly on the
overlap of charts.
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Restriction Category of Atlases

Composition of atlas morphisms is given by using joins:

(AB)im :=
∨

k

AikBkm.

For any join restriction category X, we then have a join restriction
category Atl(X ), with objects atlases, and morphisms atlas
morphisms. For example:
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Restriction Category of Atlases

Composition of atlas morphisms is given by using joins:

(AB)im :=
∨

k

AikBkm.

For any join restriction category X, we then have a join restriction
category Atl(X ), with objects atlases, and morphisms atlas
morphisms. For example:

Atl(fdCts) “is” real topological manifolds;
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Restriction Category of Atlases

Composition of atlas morphisms is given by using joins:

(AB)im :=
∨

k

AikBkm.

For any join restriction category X, we then have a join restriction
category Atl(X ), with objects atlases, and morphisms atlas
morphisms. For example:

Atl(fdCts) “is” real topological manifolds;

Atl(fdSmooth) “is” smooth real manifolds;
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Restriction Category of Atlases

Composition of atlas morphisms is given by using joins:

(AB)im :=
∨

k

AikBkm.

For any join restriction category X, we then have a join restriction
category Atl(X ), with objects atlases, and morphisms atlas
morphisms. For example:

Atl(fdCts) “is” real topological manifolds;

Atl(fdSmooth) “is” smooth real manifolds;

Atl(Join(cRingop, loc)) “is” schemes.
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Advantages and Disadvantages of Grandis’ Manifolds

Advantages:

works in virtually any context with a reasonable notion of
partial map;

focuses attention on the modelling spaces themselves;

doesn’t live anywhere: no particular preference for a manifold
to be a top. space, or a sheaf, or a diffeological space, etc.



Introduction Generalized Atlases The scheme construction, generalized The diffeology construction, generalized Conclusion

Advantages and Disadvantages of Grandis’ Manifolds

Advantages:

works in virtually any context with a reasonable notion of
partial map;

focuses attention on the modelling spaces themselves;

doesn’t live anywhere: no particular preference for a manifold
to be a top. space, or a sheaf, or a diffeological space, etc.

Disadvantages:

awkward: no one likes working with atlases;

weird: doesn’t live anywhere.
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Advantages and Disadvantages of Grandis’ Manifolds

Advantages:

works in virtually any context with a reasonable notion of
partial map;

focuses attention on the modelling spaces themselves;

doesn’t live anywhere: no particular preference for a manifold
to be a top. space, or a sheaf, or a diffeological space, etc.

Disadvantages:

awkward: no one likes working with atlases;

weird: doesn’t live anywhere.

Can we connect atlases up with manifolds which do “live
somewhere”?
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Gluings of Atlases

We will want settings in which an atlas can be represented by an
object.

Definition

Let (Xi , φij) be an atlas in X. An object G ∈ X is said to be the
gluing of the atlas if there is an atlas morphism
g : (Xi , φij) // (G , 1G ) such that:

each gi is a restricted isomorphism;

each φi ,j = gig
−1
j ;

1G =
∨

i g
−1
i .

Say that a join restriction category has gluings in case there is a
gluing for every atlas.

For example, top and loc have all gluings of atlases. Clearly, fdCts
and fdSmooth do not.
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The question

Given a join restriction category X, is there a category of
“spaces” S such that:

there is a a restriction and join preserving full and
faithfully embedding of X into S;

S has all gluings?
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The question

Given a join restriction category X, is there a category of
“spaces” S such that:

there is a a restriction and join preserving full and
faithfully embedding of X into S;

S has all gluings?

We could then describe X-atlases as those objects of S which are
the gluing of an X-atlas, as is done say for schemes. This gives an
alternative view of these objects which doesn’t involve atlases.
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Locales?

One thing which will not work in general is to use topological
spaces (more specifically, locales). It is true that any join
restriction category X has a restriction join-preserving functor

O : X // loc

X 7→ O(X )

O(f )(d) = fd
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Locales?

One thing which will not work in general is to use topological
spaces (more specifically, locales). It is true that any join
restriction category X has a restriction join-preserving functor

O : X // loc

X 7→ O(X )

O(f )(d) = fd

But this functor is in general neither faithful nor full.
Think of schemes: the Zariski topology (which is what the above is
for affine schemes) is not enough information!
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C-sheaves

Thinking of schemes, in addition to assigning a locale to each
X ∈ X, we need additional data: we need to assign a sheaf to each
locale. But with values in which category? For now, we work with
an arbitrary category with coproducts.
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C-sheaves

Thinking of schemes, in addition to assigning a locale to each
X ∈ X, we need additional data: we need to assign a sheaf to each
locale. But with values in which category? For now, we work with
an arbitrary category with coproducts.

Definition

Let C be a category with all small coproducts. Define a restriction
category C-sheaves where:

an object is a locale L, together with a (covariant) functor
F : L // C which satisfies the (covariant) sheaf condition;

a map from (L,F ) to (M,G ) partial locale map f : M // L,
as well as a natural transformation α : G // fF ;

there is a natural restriction structure on the arrows.
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C-sheaves have gluings

We then have the following results:

Proposition

If C has all small coproducts, C-sheaves is a join restriction

category.

If C has all small colimits, C-sheaves has all gluings.
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The Generalized Spec Embedding

But which category C should we use? Given an object X ∈ X, and
a restriction idempotent e : X // X , we need to assign e to some
object. Since this is completely arbitrary, there is really only one
choice: e 7→ (X , e) ∈ K (X).
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The Generalized Spec Embedding

But which category C should we use? Given an object X ∈ X, and
a restriction idempotent e : X // X , we need to assign e to some
object. Since this is completely arbitrary, there is really only one
choice: e 7→ (X , e) ∈ K (X).

Theorem

For any join restriction category X, there is a faithful

join-preserving restriction functor

X // K (X)-sheaves

which sends X to O(X ), with the sheaf that assigns e ∈ O(X ) to

(X , e) ∈ K (X ).
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The Generalized Spec Embedding

But which category C should we use? Given an object X ∈ X, and
a restriction idempotent e : X // X , we need to assign e to some
object. Since this is completely arbitrary, there is really only one
choice: e 7→ (X , e) ∈ K (X).

Theorem

For any join restriction category X, there is a faithful

join-preserving restriction functor

X // K (X)-sheaves

which sends X to O(X ), with the sheaf that assigns e ∈ O(X ) to

(X , e) ∈ K (X ).

For affine schemes, this is exactly the usual spec embedding of
affine schemes into ringed spaces! (In this case, K (X ) = cRingop,
so covariant sheaves become usual (contravariant) sheaves on
cRing).
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Is the spec embedding full?

However:

In general this embedding is not full.

For example, for affine schemes, one specializes to locally

ringed spaces and locally ringed morphisms.

So the general theory of join restriction categories gives you a
candidate category: to make the embedding full, you have to
work a bit with that particular category.

But it appears that this specialization is possible in many
settings of interest.
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Smooth Manifolds again

By identifying smooth manifolds with their algebras of smooth
maps to R, a similar construction sees smooth manifolds as
sheaves on R-algebras which locally look like Rn.
But there is another concept of space which smooth manifolds live
inside: diffeological spaces.
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Diffeological Spaces

Invented by Souriau in the late 1970’s, greatly expanded by Patrick
Iglesias-Zemmour in an (ongoing) book “Diffeology” (available on
his website).

Definition

A diffeological space is a set X , together with, for any n and U

an open subset of Rn, a set of functions U // X called “plots”,
such that:

constant functions from the one point set are plots;

if f : U // V is a smooth function, where U is an open
subset of Rn and V an open subset of Rm, and P : V // X

is a plot, then fP is also a plot;

if P : U // X is a function such that U =
⋃

i UI and each
PUi

is a plot, then P is a plot.

A map between diffeological spaces is one that sends plots to plots.
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Uses of Diffeological Spaces

Diffeological spaces are nice for (at least) two reasons:

smooth manifolds fully and faithfully embed inside
diffeological spaces;

they are stable under many operations which smooth
manifolds are not (eg., quotients, mapping spaces).
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Uses of Diffeological Spaces

Diffeological spaces are nice for (at least) two reasons:

smooth manifolds fully and faithfully embed inside
diffeological spaces;

they are stable under many operations which smooth
manifolds are not (eg., quotients, mapping spaces).

The second point is why they are gaining some attention (see a
recent paper by Alan Weinstein and others, ”Groupoid Symmetry
And Constraints In General Relativity. 1: Kinematics”). However,
the first point is the one which is important to us: one can see
smooth manifolds as diffeological spaces which locally look like
Rn. Does the diffeological construction generalize?
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Diffeological Spaces as Concrete Sheaves

Recently (2010) Baez and Hoffnung demonstrated the following
result.

Let C be the category where an object is an open subset of
some Rn, and a map is a smooth function.

This category has a natural site associated to it: the covering
families of U ⊆ Rn are those Ui ⊆ Rn such that

⋃

i Ui = U.
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Diffeological Spaces as Concrete Sheaves

Recently (2010) Baez and Hoffnung demonstrated the following
result.

Let C be the category where an object is an open subset of
some Rn, and a map is a smooth function.

This category has a natural site associated to it: the covering
families of U ⊆ Rn are those Ui ⊆ Rn such that

⋃

i Ui = U.

Then diffeological spaces are the “concrete sheaves” on this
“concrete site”.

This site is “subcanonical”, i.e., every representable is a sheaf.
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The diffeological construction for a join restriction category

Notice that C = K (fdSmooth)! In fact, the above idea works
generally for any join restriction category:

Proposition

If X is any join restriction category, then there is a natural site

associated to K (X), with the covering families of (X , e) being

those (X , ei ) such that
∨

ei = e. Moreover, this site is

subcanonical.
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The diffeological construction for a join restriction category

Notice that C = K (fdSmooth)! In fact, the above idea works
generally for any join restriction category:

Proposition

If X is any join restriction category, then there is a natural site

associated to K (X), with the covering families of (X , e) being

those (X , ei ) such that
∨

ei = e. Moreover, this site is

subcanonical.

Thus, another natural choice for a “large category of spaces”
associated to a join restriction category X is Sh(K (X)) (our sites
will not in general be concrete, so we cannot ask for concrete
sheaves).
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A Faithful Embedding

For any restriction category X, we have:

X fully and faithfully embeds in Par(K (X), res. monics);
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A Faithful Embedding

For any restriction category X, we have:

X fully and faithfully embeds in Par(K (X), res. monics);

Par(K (X), res. monics) faithfully embeds inside
Par(PSh(K (X), all monics) (the Yoneda embedding);
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A Faithful Embedding

For any restriction category X, we have:

X fully and faithfully embeds in Par(K (X), res. monics);

Par(K (X), res. monics) faithfully embeds inside
Par(PSh(K (X), all monics) (the Yoneda embedding);

if X has joins, this embedding is actually into sheaves;
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A Faithful Embedding

For any restriction category X, we have:

X fully and faithfully embeds in Par(K (X), res. monics);

Par(K (X), res. monics) faithfully embeds inside
Par(PSh(K (X), all monics) (the Yoneda embedding);

if X has joins, this embedding is actually into sheaves;

for any Grothendieck topos, its restriction category of all
monics has all gluings.
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A Faithful Embedding

For any restriction category X, we have:

X fully and faithfully embeds in Par(K (X), res. monics);

Par(K (X), res. monics) faithfully embeds inside
Par(PSh(K (X), all monics) (the Yoneda embedding);

if X has joins, this embedding is actually into sheaves;

for any Grothendieck topos, its restriction category of all
monics has all gluings.

So again we have a faithful embedding of X into a “category of
spaces” (a sheaf category) which has all gluings.
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A Faithful and Full Embedding?

But I believe we can do better!

Cockett and Lack showed that the faithful embedding of
Par(K (X), res. monics) into Par(PSh(K (X), all monics) can
always be made full by restricting the monics appropriately.
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A Faithful and Full Embedding?

But I believe we can do better!

Cockett and Lack showed that the faithful embedding of
Par(K (X), res. monics) into Par(PSh(K (X), all monics) can
always be made full by restricting the monics appropriately.

I believe this partial map category also has all gluings.

Which would give the desired result: a full and faithful embedding
of X into a category of spaces (again, a sheaf category).
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Conclusion

Given a join restriction category X, there are two possibilities for
“large categories of spaces” which atlases of X live inside:

the scheme approach: covariant sheaves from a locale to
K (X );
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Conclusion

Given a join restriction category X, there are two possibilities for
“large categories of spaces” which atlases of X live inside:

the scheme approach: covariant sheaves from a locale to
K (X );

the diffeology approach: contravariant sheaves from the
canonical site on K (X ) to set.
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Applications

Some applications:

What do shemes look like with the diffeology (Yoneda)
embedding? This should give (another) definition of schemes.
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Applications

Some applications:

What do shemes look like with the diffeology (Yoneda)
embedding? This should give (another) definition of schemes.

What does the scheme embedding look like for smooth
manifolds when they are not identified with their R-algebras?
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Applications

Some applications:

What do shemes look like with the diffeology (Yoneda)
embedding? This should give (another) definition of schemes.

What does the scheme embedding look like for smooth
manifolds when they are not identified with their R-algebras?

Does either version of space make smooth manifolds modelled
on convenient vector spaces (currently using atlases) easier to
work with?

Without the formalism of join restriction categories, these
connections would be hard to see.
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