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Abstract

We combine two recent ideas: cartesian differential categories, and restriction categories.
The result is a new structure which axiomatizes the category of smooth maps defined on open
subsets of Rn in a way that is completely algebraic. We also give other models for the resulting
structure, discuss what it means for a partial map to be additive or linear, and show that
differential restriction structure can be lifted through various completion operations.
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1 Introduction

In [Blute et. al. 2008], the authors proposed an alternative way to view differential calculus. The
derivative was seen as an operator on maps, with many of its typical properties (such as the chain
rule) axioms on this operation. The resulting categories were called cartesian differential categories,
and the standard model is smooth maps between the spaces Rn. One interesting aspect of this
project was the algebraic feel it gave to differential calculus. The seven axioms of a cartesian differ-
ential category described all the neccesary properties that the standard Jacobian has. Thus, instead
of reasoning with epsilon arguments, one could reason about calculus by manipulating algebraic
axioms.

Moroever, as shown in [Bucciarelli et. al. 2010], cartesian (closed) differential categories pro-
vide a semantic basis for modeling the simply typed differential lambda-calculus described in
[Erhard and Regnier 2003]. This latter calculus is linked to various resource calculi which, as their
name suggests, are useful in understanding the resource requirements of programs. Thus, models of
computation in settings with a differential operator are of interest in the semantics of computation
when resource requirements are being considered.

Fundamental to computation is the possibility of non-termination. Thus, an obvious extension
of cartesian differential categories is to allow partiality of maps. Of course, this has a natural ana-
logue in the standard model: smooth maps defined on open subsets of Rn are a notion of partial
smooth map which is ubiqitious in analysis.

To axiomatize these ideas, we combine cartesian differential categories with the restriction cat-
egories of [Cockett and Lack 2002]. Again, the axiomatization is completely algebraic: there are
two operations (differentiation and restriction) that satisfy seven axioms for the derivative, four for
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the restriction, and two for the interaction of derivation and restriction.

Our goal in this paper is not only to give the definitions and examples of these “differential
restriction categories”, but also to show how natural the structure is. There are a number of points
of evidence for this claim. In a differential restriction category, one can define what it means for a
partial map such as

f(x) =

{

2x if x 6= 5;
↑ if x = 5.

to be “linear”. One can give a similar description for the notion of “additive”. The differential
interacts so well with the restriction that not only does it preserve the order and compatibility
relations, it also preserves joins of maps, should they exist.

Moreover, differential restriction structure is surprisingly robust1. In the final two sections of
the paper, we show that differential structure lifts through two completion operations on restriction
categories. The first completion is the join completion, which freely add joins of compatible maps
to a restriction category. We show that if differential structure is present on the original restriction
category, then one can lift this differential structure to the join completion.

The second completion operation is much more drastic: it adds “classical” structure to the re-
striction category, allowing one to classically reason about the restriction category’s maps. Again,
we show that if the original restriction category has differential structure, then this differential
structure lifts to the classical setting. This is perhaps the most surprising result of the paper, as
one typically thinks of differential structure as being highly non-classical. In particular, it is not
obvious how differentials of functions defined at a single point should work. We show that what
the classical completion is doing is adding germs of functions, so that a function defined on a point
(or a closed set) is defined by how it works on any open set around that point (or closed set). It is
these germs of functions on which one can define differential restriction structure.

The paper is laid out as follows. In Section 2, we review the theory of restriction categories.
This includes reviewing the notions of joins of compatible maps, as well as the notion of a cartesian
restriction category.

In Section 3, we define differential restriction categories. We must begin, however, by defining
left additive restriction categories. Left additive categories are categories in which it is possible to
add two maps, but the maps themselves need not preserve the addition (for example, the set of
smooth maps between Rn). Such categories were an essential base for defining cartesian differential
categories, as the axioms need to discuss what happens when maps are added. Here, we describe
left additive restriction categories, in which the maps being added may only be partial. One inter-
esting aspect of this section is the definition of additive maps (those maps which do preserve the
addition), which is slightly more subtle than its total counterpart.

1With the exception of being preserved when we take manifolds. Understanding what happens when we take

manifolds of a differential restriction category will be considered in a future paper: see the concluding section of this

paper for further remarks.
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With the theories of cartesian restricion categories and left additive restriction categories de-
scribed, we are finally able to define differential restriction categories. One surprise is that the
differential automatically preserves joins. Again, as with additive maps, the definition of linear
is slightly more subtle than its total counterpart. We also show that rational functions over a
commutative ring forms a differential restriction category.

In Section 4, we extensively develop a family of differential restriction categories: rational func-
tions over a commutative ring. Rational functions, having “poles”, are a natural candidate for
restriction structure. We show that the natural formal derivative on these functions, together with
this restriction, forms a differential restriction category. While many of the ideas of this section
are implicit in algebraic geometry, focusing on differential and restriction structure makes the ideas
explicit.

In the next two sections, we describe what happens when we join or classicaly complete the
underlying restriction category of a differential restriction category, and show that the differential
structure lifts in both cases. Again, this is important, as it shows how robust differential restriction
structure is, as well as allowing one to differentiate in a classical setting.

Finally, in 7, we discuss further work. In particular, the next step will be to use differential
restriction categories and the manifold completion process of [Grandis 1989] to define smooth man-
ifolds.

On that note, we would like to compare our approach to other categorical theories of smooth
maps. Lawvere’s synthetic differential geometry (carried out in [Dubuc 1979], [Kock 2006], and
[Moerdijk and Reyes 1991]) is one such example. The notion of smooth topos is central to Law-
vere’s program. A smooth topos is a topos which contains an object of “infinitesimals”. One thinks
of the this object as the set D = {x : x2 = 0}. Smooth toposes give an extremely elegant approach
to differential geometry. For example, one defines the tangent space of an object X to be the
exponential XD. This essentially makes the tangent space the space of all infinitesimal paths in
X, which is precisely the intuitive notion of what the tangent space is.

The essential difference between the synthetic differential geometry approach and ours is the
level of power of the relative settings. A smooth topos is, in particular, a topos, and so enjoys a
great number of powerful properties. The differential restriction categories we describe here have
fewer assumptions: we only ask for finite products, and assume no closed structure or subobject
classifier. Thus, our approach begins at a much more basic level. While the standard model of
a differential restriction category is smooth maps defined on open subsets of Rn, the standard
model of a smooth topos is a certain completion of smooth maps between all smooth manifolds. In
contrast to the synthetic differential geometry approach, our goal is thus to see at what minimal
level differential calculus can be described, and only then move to more complicated objects such
as smooth manifolds.

A number of authors have described others notions of smooth space: see, for example, [Chen 1977],
[Frölicher 1982], [Sikorski 1972]. All have a similar approach, and the similarity is summed up in
[Stacey 2008]:
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“...we know what it means for a map to be smooth between certain subsets of Euclidean
space and so in general we declare a function smooth if whenever, we examine it using
those subsets, it is smooth. This is a rather vague statement - what do we mean by
‘examine’? - and the various definitions can all be seen as ways of making this precise.”

Thus, in each of these approaches, the author assumes an existing knowledge of smooth maps de-
fined on open subsets of Rn. Again, our approach is more basic: we are seeking to understand the
nature of these smooth maps between Rn. In particular, one could define Chen spaces, or Frölicher
spaces, based on a differential restriction category other than the standard model, and get new
notions of generalised smooth space.

Finally, it is important to note that none of these other approaches work with partial maps.
Our approach, in addition to starting at a more primitive level, gives us the ability to reason about
the partiality of maps which is so central to differential calculus, geometry, and computation.

2 Restriction categories review

In this section, we begin by reviewing the theory of restriction categories. Restriction categories
were first described in [Cockett and Lack 2002] as an alternative to the notion of a “partial map
category”. In a partial map category, one thinks of a partial map from A to B as a span

A′

m

~~~~
~~

~~
~

f

  A
AA

AA
AA

A B

where the arrow m is a monic. Thus, A′ describes the domain of definition of the partial map. By
contrast, a restriction category is a category which has to each arrow f : A // B a “restriction”
f : A //A. One thinks of this f as giving the domain of definition: in the case of sets and partial
functions, the map f is given by

fx =

{

x iff(x) defined

undefined otherwise.

There are then four axioms which axiomatize the behaviour of these restrictions (see below).

There are two advantages of restriction categories when compared to partial map categories.
The first is that they are more general than partial map categories. In a partial map category, one
needs to have as objects each of the possible domains of definition of the partial functions. In a
restriction category, this is not the case, as the domain is expressed by the restrictions. This is
important for the examples considered below. In particular, the canonical example of a differential
restriction category will have objects the spaces Rn, and maps the smooth maps defined on open
subsets of these spaces. This is not an example of a partial map category, as the open subsets
are not objects, but it is naturally a restriction category, with the same restriction as for sets and
partial functions.
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The second advantage is that the theory is completely algebraic. In partial map categories,
one deals with equivalence classes of spans and their pullbacks. As a result, they are often diffi-
cult to work with directly. In a restriction category, one simply manipulates equations involving
the restriction operator, using the four given axioms. As cartesian differential categories give a
completely algebraic description of the derivatives of smooth maps, bringing these two algebraic
theories together is a natural approach to capturing smooth maps which are partially defined.

2.1 Definition and examples

Restriction categories are axiomatized as follows. Note that throughout this paper, we are using
diagrammatic order of composition, so that “f , followed by g”, is written fg.

Definition 2.1 Given a category, X, a restriction structure on X gives for each, A
f
−→ B, a

restriction arrow, A
f
−→ A, that satisfies four axioms:

[R.1] f f = f ;

[R.2] If dom(f) = dom(g) then g f = f g ;

[R.3] If dom(f) = dom(g) then g f = g f ;

[R.4] If dom(g) = cod(f) then fg = fg f .

A category with a specified restriction structure is a restriction category.

We have already seen two examples of restriction categories: sets and partial functions, and
smooth functions defined on open subsets ofRn. Many more examples can be found in [Cockett and Lack 2002],
as well as in [Cockett and Hofstra 2008], where restriction categories are used to describe categories
of partial computable maps.

A rather basic fact is that each restriction f is idempotent. We record this together with some
other basic consequences of the definition:

Lemma 2.2 If X is a restriction category then:

(i) f is idempotent;

(ii) f fg = fg ;

(iii) fg = fg ;

(iv) f = f ;

(v) f g = f g ;

(vi) If f is monic then f = 1 (and so in particular 1 = 1);

(vii) f g = g implies g = f g .

Proof:
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(i) By [R.3] and [R.1] we have f f = f f = f .

(ii) By [R.3] and [R.1] we have f fg = f fg = fg .

(iii) We use [R.4], [R.3], and (ii) to conclude fg = fg f = fg f = fg .

(iv) By (iii) we have f = 1f = 1f = f .

(v) By [R.3] we have f g = f g = f g ;

(vi) Since f f = 1f , when f is monic we conclude that f = 1.

(vii) By [R.3] we have g = f g = f g .

2

2.2 Partial map categories

As alluded to in the introduction to this section, an alternative way of axiomatizing categories of
partial maps is via spans where one leg is a monic. We recall this notion here. These will be
important, as we shall see that rational functions over a commutative rig naturally embed in a
larger partial map category.

Definition 2.3 Let X be a category, and M a class of monics in X. M is a stable system of
monics in case

SSM1 All isomorphisms are in M

SSM2 M is closed to composition

SSM3 For any m : B′ → B ∈ M, f : A → B ∈ C the following pullback, called an M-pullback,
exists and m′ ∈M:

A′
f

//

m′

��

B′

m

��
A

f
// B

Definition 2.4 An M-Category is a pair (X,M) where X is a category with a specified system
of stable monics M.

Definition 2.5 Let (X,M) be an M-Category. Define Par(X,M) to be the category where

Obj: The objects of X
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Arr: A
(m,f)
−→ B are classes of spans (m, f),

A′

m

~~~~
~~

~~
~

f

  A
AA

AA
AA

A B

where m ∈ M. The classes of spans are quotiented by the equivalence relation (m, f) ∼
(m′, f ′) if there is an isomorphism, φ, such that both triangles in the following diagram com-
mute.

A′
m

��
f

,,

φ
// A′′

m′

rr

f ′

��
A B

Id: A
(1A,1A)
−→ A

Comp: By pullback; i.e. given A
(m,f)
−→ B,B

(m′,f ′)
−→ C, the pullback

A′′

m′′

~~||
||

||
|| f ′′

!!B
BB

BB
BB

B

A′

m

~~~~
~~

~~
~

f

!!B
BB

BB
BB

B B′

m′

}}||
||

||
|| f ′

  A
AA

AA
AA

A B C

gives a composite A
(m′′m,f ′′f ′)

//C. (Note that without the equivalence relation on the arrows,
the associative law would not hold.)

Moreover, this has restriction structure: given an arrow (m, f), we can define its restriction to
be (m,m). From [Cockett and Lack 2002], we have the following completeness result:

Theorem 2.6 Every restriction category is a full subcategory of a category of partial maps.

However, it is not true that every full subcategory of a category of partial maps is a category
of partial maps, so the restriction notion is more general.

2.3 Joins of compatible maps

An important aspect of the theory of restricion categories is the idea of the join of two compatible
maps. We first describe what it means for two maps to be compatible, that is, equal where they
are both defined.

Definition 2.7 Two parallel maps f, g in a restriction category are compatible, written f ⌣ g, if
f g = g f .
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Note that compatibility is not transitive. Recall also the notion of when a map f is less than or
equal to a map g:

Definition 2.8 f ≤ g if f g = f .

This captures the notion of g having the same values as f , but having a smaller domain of definition.
An important alternative characterization of compatibility is the following:

Lemma 2.9 In a restriction category,

f ⌣ g ⇔ f g ≤ f ⇔ g f ≤ g.

Proof: If f ⌣ g, then f g = g f ≤ f . Conversely, if f g ≤ f , then by definition, f g g = f g, so
g f = f g. 2

Intuitively, the join of two compatible maps f and g will be a map which is defined everywhere
f and g are, and takes their common value where both f and g are defined. Naturally, there will
also be the concept of a nullary join; that is, a nowhere-defined map. An arbitrary restriction
category need not have joins.

Definition 2.10 Let X be a restriction category. X is a finite join restriction category if each
homset X(A,B) has a map ∅AB such that

J1 for any f : A // B, ∅AB ≤ f ;

J2 for any f : A // B, f∅BC = ∅AC ;

and for any two compatible maps f, g : A // B, there is a join f ∨ g : A // B such that

J3 f ≤ f ∨ g;

J4 g ≤ f ∨ g;

J5 If h : A // B such that f, g ≤ h, then (f ∨ g) ≤ h;

J6 For any C
s // A, s(f ∨ g) = (sf) ∨ (sg).

Obviously, sets and partial functions have all joins - simply take the union of the domains of
the compatible maps. Similarly, since the union of open sets is open, smooth functions on open
subsets also have joins.

Note that the definition only asks for compatibility of joins with composition on the left. In
the following proposition, we show that this implies compatibility with composition on the right,
as well as establish several other useful results.

Proposition 2.11 In any join restriction category,

(i) ∅ = ∅;

(ii) For every g, ∅g = ∅;

(iii) f ∨ g = f ∨ g;
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(iv) (f ∨ g)h = (fh) ∨ (gh).

(v) if g = ∅, then g = ∅;

(vi) if (fi)i∈I is a finite compatible family of arrows,

fj

(

∨

i∈I

fi

)

= fj

for any j ∈ I.

Proof:

(i) ∅ ≤ ∅ so that ∅ = ∅.

(ii) ∅g = g∅g = g∅ = g∅ = ∅;

(iii) It is clear that f ∨ g ≤ f ∨ g, and so f ∨ g = f ∨ g. We must show the reverse inequality

f ∨ g(f ∨ g) = f ∨ g (f ∨ g)

= (f ∨ g)(f ∨ g) = (f ∨ g)f ∨ (f ∨ g)g

= f(f ∨ g)f ∨ g(f ∨ g)g = ff ∨ ggf ∨ g

(iv) Again it is clear that (fh)∨ (gh) ≤ (f ∨ g)h, we must show that the reverse inequality holds.
To do this we shall first establish that (f ∨ g)h = (fh) ∨ (gh) as

(f ∨ g)h = (f ∨ g)h(f ∨ g) = ((f ∨ g)hf ∨ (f ∨ g)hg)

= ((f ∨ g)h ff ∨ (f ∨ g)h gg) = (f (f ∨ g)hf ∨ g (f ∨ g)hg)

= (f(f ∨ g)hf ∨ g(f ∨ g)hg) = (fhf ∨ ghg) = (fh ∨ gh)

It remains to show that (f ∨ g)h ≤ (fh)∨ (gh) and to show this it suffices to show (f ∨ g)h =
(fh) ∨ (gh) but for this we have:

(fh) ∨ (gh) = fh ∨ gh = fh ∨ gh = fh ∨ gh

= (f ∨ g)h = (f ∨ g)h

(v) If g = ∅, then g g = ∅g, so g = ∅.

(vi) Consider:

fj

(

∨

fi

)

=
∨

fj fi

=
∨

fi fj since each fi is compatible with fj

= fj since fi fj ≤ fj for each i, and equal to fj for i = j

as required.

2
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2.4 Cartesian restriction categories

Not surprisingly, cartesian differential categories involve cartesian structure. Thus, to develop
the theory which combines cartesian differential categories with restriction categories, it will be
important to recall how cartesian structure interacts with restrictions. This was first described in
[Cockett and Lack 2007], and we recall the basic idea here.

Definition 2.12 Let X be a restriction category. A restriction terminal object 1 is an object
in X such that for any object A, there is a unique total map !A : A −→ 1 which satisfies !1 = id1.
Further, these maps ! must satisfy the property that for any map f : A −→ B, f !B ≤!A, i.e.

f !B = f !B !A = f !B !A = f !A.

A restriction product of objects A,B in X is defined by total projections

π0 : A×B −→ A π1 : A×B −→ B

satisfying the property that for any object C and maps f : C −→ A, g : C −→ B there is a pairing
map, 〈f, g〉 : C −→ A×B such that both triangles below exhibit lax commutativity

C
f

{{xxxxxxxxx
g

##G
GGGGGGGG

〈f,g〉
��≥ ≤

A A×Bπ0

oo
π1

// B

that is,

〈f, g〉π0 = 〈f, g〉f and 〈f, g〉π1 = 〈f, g〉g.

In addition, we ask that 〈f, g〉 = f g .

We require lax commutativity as a pairing 〈f, g〉 should only be defined as much as both f and
g are.

Definition 2.13 A restriction category X is a cartesian restriction category if X has a restric-
tion terminal object and all restriction products.

Clearly, both sets and partial functions, and smooth functions defined on open subsets of Rn

are cartesian restriction categories.
The following contains a number of useful results.

Proposition 2.14 In any cartesian restriction category,

(i) 〈f, g〉π0 = f g and 〈f, g〉π1 = g f ;

(ii) if e = e , then e〈f, g〉 = 〈ef, g〉 = 〈f, eg〉;

(iii) f〈g, h〉 = 〈fg, fh〉;

(iv) if f ≤ f ′ and g ≤ g′, then 〈f, g〉 ≤ 〈f ′, g′〉;
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(v) if f ⌣ f ′ and g ⌣ g′, then 〈f, g〉⌣ 〈f ′, g′〉;

(vi) if f is total, then (f × g)π1 = π1g. If g is total, (f × g)π0 = π0f .

Proof:

(i) By the lax commutativity, 〈f, g〉π0 = 〈f, g〉 f = f g f = g f and similarly with π1.

(ii) Note that
e〈f, g〉π0 = eg f = e g f = e g f = eg f = 〈f, eg〉π0

A similar result holds with π1, and so by universality of pairing, e〈f, g〉 = 〈f, eg〉. By symme-
try, it also equals 〈ef, g〉.

(iii) Note that
f〈g, h〉π0 = fh̄g = fh fg = 〈fg, fh〉π0

where the second equality is by R4. A similar result holds for π1, and so the result follows by
universality of pairing.

(iv) Consider

〈f, g〉 〈f ′, g′〉

= f g 〈f ′, g′〉 by (i)

= 〈f ′, f g g′〉 by (ii)

= 〈f ′, f , g〉 since g ≤ g′

= 〈f f ′, g〉 by (ii)

= 〈f, g〉 since f ≤ f ′.

Thus 〈f, g〉 ≤ 〈f ′, g′〉.

(v) By Lemma 2.9, we only need to show that 〈f, g〉 〈f ′, g′〉 ≤ 〈f, g〉. But, again by Lemma 2.9,
we have f f ′ ≤ f and g g′ ≤ g, so by (iv) we get 〈f̄f ′, ḡg′〉 ≤ 〈f, g〉 and thus by (ii) and (i),
we get 〈f, g〉 〈f ′, g′〉 ≤ 〈f, g〉.

(vi)
(f × g)π1 = 〈π0f, π1g〉π1 = π0f π1g = π1g

2

If X is a cartesian restriction category which also has joins, then the two structures are auto-
matically compatible:

Proposition 2.15 In any cartesian restriction category with joins,

(i) 〈f ∨ g, h〉 = 〈f, h〉 ∨ 〈g, h〉 and 〈f, ∅〉 = 〈∅, f〉 = ∅;

(ii) (f ∨ g)× h = (f × h) ∨ (g × h) and f × ∅ = ∅ × f = ∅.

Proof:
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(i) Since 〈f, ∅〉 = f ∅ = f ∅ = ∅, by Proposition 2.11, we have 〈f, ∅〉 = ∅. For pairing,

〈f ∨ g, h〉 = 〈f ∨ g, h〉〈f ∨ g, h〉

= f ∨ gh〈f ∨ g, h〉

= (f ∨ g)〈f ∨ g, h〉

= (f〈f ∨ g, h〉) ∨ (g〈f ∨ g, h〉)

= 〈f(f ∨ g), h〉 ∨ 〈g(f ∨ g), h〉

= 〈f, h〉 ∨ 〈g, h〉

as required.

(ii) Using part (a), f × ∅ = 〈π0f, π1∅〉 = 〈π0f, ∅〉 = ∅ and

(f ∨ g)× h = 〈π0(f ∨ g), π1h〉

= 〈(π0f) ∨ (π0g), π1h〉

= 〈π0f, π1h〉 ∨ 〈π0g, π1h〉

= (f × h) ∨ (g × h)

2

We shall see that this pattern continues with left additive and differential restriction categories:
if the restriction category has joins, then it is automatically compatible with left additive or differ-
ential structure.

3 Differential restriction categories

Before we define differential restriction categories, we need to define left additive restriction cate-
gories. Left additive categories were introduced in [Blute et. al. 2008] as a precursor to differential
structure. To axiomatize how the differential interacts with addition, one must define categories
in which it is possible to add maps, but not have these maps neccesarily preserve the addition (as
is the case with smooth maps defined on real numbers). The canonical example of one of these
left additive categories is the category of commutative monoids with arbitrary functions between
them. These functions have a natural additive structure given pointwise: (f +g)(x) := f(x)+g(x),
as well as 0 maps: 0(x) := 0. Moreover, while this additive structure does not interact well with
postcomposition by a function, it does with precomposition: h(f + g) = hf + hg, and f0 = 0. This
is essentially the definition of a left additive category.

3.1 Left additive restriction categories

To define left additive restriction categories, we need to understand what happens when we add two
partial maps, as well as the nature of the 0 maps. Intuitively, the maps in a left additive category
are added pointwise. Thus, the result of adding two partial maps should only be defined where
the original two maps were both defined. Moreoever, the 0 maps should be defined everywhere.
Thus, the most natural requirement for the interaction of additive and restriction structure is that
f + g = fg, and that the 0 maps be total.

13



Definition 3.1 X is a left additive restriction category if each X(A,B) is a commutative
monoid which in its interaction with the restriction satifies f + g = fg and 0 = 1, and furthermore
is left additive: f(g + h) = fg + fh and f0 = f 0.

It is important to note the difference between the last axiom (f0 = f 0) and its form for left additive
categories (f0 = 0). f0 need not be total, so rather than ask that this be equal to 0 (which is
total), we must instead ask that f0 = f 0. This phenomenon will return when we define differential
restriction categories. In general, any time an axiom is not linear, we must modify the axiom to
include the restrictions of the maps that are lost.

There are two obvious examples of left additive restriction categories: commutative monoids
with arbitrary partial functions between them, and the subcategory of these consisting of continu-
ous or smooth functions defined on open subsets of Rn.

Some results about left additive structure:

Proposition 3.2 In any left additive restriction category:

(i) f + g = g f + f g;

(ii) if e = e , then e(f + g) = ef + g = f + eg;

(iii) if f ≤ f ′, g ≤ g′, then f + g ≤ f ′ + g′;

(iv) if f ⌣ f ′, g ⌣ g′, then (f + g) ⌣ (f ′ + g′).

Proof:

(i)
f + g = f + g (f + g) = f g (f + g) = g f f + f g g = g f + f g

(ii)

f + eg

= eg f + f eg by (i)

= e g f + e f g

= e (g f + f g)

= e(f + g) by (i)

(iii) Suppose f ≤ f ′, g ≤ g′. Then:

f + g (f ′ + g′)

= f g (f ′ + g′)

= g f f ′ + f g g′

= g f + f g since f ≤ f ′, g ≤ g′

= f + g by (i).

so (f + g) ≤ (f ′ + g′).
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(iv) Suppose f ⌣ f ′, g ⌣ g′. By (reference), it suffices to show that f + g (f ′ +g′) ≤ f +g. Again
by (reference) we have f f ′ ≤ f , g g′ ≤ g, so by (ii), we can start with

f f ′ + g g′ ≤ f + g

g g′ f f ′ + f f ′ g g′ ≤ f + g

g g′ f f ′ + f f ′ g g′ ≤ f + g by R3

f g (g′ f ′ + f ′ g′) ≤ f + g by left additivity

f + g (f ′ + g′) ≤ f + g by (i)

2

If X has joins and left additive structure, then they are automatically compatible:

Proposition 3.3 If X is a left additive restriction category with joins, then:

(i) f + ∅ = ∅;

(ii)
∨

i fi +
∨

j gj =
∨

i,j fi + gj .

Proof:

(i) f + ∅ = f ∅ = f ∅ = ∅, so by Proposition 2.11, f + ∅ = ∅.

(ii) Consider:

(
∨

i

fi) + (
∨

j

gj) = (
∨

i

fi) + (
∨

j

gj)(
∨

i

fi) + (
∨

j

gj)

= (
∨

i

fi)(
∨

j

gj)((
∨

i

fi) + (
∨

j

gj))

= (
∨

i,j

fi gj)((
∨

i

fi) + (
∨

j

gj))

=
∨

i,j

gj fi(
∨

i

fi) + fi gj(
∨

j

gj))

=
∨

i,j

gj fi + fi gj by Proposition 2.11,

=
∨

i,j

fi + gj ,

as required.

2

3.2 Additive and strongly additive maps

Before we get to the definition of a differential restriction category, it will be useful to have a slight
detour, and investigate the nature of the additive maps in a left additive restriction category. In a
left additive category, arbitrary maps need not preserve the addition, in the sense that

(x + y)f = xf + yf and 0f = 0,
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is not taken as axiom. Those maps which do preserve the addition (in the above sense) form an
important subcategory, and such maps are called additive. Similarly, it will be important to iden-
tify which maps in a left additive restriction category are additive.

Here, however, we must be a bit more careful in our definition. Suppose we took the above
axioms as our definition of additive in a left additive restriction category. In particular, asking for
that equality would be asking for the restrictions to be equal, so that

(x + y)f = xf + yf = xf yf

That is, xf and yf are defined exactly when (x + y)f is. Obviously, this is a problem in one
direction: it would be nonsensical to ask that f be defined on x + y implies that f is defined on
both x and y. The other direction seems more logical: asking that if f is defined on x and y,
then it is defined on x + y. That is, in addition to being additive as a function, its domain is also
additively closed.

Even this, however, is often too strong for general functions. A standard example of a smooth
partial function would be something 2x, defined everywhere but x = 5. This map does preserve
addition, wherever it is defined. But it is not additive in the sense that its domain is not additively
closed. Thus, we need a weaker notion of additivity: we merely ask that (x+y)f be compatible with
xf + yf . Of course, the stronger notion, where the domain is additively closed, is also important,
and will be discussed further below.

Definition 3.4 Say that a map f in a left additive restriction category is additive if for any x, y,

(x + y)f ⌣ xf + yf and 0f ⌣ 0

We shall see below that for total maps, this agrees with the usual definition. We also have the
following alternate characterizations of additivity:

Lemma 3.5 A map f is additive if and only if for any x, y,

xf yf (x + y)f ≤ xf + yf and 0f ≤ 0

or
(xf + yf )f ≤ xf + yf and 0f ≤ 0.

Proof: Use the alternate form of compatibility (Lemma 2.9) for the first part, and then R4 for
the second. 2

Proposition 3.6 In any left additive restriction category,

(i) total maps are additive if and only if (x + y)f = xf + yf ;

(ii) restriction idempotents are additive;

(iii) additive maps are closed under composition;

(iv) if g ≤ f and f is additive, then g is additive;
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(v) 0 maps are additive, and additive maps are closed under addition.

Proof: In each case, the 0 axiom is straightforward, so we only show the addition axiom.

(i) It suffices to show that if f is total, then (x + y)f = xf + yf . Indeed, if f is total,

(x + y)f = x + y = x y = xf yf = xf + yf .

(ii) Suppose e = e . Then by R4,

(xe + ye)e = xe + ye e (xe + ye) ≤ xe + ye

so that e is additive.

(iii) Suppose f and g are additive. Then

xfg yfg (x + y)fg

= xfg yfg xf yf (x + y)fg

≤ xfg yfg (xf + yf)g since f is additive,

≤ xfg + yfg since g is additive,

as required.

(iv) If g ≤ f , then g = g f , and since restriction idempotents are additive, and the composites of
additive maps are additive, g is additive.

(v) For any 0 map, (x + y)0 = 0 = 0 + 0 = x0 + y0, so it is additive. For addition, suppose f and
g are additive. Then we have

(x + y)f ⌣ xf + yf and (x + y)g ⌣ xg + yg.

Since adding preserves compatibility, this gives

(x + y)f + (x + y)g ⌣ xf + yf + xg + yg.

Then using left additivity of x, y, and x + y, we get

(x + y)(f + g) ⌣ x(f + g) + y(f + g)

so that f + g is additive.

2

What is not true, however, is that if f is additive and has a partial inverse g, then g is partially
additive. Indeed, consider the left additive restriction category of arbitrary partial maps from Z to
Z. In particular, consider the partial map f which is only defined on {p, q, r} for r 6= p+q, and maps
those points to {n,m, n + m}. In this case, f is additive, since (p + q)f is undefined. However, f ’s
partially inverse g, which sends {n,m, n+m} to {p, q, r} is not additive, since ng+mg 6= (n+m)g.
The problem is that f ’s domain is not additively closed. This leads us to the following definition.
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Definition 3.7 Say that a map f in a left additive restriction category is strongly additive if for
any x, y,

xf + yf ≤ (x + y)f and 0f = 0.

An alternate description, which can be useful for some proofs, is the following:

Lemma 3.8 f is strongly additive if and only if (xf + yf )f = xf + yf and 0f = 0.

Proof:

xf + yf ≤ (x + y)f

⇔ xf + yf (x + y)f = xf + yf

⇔ xf yf (x + y)f = xf + yf

⇔ (xf x + yf y)f = xf + yf

⇔ (xf + yf )f = xf + yf by R4.

2

Intuitively, the strongly additive maps are the ones which are additive in the previous sense,
but whose domains are also closed under addition and contain 0. Note then that not all restriction
idempotents will be strongly additive, and a map less than or equal to a strongly additive map need
not be strongly additive. Excepting this, all of the previous results about additive maps hold true
for strongly additive ones, and in addition, a partial inverse of a strongly additive map is strongly
additive.

Proposition 3.9 In a left additive restriction category,

(i) strongly additive maps are additive, and if f is total, then f is additive if and only if it is
strongly additive;

(ii) if f is strongly additive, then so is f ;

(iii) identities are strongly additive, and if f and g are strongly additive, then so is fg;

(iv) 0 maps are strongly additive, and if f and g are strongly additive, then so is f + g;

(v) if f is strongly additive and has a partial inverse g, then g is also strongly additive.

Proof: In most of the following proofs, we omit the proof of the 0 axiom, as it is straightforward.

(i) Since ≤ implies ⌣, strongly additive maps are additive, and by previous discussion, if f is
total, the restrictions of xf + yf and (x + y)f are equal, so ⌣ implies ≤.

(ii) Suppose f is strongly additive. Then using the alternate description of strongly additive,

(xf + yf )f

= xf + yf f (xf + yf ) by R4,

= xf + yf (xf + yf ) since f strongly additive,

= xf yf (xf + yf )

= xf + yf

and 0f = 0f 0 = 0 0 = 0, so f is strongly additive.
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(iii) Identities are total and additive, so are strongly additive. Suppose f and g are strongly
additive. Then

xfg + yfg

≤ (xf + yf)g since g strongly additive,

≤ (x + y)fg since f strongly additive,

so fg is strongly additive.

(iv) Since any 0 is total and additive, 0’s are strongly additive. Suppose f and g are strongly
additive. Then

x(f + g) + y(f + g)

= xf + xg + yf + yf by left additivity,

≤ (x + y)f + (x + y)g since f and g are strongly additive,

= (x + y)(f + g) by left additivity,

so f + g is strongly additive.

(v) Suppose f is strongly additive and has a partial inverse g. Using the alternate form of strongly
additive,

(xg + yg )g

= (xgf + ygf)g

= (xgf + ygf )fg since f is strongly additive,

= (xgf + ygf )f

= xgf + ygf since f strongly additive,

= xg + yg

and 0g = 0fg = 0f = 0, so g is strongly additive.

2

Finally, note that neither additive nor strongly additive maps are closed under joins. For
additive, the join of the additive maps f : {n,m} // {p, q} and g : {n + m} // r, where p + q 6= r,
is not additive. For strongly additive, if f is defined on multiples of 2 and g on multiples of 3, their
join is not closed under addition, so is not strongly additive.

3.3 Cartesian left additive restriction categories

In a differential restriction category, we will need both cartesian and left additive structure. Thus,
we describe here how cartesian and additive restriction structures must interact.

Definition 3.10 X is a cartesian left additive restriction category if the product functor
preserves addition (that is (f + g)× (h+ k) = (f ×h)+ (g× k) and 0 = 0× 0) and the maps π0,π1,
and ∆ are additive.
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If X is a cartesian restriction category then each object becomes canonically a (total) commu-
tative monoid by +X = π0 + π1 : X × X // X and 0 : 1 // X. Surprisingly, assuming these
total commutative monoids are coherent with the cartesian structure, one can then recapture the
additive structure, as the following theorem shows. Thus, in the presence of cartesian restriction
structure, it suffices to give additive structure on the total maps to get a cartesian left additive
restriction category.

Theorem 3.11 Suppose that X is a cartesian restriction category, with each object A having the

structure of a total commutative monoid, A× A
+A // A and 1

0A // A, such that the projections
and diagonal are additive and we have an exchange axiom:

+X×Y = (X × Y )× (X × Y )
ex // (X ×X)× (Y × Y )

+X×+Y // X × Y.

Then X can be given the structure of a cartesian left additive category, where, for A
f,g

// B,
f + g := 〈f, g〉+B and 0AB :=!A0B.

Proof: That this gives a commutative monoid on each X(A,B) follows directly from the commu-
tative monoid axioms on B and the coherences of the cartesian structure. For example, to show
f + 0 = f , we need to show 〈f, !A0B〉 = f . Indeed, we have

A B ×B
〈f,!A0B〉

//A

A× 1

∼=

&&MMMMMMMMMMMMM

A× 1

B ×B

f×0B

44hhhhhhhhhhhhhhhhhhhhhhhhh
A× 1

B × 1

f×1

&&MMMMMMMMMMMM

B × 1

B

∼=

&&MMMMMMMMMMMMMM

B ×B

B

+B

��

B × 1

B ×B

1×0B

AA��������������������

A

B

f

//

the right-most shape commutes a commutative monoid axiom for B, and the other shapes commute
by coherences of the cartesian structure. The other commutative monoid axioms are similar.

For the interaction with restriction,

f + g = 〈f, g〉+B = 〈f, g〉+B = 〈f, g〉 = f g ,

and 0AB = !A0B = 1 since ! and 0 are themselves total.
For the interaction with composition,

f(g + h) = f〈g, h〉0C = 〈fg, fh〉0C = fg + fh

and
f0BC = f !B0C = f !A0C = f 0AC

as required.
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The requirement that (f + g)× (h + k) = (f × h) + (g × k) follows from the exchange axiom:

A× C (B ×D)× (B ×D)
〈f×h,g×k〉

//A× C

(B ×B)× (D ×D)

〈f,g〉×〈h,k〉

''OOOOOOOOOOOOOOOOOO
(B ×D)× (B ×D)

(B ×B)× (D ×D)

ex

wwooooooooooooooooo

(B ×B)× (D ×D)

B ×D

+B×+D

''OOOOOOOOOOOOOOOOOO

(B ×D)× (B ×D)

B ×D

+B×D

��

A× C

B ×D

〈f,g〉+B×〈h,k〉+D

00

the right triangle is the exchange axiom, and the other two shapes commute by the cartesian
coherences. Checking that π0, π1 and δ are additive is similar.

2

Proposition 3.12 In a cartesian left additive restriction category:

(i) 〈f, g〉 + 〈f ′, g′〉 = 〈f + f ′, g + g′〉 and 〈0, 0〉 = 0;

(ii) if f and g are additive, then so is 〈f, g〉;

(iii) the projections are strongly additive, and if f and g are strongly additive, then so is 〈f, g〉,

(iv) f is additive if and only if

(π0 + π1)f ⌣ π0f + π1f and 0f ⌣ 0;

(that is, in terms of the monoid structure on objects, (+)(f) ⌣ (f × f)(+) and 0f ⌣ 0,

(v) f is strongly additive if only if

(π0 + π1)f ≥ π0f + π1f and 0f = 0;

(that is, (+)(f) ≥ (f × f)(+) and 0f ≥ 0).

Note that f being strongly additive only implies that + and 0 are lax natural transformations.
Proof:

(i) Since the second term is a pairing, it suffices to show they are equal when post-composed with
projections. Post-composing with π0, we get

(〈f, g〉 + 〈f ′, g′〉)π0

= 〈f, g〉π0 + 〈f ′, g′〉π0 since π0 is additive,

= g f + g′ f ′

= g g′ (f + f ′)

= g + g′ (f + f ′)

= 〈f + f ′, g + g′〉π0

as required. The 0 result is direct.
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(ii) We need to show
(x + y)〈f, g〉⌣ x〈f, g〉+ y〈f, g〉;

however, since the first term is a pairing, it suffices to show they are compatible when post-
composed by the projections. Indeed,

(x + y)〈f, g〉π0 = (x + y)g f ⌣ xg f + yg f

while since π0 is additive,

(x〈f, g〉+ y〈f, g〉)π0 = x〈f, g〉π0 + y〈f, g〉π0 = xg f + yg f

so the two are compatible, as required. Post-composing with π1 is similar.

(iii) Since projections are additive and total, they are strongly additive. If f and g are strongly
additive,

x〈f, g〉 + y〈f, g〉

= 〈xf, xg〉 + 〈yf, yg〉

= 〈xf + yf, xg + yg〉 by (i)

≤ 〈(x + y)f, (x + y)g〉 since f and g are strongly additive,

= (x + y)〈f, g〉

so 〈f, g〉 is strongly additive.

(iv) If f is additive, the condition obviously holds. Conversely, if we have the condition, then f is
additive, since

(x + y)f = 〈x, y〉(π0 + π1)f ⌣ 〈x, y〉(π0f + π1f) = xf + yf

as required.

(v) Similar to the previous proof.

2

3.4 Differential restriction categories

With cartesian left additive restriction categories defined, we turn to defining differential restriction
categories. To do this, we begin by recalling the notion of a cartesian differential category. The idea
is to axiomatize the Jacobian of smooth maps. Normally, the Jacobian of a map f : X // Y gives,
for each point of X, a linear map X // Y . That is, D[f ] : X // [X,Y ]. However, we don’t want
to assume that our category has closed structure. Thus, uncurrying, we get that the derivative
should be of the type D[f ] : X × X // Y . The second coordinate is simply the point at which
the derivative is being taken, while the first coordinate is the direction in which this derivative is
being evaluated. With this understanding, the first five axioms of a cartesian differential category
should be relatively clear. Axioms 6 and 7 are slightly more tricky, but in the essence they say
that the derivative is linear, and that the order of partial differentiation does not matter. For more
discussion of these axioms, see [Blute et. al. 2008].
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Definition 3.13 A cartesian differential category is a cartesian left additive category with a
differentiation operation

X
f

// Y
X ×X

D[f ]
// Y

such that

[CD.1] D[f + g] = D[f ] + D[g] and D[0] = 0 (additivity of differentiation);

[CD.2] 〈g + h, k〉D[f ] = 〈g, k〉D[f ] + 〈h, k〉D[f ] and 〈0, g〉D[f ] = 0 (additivity of a derivative in
its first variable);

[CD.3] D[1] = π0,D[π0] = π0π0, and D[π1] = π0π1 (derivatives of projections);

[CD.4] D[〈f, g〉] = 〈D[f ],D[g]〉 (derivatives of pairings);

[CD.5] D[fg] = 〈D[f ], π1f〉D[g] (chain rule);

[CD.6] 〈〈g, 0〉, 〈h, k〉〉D[D[f ]] = 〈g, k〉D[f ] (linearity of the derivative);

[CD.7] 〈〈0, h〉, 〈g, k〉〉D[D[f ]] = 〈〈0, g〉, 〈h, k〉〉D[D[f ]] (independence of partial differentiation).

We now give the definition of a differential restriction category. Axioms 8 and 9 are the additions
to the above. Axiom 8 says that the differential of a restriction is similar to the derivative of an
identity, with the partiality of f now included. Axiom 9 says that the restriction of a differential
is nothing more than 1× f : the first component, being simply the co-ordinate of the direction the
derivative is taken, is always total. In addition to these new axioms, one must also modify axioms
2 and 6 to take into account the partiality when one loses maps, and remove the first part of axiom
3 (D[1] = π0), since axiom 8 makes it redundant.

Definition 3.14 A differential restriction category is a cartesian left additive restriction cat-
egory with a differentiation operation

X
f

// Y
X ×X

D[f ]
// Y

such that

[DR.1] D[f + g] = D[f ] + D[g] and D[0] = 0;

[DR.2] 〈g + h, k〉D[f ] = 〈g, k〉D[f ] + 〈h, k〉D[f ] and 〈0, g〉D[f ] = gf0;

[DR.3] D[π0] = π0π0, and D[π1] = π0π1;

[DR.4] D[〈f, g〉] = 〈D[f ],D[g]〉;

[DR.5] D[fg] = 〈D[f ], π1f〉D[g];

[DR.6] 〈〈g, 0〉, 〈h, k〉〉D[D[f ]] = h〈g, k〉D[f ];
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[DR.7] 〈〈0, h〉, 〈g, k〉〉D[D[f ]] = 〈〈0, g〉, 〈h, k〉〉D[D[f ]];

[DR.8] D[f ] = (1× f)π0;

[DR.9] D[f ] = 1× f .

Of course, any cartesian differential category is a differential restriction category, when equipped
with the trivial restriction structure (f = 1 for all f). The standard example with a non-trivial
restriction is smooth functions defined on open subsets of Rn; that this is a differential restriction
category is readily verified. In the next section, we will present a more sophisticated example
(rational functions over a commutative ring).

There is an obvious notion of differential restriction functor:

Definition 3.15 If X and Y are differential restriction categories, a differential restriction

functor X
F // Y is a restriction functor such that

• F preserves the addition and zeroes of the homsets;

• F preserves products strictly: F (A×B) = FA× FB,F1 = 1;

• F preserves the differential: F (D[f ]) = D(F [f ]).

The differential itself automatically preserves both the restriction ordering and the compatability
relation:

Proposition 3.16 In a differential restriction category:

(i) D[fg] = (1× f)D[g];

(ii) If f ≤ g then D[f ] ≤ D[g];

(iii) If f ⌣ g then D[f ] ⌣ D[g].

Proof:

(i) Consider:

D[fg]

= 〈Df , π1f 〉D[g] by [D5]

= 〈(1 × f )π0, π1f 〉D[g] by [D8]

= 〈(1 × f )π0, (1× f )π1〉D[g] by naturality

= (1× f )D[g] by Lemma 2.14.

as required.

(ii) If f ≤ g, then
D[f ]D[g] = (1× f )D[g] = D[f g] = D[f ],

so D[f ] ≤ D[g].
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(iii) If f ⌣ g, then

D[f ]D[g] = (1× f )D[g] = D[f g] = D[g f ] = (1× g )D[f ] = D[g] D[f ],

so D[f ] ⌣ D[g].

2

Moreover, just as for cartesian and left additive structure, if X has joins and differential struc-
ture, then they are automatically compatible:

Proposition 3.17 In a differential restriction category with joins,

(i) D[∅] = ∅,

(ii) D [
∨

i fi] =
∨

i D[fi].

Proof:

(i) D[∅] = 1× ∅ = ∅, so by Lemma 2.11, D[∅] = ∅.

(ii) Consider:

∨

i∈I

D[fi]

=
∨

i∈I

D



fi

∨

j∈I

fj



 by Lemma 2.11

=
∨

i∈I

(1× fi )D





∨

j∈I

fj



 by Lemma 3.16

=

(

1×
∨

i∈I

fi

)

D





∨

j∈I

fj





=

(

1×
∨

i∈I

fi

)

D





∨

j∈I

fj





= D

[

∨

i∈I

fi

]

D





∨

j∈I

fj



 by D9

= D

[

∨

i∈I

fi

]

as required.

2
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3.5 Linear maps

Just as we had to modify the definition of additive maps for left additive restriction categories, so
too do we have to modify linear maps when dealing with differential restriction categories. Recall
that in a cartesian differential category, a map is linear if D[f ] = π0f . If we asked for this in a
differential restriction category, we would have

π0f = D[f ] = 1× f = π1f ,

which is never true unless f is total. In constrast to the additive situation, however, there is no
obvious preference for one side to be more defined that the other. Thus, a map will be linear when
D[f ] and π0f are compatible.

Definition 3.18 A map f in a differential restriction category is linear if

D[f ] ⌣ π0f

We shall see below that for total f , this agrees with the usual definition. We also have the
following alternate characterizations of linearity:

Lemma 3.19 In a differential restriction category,

f is linear

⇔ π1fπ0f ≤ D[f ]

⇔ π0fD[f ] ≤ π0f

Proof: Use the alternate form of compatibility (Lemma 2.9). 2

Linear maps then have a number of important properties. Note one surprise: while additive
maps were not closed under partial inverses, linear maps are.

Proposition 3.20 In a differential restriction category:

(i) if f is total, f is linear if and only if D[f ] = π0f ;

(ii) if f is linear, then f is additive;

(iii) restriction idempotents are linear;

(iv) if f and g are linear, so is fg;

(v) if g ≤ f and f is linear, then g is linear;

(vi) 0 maps are linear, and if f and g are linear, so is f + g;

(vii) projections are linear, and if f and g are linear, so is 〈f, g〉;

(viii) 〈1, 0〉D[f ] is linear for any f ;

(ix) if f is linear and has a partial inverse g, then g is also linear.
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Proof:

(i) It suffices to show that if f is total, D[f ] = π0f . Indeed, if f is total,

D[f ] = 1× f = f × 1 = π0f .

(ii) For the 0 axiom:

0f = 0f 0f

= 〈0, 0 > π1f 〈0, 0 > π0f

= 〈0, 0〉π1f π0f by R4,

≤ 〈0, 0〉D[f ] since f linear,

= 0f 0 by D2,

≤ 0

and for the addition axiom:

(x + y)f)(xf + yf) = (x + y)f(xfxf + yxfxyf)

= (x + y)f(xfxf + yxfxyf)

= (x + y)f(〈x, x〉π1f〈x, x〉π0f + 〈y, x〉π1f〈y, x〉π0f)

= (x + y)f(〈x, x〉π1fπ0f + 〈y, x〉π1fπ0f)

≤ (x + y)f(〈x, x〉D[f ] + 〈y, x〉D[f ]) since f is linear

= 〈x + y, x〉π0f〈x + y, x〉D[f ] by D2

= 〈x + y, x〉π0fD[f ]

= 〈x + y, x〉π1fπ0f since f is linear

= x + y, x〉π1f〈x + y, x〉π0f

= x + yxfx(x + y)f

≤ (x + y)f

as required.

(iii) Suppose e = e . Then consider

π1e π0e

= π1e π0e π0

≤ π1e π0

= 〈π0e, π1e〉π0

= (1× e)π0

= D[e]

so that e is additive.
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(iv) Suppose f and g are linear; then consider

D[fg] = 〈D[f ], π1f〉D[g]

≥ 〈π1fπ0f, π1f〉π1gπ0g since f and g are linear

= 〈π1fπ0f, π1f〉π1g〈π1fπ0f, π1f〉π0g by R4

= π1fπ0fπ1fgπ1fπ1fπ0fg

= π1fπ1fgπ0fπ0fg

= π1fgπ0fg

(v) If g ≤ f , then g = g f ; since restriction idempotents are linear and the composite of linear
maps is linear, g is linear.

(vi) Since D[0] = 0 = π00, 0 is linear. Suppose f and g are linear; then consider

π0(f + g)D[f + g] = π0f + π0g(D[f ] + D[g])

= π0fπ0g(D[f ] + D[g])

= π0fD[f ] + π0gD[g]

= π1fπ0f + π1gπ0g since f and g are linear

= π1fπ1gπ0(f + g)

≤ π0(f + g)

as required.

(vii) By D3, projections are linear. Suppose f and g are linear; then consider

D[〈f, g〉] = 〈D[f ],D[g]〉

≥ 〈π1fπ0f, π1gπ0g〉 since f and g are linear

= π1fπ1gπ0〈f, g〉

= π1fπ1gπ0〈f, g〉

= π1fπ1gπ0〈f, g〉

= π1fgπ0〈f, g〉 by R4

= π1〈f, g〉π0〈f, g〉

as required.

(viii) The proof is identical to that for total differential categories:

D[〈1, 0〉D[f ]] = 〈D[〈1, 0〉], π1〈1, 0〉〉D[D[f ]]

= 〈〈π0, 0〉, 〈π1, 0〉〉D[D[f ]]

= 〈π0, 0〉D[f ] by D6

= π0〈1, 0〉D[f ]

as required.
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(ix) If g is the partial inverse of a linear map f , then

D[g] ≥ (g × g )D[g]

= (gf × gf)D[g]

= (g × g)(f × f)D[g]

= (g × g)〈π0f, π1f〉D[g]

= (g × g)〈π1f π0f, π1f〉D[g]

= (g × g)〈π0f D[f ], π1f〉D[g] since f is linear,

= (g × g)π0f 〈D[f ], π1f〉D[g]

= (g × g)π0f D[fg] by D5,

= (g × g)π0f D[f ]

= (g × g)π0f (1× f )π0 by D8,

= (g × g)π0f (g × g)(1 × f )π0 by R4,

= π1g π0gf (g × g)π0

= π1g π0g π1g πg

= π1g π0g

as required.

2

Note that the join of linear maps need not be linear. Indeed, consider the linear partial maps
2x : (0, 2) // (0, 4) and 3x : (3, 5) // (9, 15). If their join was linear, then it would be additive.
But this is a contradiction, since 2(1.75) + 2(1.75) 6= 3(3.5). However, the join of linear maps is a
standard concept of analysis:

Definition 3.21 If f is a finite join of linear maps, say that f is piecewise linear.

An interesting result from [Blute et. al. 2008] is the nature of the differential of additive maps.
We get a similar result in our context:

Proposition 3.22 If f is additive, then D[f ] is additive and

D[f ] ⌣ π0〈1, 0〉D[f ];

if f is strongly additive, then D[f ] is strongly additive and

D[f ] ≤ π0〈1, 0〉D[f ].

Proof: The proof that f being (strongly) additive implies f (strongly) additive is the same as
for total differential categories ([Blute et. al. 2008], pg. 19) with ⌣ or ≤ replacing = when one
invokes the additivivity of f . The form of D[f ] in each case, however, takes a bit more work. We
begin with a short calculation:

〈0, π1〉π1f = 〈0, π1〉π1f 〈0, π1〉 = π1f 〈0, π1〉
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and
〈π0, 0〉π1f = 〈π0, 0〉π1f 〈π0, 0〉 = 0f 〈π0, 0〉.

Now, if f is additive, we have:

π0〈1, 0〉D[f ] D[f ]

= 〈π0, 0〉π1f D[f ]

= 0f 〈π0, 0〉D[f ] by the second calculation above,

= 0f D[f ]

= 0f π1f D[f ]

= 0f π1f (〈0, π1〉+ 〈π0, 0〉)D[f ]

= (π1f 〈0, π1〉+ 0f 〈π0, 0〉)D[f ]

= (〈0, π1〉π1f + 〈π0, 0〉π1f )D[f ] by both calculations above,

≤ 〈0, π1〉D[f ] + 〈π0, 0〉D[f ] since D[f ] is additive,

= π1f 0 + 〈π0, 0〉D[f ] by D2,

≤ 0 + 〈π0, 0〉D[f ]

= π0〈1, 0〉D[f ]

so that D[f ] ⌣ π0〈1, 0〉D[f ], as required. If f is strongly additive, consider

D[f ] 〈π0, 0〉D[f ]

= π1f 〈π0, 0〉D[f ]

= π1f 0 + 〈π0, 0〉D[f ]

= 〈0, π1〉D[f ] + 〈π0, 0〉D[f ]

= (〈0, π1〉π1f + 〈π0, 0〉π1f )D[f ] since D[f ] is strongly additive,

= π1f 0f (〈0, π1〉+ 〈π0, 0〉)D[f ] by the calculations above,

= π1f 0 (1)D[f ] since f strongly additive,

= π1f D[f ]

= D[f ]

so that D[f ] ≤ π0〈1, 0〉D[f ], as required. 2

Any differential restriction category has the following differential restriction subcategory:

Proposition 3.23 If X is a differential restriction category, then X0, consisting of the maps which
preserve 0 if it is in their domain (i.e., satisfying 0f ≤ 0), is a differential restriction subcategory.

Proof: The result is immediate, since the differential has this property:

〈0, 0〉D[f ] = 0f 0 ≤ 0.

2

Finally, note that any differential restriction functor preserves additive, strongly additive, and
linear maps:
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Proposition 3.24 If F is a differential restriction functor, then

(i) F preserves additive maps;

(ii) F preserves strongly additive maps;

(iii) F preserves linear maps.

Proof: Since any restriction functor preserves ≤ and ⌣, the result follows automatically. 2

4 Rational Functions

Thus far, we have only seen a single, analytic example of a differential restriction category. The
following section rectifies this problem by presenting a class of examples of differential restriction
categories with a more algebraic flavour. Rational functions over a commutative ring have an
obvious formal derivative. Thus, rational functions are a natural candidate for differential structure.
Moreover, rational functions have an aspect of partiality: one thinks of a rational function as being
undefined wherever the denominator is zero. To capture this partiality, we will construct a category
whose maps will consist of a tuple of rational functions, together with a finitely generated set of
polynomials representing the partiality of the rational functions. The goal is then to show that,
for each commutative ring R, this category of rational functions over R is a differential restriction
category.

Moreover, we will also show that these categories of rational functions embed into the partial
map category of affine schemes with respect to localizations. Thus, we relate each rational function
category to a category of traditional interest to algebraic geometrists.

4.1 Introduction

Typically, rational functions are defined as a pair of polynomials equipped with an equivalence
relation which “reduces” common factors; for example, x

x
is identified with 1. However, keeping

track of where the composite of rational functions is undefined requires one to consider composition
with factors that have not been reduced. Thus, we first construct a category where maps are given
by formal pairs of polynomials, for example if y 6= 1, then 0

y
6= 0

1 ; in this category, composition of
rational functions and composition of the data tracking their undefinedness is defined in terms of
a single homomorphism. We then obtain the category of rational functions by a congruence on the
maps of the formal rational function category.

4.2 Rig Theory

As mentioned above, we must define the category of rational functions in terms of formal rational
functions, and to do so requires rigs, not rings. For example, x

y
− x

y
= 0

y
6= 0

1 , so these formal
rational functions do not have additive inverses. Thus, we will initially work in the category of
commutative rigs CRig. The objects of this category are defined below.

Definition 4.1 A commutative rig (a.k.a. semiring [Golan 1992]) is a quintuple, (R,+, ·, 0, 1),
where (R,+, 0) is a commutative monoid, (R, ·, 1) is a commutative monoid, and the law of dis-
tributivity holds; that is, for all a, b, c ∈ R:

a · (b + c) = a · b + a · c and a · 0 = 0.
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The maps in the category of commutative rigs must preserve the operations of addition and
multiplication as well as the identities of these operations.

We wish to generalize the idea of localization to rigs. Localization at a multiplicatively closed
subset of a ring results in a new ring where the elements of the multiplicatively closed set have
multiplicative inverses. We recall that multiplicatively closed sets which are factor closed correspond
to prime ideals. However, we will take care in the generalization of localization since ring ideal
theory does not entirely transfer to rig ideal theory. In rings, multiplicative sets correspond to prime
ideals [Dummit and Foote 2004] [Zariski and Samuel 1975], but in general ideals do not identify the
same structure in rigs as in rings. In rigs, congruences (equivalence relations compatible with the
rig operations) define factor structures, not ideals [Golan 1992]. Yet, the correspondence between
prime ideals and multiplicative sets does hold for commutative rigs.

Definition 4.2 Let R be a commutative rig. An ideal I is a subset of R such that for all i ∈ I
and r ∈ R, ir ∈ I.

We note that if I, J are both ideals of R and a ∈ R, then

• (a) := {ar|r ∈ R},

• I + J := {i + j|i ∈ I, j ∈ J}, and

• IJ :=
{

∑

l,k iljk|il ∈ Ijk ∈ J
}

are also ideals of R.

Definition 4.3 Let R be a commutative rig. An ideal, P , is a prime ideal if for all a, b ∈ R,
ab ∈ P implies a ∈ P or b ∈ P .

Next, we define what we mean by multiplicative sets. Note that these are called saturated sets
by some authors [Cohn 2002].

Definition 4.4 A multiplicative set, U , in a rig R, is a subset of R which is closed under
multiplication and is factor closed; that is, whenever u1u2 ∈ U , then u1 ∈ U and u2 ∈ U .

First we prove that any ideal which misses a multiplicatively closed set, U , sits in a prime ideal,
P , which also satisfies U ∩ P = ∅.

Proposition 4.5 Let R be a commutative rig and U ⊆ R be multiplicatively closed. Let I be an
ideal of R such that U ∩ I = ∅. Then there is a prime ideal P such that I ⊆ P and U ∩ P = ∅.

Proof: First, let Ai be a chain of ideals containing I and disjoint from U ; i.e., I ⊆ Ai1 ⊆ · · · and
Aij ∩ U = ∅. Then Ai has a maximal element since T =

⋃

j Aij is an ideal. Let A be the set of
all ideals J such that I ⊆ J and J ∩ U = ∅. Then Zorn’s lemma says that we can take an ideal P
which is maximal such that I ⊆ P and P ∩U = ∅. Now we argue that P is prime by contrapositive.
Suppose a, b 6∈ P , we must show ab 6∈ P .

Now, P ⊆ (a)+P and P ⊆ (b)+P . Then, the maximality of P says that ((a) + P )∩U 6= ∅ and
((b) + P ) ∩ U 6= ∅. Thus, there are c, d ∈ R and p1, p2 ∈ P such that ac + p1 ∈ U and bd + p ∈ U .
Since U is multiplicatively closed,

(ac + p1)(bd + p2) = acbd + p1bd + p2ac + p1p2 ∈ U
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Next, p1bd, p2ac, p1p2 ∈ P ; thus, p1bd + p2ac + p1p2 = p3 ∈ P . Thus ab(cd) + p3 ∈ U . Now, if
ab ∈ P we get a contradiction with the assumption that P ∩ U = ∅, since if (ab)cd ∈ P then
ab(cd) + p3 ∈ P . Thus ab 6∈ P . 2

Now we can prove that for commutative rigs, multiplicative sets are the complement of a union
of prime ideals. This result is well known for rings, in fact, this argument is similar to [Cohn 2002]
proposition 10.2.8.

Proposition 4.6 Let R be a commutative rig. Then U ⊆ R is a multiplicative set if and only if
R \ U is the union of a set of prime ideals.

Proof: Let U be a multiplicative set, and we will first show that R \ U =
⋃

i pi. for some set
of prime ideals pi. Suppose a 6∈ U . Then for every b ∈ R, ab 6∈ U . Thus (a) ∩ U = ∅. Then
by proposition (4.5) there is a prime ideal p0 such that a ∈ p0 and p0 ∩ U = ∅. Since for every
a ∈ R \ U we have such a prime ideal, we can take the union over all such prime ideals. Thus
R \ U ⊆

⋃

i pi. To show the other inclusion, suppose a set of prime ideals, pi, are disjoint from U .
Then by construction if a ∈

⋃

pi then a 6∈ U . Thus
⋃

i pi ⊆ R \ U .
Conversely, let R \ U =

⋃

i pi. Let a, b ∈ U then a, b 6∈
⋃

i pi. Then it is immediate that
ab 6∈

⋃

i pi. Thus ab ∈ U ; that is, U is closed to multiplication. Now suppose cd ∈ U . Then we
will get a contradiction if either c or d is assumed to not be in U . If c ∈

⋃

i pi, then cd ∈
⋃

i pi

contradicting the assumption that cd ∈ U . Similarly if d ∈
⋃

i pi then dc = cd ∈
⋃

i pi contradicting
the assumption that cd ∈ U . Thus both c, d are in U . Thus U is a multiplicative set. 2

We have shown that the desired connection between prime ideals and multiplicative sets holds
for rigs, despite the fact that the ideal theory of rigs does not coincide with congruences as it does
in rings.

4.3 Fractions and Polynomials

In this subsection, we will describe a monad on CRig which gives formal fractions, and recall
the definition of polynomials as free R-algebras. Together, these two constructions can be used to
define substitution of formal rational functions. As we will see later, this substitution is used to
define composition in the category of formal rational functions.

We begin by defining the object part of our monad; that this is again a rig is easy to check.

Proposition 4.7 Let R be a commutative rig, then R×R together with the operations

(r, s) + (r′, s′) = (rs′ + r′s, ss′) 0 = (0, 1),

(r, s)(r′, s′) = (rr′, ss′) 1 = (1, 1)

is a commutative rig.

The commutative rig defined in proposition (4.7) will be called the rig of formal fractions, and
denoted fr(R). Think of the above operations as x

y
+ w

z
= xz+wy

yz
and x

y
w
z

= xw
yz

. Note that 0
a
6= 0

b

unless a = b. As noted in the introduction, fr(R) is not a ring, even if R is. Indeed, if a
b

+ c
d

= 0
1

then bd = 1. In general, b, d will not be multiplicative inverses of each other, so fr(R) will not have
additive inverses.
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The formal fraction construction is a functor from CRig to CRig. The above defines the object
part of fr. If f : R // S, then define fr(f) : fr(R) // fr(S) by fr(f)(r1, r2) = (f(r1), f(r2)). The
following proposition is then clear.

Proposition 4.8 fr : CRig // CRig is a functor.

The formal fraction construction carries even more structure. fr defines a monad on the category

of commutative rigs. The multiplication of the monad, µ, is the operation which maps
(a

b )
( c

d)
to ad

bc
.

Proposition 4.9 Let R,S be commutative rigs. Let f : R // S be a commutative rig homomor-
phism. Let ri, r ∈ R. Let ηR : R // fr(R) be given by ηR(r) = (r, 1), and µR : fr(fr(R)) // fr(R)
be given by µR((a, b), (c, d)) = (ad, bc). Then (fr, η, µ) is a monad, and further η is monic.

Proof: Clearly, η is monic. We will show that η and µ are the natural transformations which
make (fr, η, µ) a monad.

(η is natural)

ηS(f(r)) = (f(r), 1)

= (f(r), f(1))

= fr(f)(r, 1)

= fr(f)(ηR(r))

(µ is natural)

µS(fr(fr(f)) = µS(fr(f)(r1, r2), fr(f)(r3, r4))

= µS((f(r1), f(r2)), (f(r3), f(r4)))

= (f(r1)f(r4), f(r2)f(r3))

= (f(r1r4), f(r2r3))

= fr(f)(ad, bc)

= fr(f)(µR((r1, r2), (r3, r4)))

(Unit laws)

µR(ηfr(R)(r1, r2)) = µ((r1, r2), (1, 1))

= (r1, r2)

µR(fr(ηR)(r1, r2)) = µR(ηR(r1), ηR(r2))

= µR((r1, 1), (r2, 1))

= (r1, r2)
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(Associativity)

µR(fr(µR)(((r1, r2), (r3, r4)), ((r5, r6), (r7, r8))))

= µR(µR((r1, r2), (r3, r4)), µR((r5, r6), (r7, r8)))

= µR((r1r4, r2r3), (r5r8, r6r7))

= (r1r4r6r7, r2r3r5r8) = (r1r7r4r6, r2r8r3r5)

= µR((r1r7, r2r8), (r3r5, r4r6))

= µR((r1, r2)(r7, r8), (r3, r4)(r5, r6))

= µR(µfr(R)(((r1, r2), (r3, r4)), ((r5, r6), (r7, r8))))

2

We will use the Kleisli triple presentation of a monad to give a notation for working with formal
fractions; this means writing fr(f)µ as #(f). We have the correspondence,

f : R // fr(S)

#(f) : fr(R) // fr(S).

Next, we give the notation we will use for polynomials. Recall that for any commutative rig R,
there is an adjunction between Sets and R/CRig. The left functor in the adjunction takes a set
B to the free commutative R−algebra on B, and we thus have the correspondence

{x1, . . . , xn} // U(S) Sets

R[x1, . . . , xn] // S R/CRig.

This correspondence gives the unique homomorphism for substituting si ∈ S for xi in R[x1, . . . , xn]
for 1 ≤ i ≤ n and sending r ∈ R 7→ r ∈ R[x1, . . . , xn]. It is well known that elements of R[x1, . . . , xn]
are of the form f =

∑

i rix
αi , where xαi = xαi1

1 · · · xαin
n ; see for example [Hungerford 2000].

Next, we use the fact that if (T, η, µ) is a monad on a category X, and A is an object of X, then

we have a monad on A/X, (TA, ηA, µA), where TA(A
f

//X) = A
fη

//T (x) on objects, and sends

an arrow

(

A
f

// X

)

g
//
(

A
f ′

// Y

)

to

(

A
fη

// T (X)

)

T (g)
//
(

A
f ′η

// T (Y )

)

. Then ηA

and µA are given respectively by η and µ in an obvious way. Specializing this to commutative
R-algebras, and using the formal fraction monad, we obtain a way to substitute formal fractions
into formal fractions of polynomials. Formally we have expressed substition with the following two
adjunctions,

fr(R[x1, . . . , xn])
#(f [h])

// fr(S) R/CRig

R[x1, . . . , xn]
f [h]

// fr(S) R/CRig

{x1, . . . , xn}
h // U(fr(S)) Sets.
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The substitution of si ∈ fr(S) for xi into p
q
∈ fr(R[x1, . . . , xn]) for each 1 ≤ i ≤ n will be written

as,

[s1/x1, . . . , sn/xn]
p

q
,

which we may abbreviate as,

[si/xi]
p

q
.

Here is an example of the substitution of three elements of fr(Z[x1, x2]) into an element of
fr(Z[y1, y2, y3]):

Example 4.10

[

5x1x2

x1
/y1,

x1x
2
2

x1 + x2
/y2,

(x1 + x2)
2

3x2
/y3

]

7(y1 + y3)

y1y2

= µ





(

105x1x2
2+7x1(x1+x2)2

3x1x2

)

(

5x2
1x3

2
x1(x1+x2)

)





=
105x1x

2
2 + 7x1(x1 + x2)

2x1(x1 + x2)

3x1x2( 5x2
1x

3
2 )

.

Consider the denominator of the resultant expression; there are two pieces 3x1x2 and 5x2
1x

3
2. The

first piece comes from substituting into the numerator. The second piece, which we boxed to stand
out, comes from substituting into the denominator, and is the numerator after this substitution.
Thus, the resultant expression is undefined either where one of the expressions being substituted
is undefined, or is undefined where the numerator of the substitution into the denominator is zero.
Using the definition of addition and µ, it is easy to see that these two considerations always capture
the undefinedness after substitution. We will use this idea to define the “partiality” of these formal
rational functions.

4.4 The Category of Rational Functions

As mentioned in the introduction, we begin by defining a category of formal rational functions. The
objects are natural numbers. The maps n // m in this category are m-tuples of formal rational
functions in n variables equipped with a multiplicative set of polynomials called the restriction
set. This multiplicative set of polynomials has the property that zeroes of polynomials in this set
are the points at which the rational function is undefined. For convenience we will often write
x1, . . . , xn as −→x n.

Definition 4.11 Let R be a commutative rig. Define FratR to be the following

Objects: n ∈ N

Arrows: n→ m given by a pair (−→x n 7→ (fi, gi)
m
i=1 ,U) where

• (fi, gi) ∈ fr(R[x1, . . . , xn]) for each i

• U ⊆ R[x1, . . . , xn] is a finitely generated multiplicative set
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• Every gi ∈ U

Identity: (−→x n 7→ (xi, 1)
n
i=1 , {}) : n −→ n

Composition: Given (−→x n 7→ (fi, gi)
m
i=1 ,U) : n −→ m and

(

−→x m 7→ (f ′
i, g

′
i)

k
i=1 ,U ′

)

: m −→ k,

then the composition is given by substitution:

(−→x n 7→ (fi, gi)
m
i=1 ,U)

(

−→x m 7→ (f ′
i, g

′
i)

k
i=1 ,U ′

)

(

−→x n 7→ (ai, bi)
k
i=1 ,U ′′

)

Where,

• (aj , bj) = [(fi, gi)/xi] (f
′
j , g

′
j),

• (αj , βj) = [(fi, gi)/xi] u
′
j where u′

j is a generator of U ′,

• And U ′′ = 〈u1, . . . , ul, α1, . . . , αw〉, the multiplicative and factor closure of the generators
ui, αi where ui ∈ U .

For an explanation of U ′′ see the discussion after example (4.10); also note that for each j,
βj ∈ U .

We can extend the subsitution example above to give an example of composition in FratZ.
Take the maps

(

x1, x2 7→

(

5x1x2

x1
,

x1x
2
2

x1 + x2
,
(x1 + x2)

2

3x2

)

, 〈x1, x1 + x2, x2〉

)

: 2 // 3,

and
(

x1, x2, x3 7→

(

7(x1 + x3)

x1x2
,
x1

1

)

, 〈4 + x3 + x1, x1, x2〉

)

: 3 // 2.

The composite of the above maps is,
(

x1, x2 7→

(

105x1x
2
2 + 7x2

1(x1 + x2)
3

15x3
1x

4
2

,
5x1x2

x1

)

, 〈
x1,x1+x2,x2,5x1x2,

15x1x2
2+12x1x2+x1(x1+x2)2

〉

)

: 2 // 2.

Now we will prove that FratR is a category.

Proposition 4.12 FratR is a category for each commutative rig R.

Proof: Substitution is a homomorphism, so composition is clearly closed and associative. Thus,
we must show that the unit laws hold. Since the proofs are sufficiently similar, we provide the proof
for the left identity.
Consider

(−→x n 7→ (pi, qi)
m
i=1 , 〈u1, . . . , us〉) : n −→ m.

And take

pj =
∑

l

γl

∏

j

x
lj
j

qj =
∑

l

δl

∏

j

x
lj
j
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After lifting the coefficients appropriately, the following calculation simplifies the result of the
substitution,

(aj , bj) = [(xi, 1) /xi]
∑

l

(γl, 1)x
l1
1 · · · x

ln
n

=
∑

l

(γl, 1)(x1, 1)
l1 · · · (xn, 1)ln

=
∑

l

(γl, 1)(x
l1
1 , 1) · · · (xln

n , 1)

=
∑

l

(γlx
l1
1 · · · x

ln
n , 1)

=

(

∑

l

γlx
l1
1 · · · x

ln
n , 1

)

= (pj , 1)

We similarly derive

(cj , dj) =

(

∑

l

δlx
l1
1 · · · x

ln
n , 1

)

= (qj, 1)

And for uj =
∑

l τl

∏

j x
lj
j

(αj , βj) =

(

∑

l

τlx
l1
1 · · · x

ln
n , 1

)

= (uj , 1)

Then the composite is
(−→x n 7→ (pi, qi)

m
i=1 , 〈u1, . . . , us〉) : n −→ m

2

Moreover, the category FratR is a restriction category.

Proposition 4.13 For every commutative rig R, FratR has a restriction structure given by

(−→x n 7→ (fi, gi)
m
i=1 ,U) = (−→x n 7→ (xi, 1)

n
i=1 ,U) .

Proof:

R1

(−→x n 7→ (pi, qi)
m
i=1 , 〈u1, . . . , us〉) (−→x n 7→ (xi, 1)

n
i=1 , 〈u1, . . . , us〉)

= (−→x n 7→ (pi, qi)
m
i=1 , 〈u1, . . . , us, u1, . . . , us〉)

= (−→x n 7→ (pi, qi)
m
i=1 , 〈u1, . . . , us〉)

R2 Immediate, since the ordering of the generators in the multiplicative set does not matter; i.e.,

〈u1, . . . , us, v1, . . . , vw〉 = 〈v1, . . . , vw, u1, . . . , us〉
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R3 Consider first, g f

(−→x n 7→ (xi, 1)
n
i=1 , 〈v1, . . . , vw〉) (−→x n 7→ (pi, qi)

m
i=1 , 〈u1, . . . , us〉)

= (−→x n 7→ (pi, qi)
m
i=1 , 〈u1, . . . , us, v1, . . . , vw〉)

Then,

(−→x n 7→ (pi, qi)
m
i=1 , 〈u1, . . . , us〉)

(

−→x n 7→ (p′i, q
′
i)

k
i=1 , 〈v1, . . . , vw〉

)

= (−→x n 7→ (xi, 1)
n
i=1 , 〈u1, . . . , us〉) (−→x n 7→ (xi, 1)

n
i=1 , 〈v1, . . . , vw〉)

= (−→x n 7→ (xi, 1)
n
i=1 , 〈u1, . . . , us, v1, . . . , vw〉)

= (−→x n 7→ (pi, qi)
m
i=1 , 〈u1, . . . , us, v1, . . . , vw〉)

R4 First we calculate fg.

(−→x n 7→ (pi, qi)
m
i=1 , 〈u1, . . . , us〉)

(

−→x m 7→
(

p′i, q
′
i

)k

i=1
, 〈t1, . . . , tw〉

)

=
(

−→x n 7→ (aid, bic)
k
i=1 , 〈u1, . . . , us, α1, . . . , αw〉

)

Then a few manipulations show that fg equals fg f . Consider,

(−→x n 7→ (pi, qi)
m
i=1 , 〈u1, . . . , us〉) (−→x m 7→ (xi, 1)

m
i=1 , 〈t1, . . . , tw〉)

= (−→x n 7→ (pi, qi)
m
i=1 , 〈u1, . . . , us, α1, . . . , αw〉)

= (−→x n 7→ (xi, 1)
n
i=1 , 〈u1, . . . , us, α1, . . . , αw〉) (−→x n 7→ (pi, qi)

m
i=1 , 〈u1, . . . , us〉)

=
(

−→x n 7→ (aid, bic)
k
i=1 , 〈u1, . . . , us, α1, . . . , αw〉

)

(−→x n 7→ (pi, qi)
m
i=1 , 〈u1, . . . , us〉)

2

Next, we will define the category of rational functions RatR by imposing the following quotient
on the hom-sets of FratR.

Definition 4.14 Let (−→x n 7→ (pi, qi)
m
i=1 ,U) , (−→x n 7→ (yi, zi)

m
i=1 ,U) ∈ FratR(n,m). Then the rela-

tion defining RatR is

(−→x n 7→ (pi, qi)
m
i=1 ,U) ∼ (−→x n 7→ (yi, zi)

m
i=1 ,U)

iff for each i ≤ m there is an u ∈ U such that

upizi = uqiyi ∈ R[x1, . . . , xn]

Here is an example showing how maps are identified by this equivalence relation.

Example 4.15
(

x 7→
x

x
, 〈x〉

)

= (x 7→ 1, 〈x〉) ,

but
(

x 7→
x

x
, 〈x〉

)

6= (x 7→ 1, {}) .
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The relation, ∼, is clearly an equivalence relation. To obtain a restriction category by quotient-
ing the homsets of FratR, we need to show that the above relation is a restriction congruence.
This means that the equivalence relation is compatible with composition and the restriction op-
eration. To be compatible with composition, we need that if (f,U) ∼ (f ′,U) : n // m then for
any (h,V) : k // n and (g,W) : m // k we have (h,V)(f,U) ∼ (h,V)(f ′,U) and (f,U)(g,W) ∼
(f ′,U)(g,W). To be compatible with the restriction operation we need (f,U) ∼ (f ′,U)

Lemma 4.16 The equivalence relation defined above is a restriction congruence.

Proof: Let U = 〈U1, . . . ,Uk〉, and assume that

(−→x n 7→ (pi, qi)
m
i=1 ,U) ∼

(−→x n 7→
(

p′i, q
′
i

)m

i=1
,U
)

.

First we will show the relation is compatible with composition on the left. Let V = 〈V1, . . . ,Vl〉,
and consider

(−→x k 7→ (fi, gi)
n
i=1 ,V

)

. We must show that
(

−→x k 7→ (fi, gi)
n
i=1 ,V

)

(−→x n 7→ (pi, qi)
m
i=1 ,U) ∼

(

−→x k 7→ (fi, gi)
n
i=1 ,V

)

(−→x n 7→
(

p′i, q
′
i

)m

i=1
,U
)

.

Let (αj , βj) = [(fi, gi)/xi]Uj, and set V ′ = 〈V1, . . . ,Vl, α1, . . . , αk〉. Thus, after computing the above
composition, the goal of the proof is to show:

(

−→x n 7→ ([(fi, gi)/xi] (pj , qj))
m
j=1 ,V ′

)

∼
(

−→x n 7→ ([(fi, gi)/xi] (pj , qj))
m
j=1 ,V ′

)

.

Now, take

(aj , bj) = [(fi, gi)/xi] pj; (cj , dj) = [(fi, gi)/xi] qj

(a′j , b
′
j) = [(fi, gi)/xi] p

′
j; (c′j , d

′
j) = [(fi, gi)/xi] q

′
j.

Our goal is then to show that there is a Vj ∈ V
′ such that

Vjajdjb
′
jc

′
j = Vja

′
jd

′
jbjcj .

Now note that if we have Vj1, Vj2 ∈ V
′ such that

(Vj1, Vj2)(aj , bj)(c
′
j , d

′
j) = (Vj1, Vj2)(aj , bj)(c

′
j , d

′
j),

then the proof is done, since Vj1ajc
′
j = Vj1a

′
jcj and Vj2bjd

′
j = Vj2b

′
jdj which imply

Vj1Vj2ajdjb
′
jc

′
j = Vj1ajc

′
jVj2b

′
jdj = Vj1Vj2a

′
jd

′
jbjcj .

Note the assumption, (−→x n 7→ (pi, qi)
m
i=1 ,U) ∼ (−→x n 7→ (p′i, q

′
i)

m
i=1 ,U), means that for each i, there

exists a Ui ∈ U such that Uipiq
′
i = Uip

′
iqi. For each i, set (γi1, γi2) = [(fi, gi)/xi]Ui. We will prove

that (γi1, γi2) gives the desired equality.

(γi1, γi2) [(fi, gi)/xi] pj [(fi, gi)/xi] q
′
j

= [(fi, gi)/xi] Uj [(fi, gi)/xi] pj [(fi, gi)/xi] q
′
j

= [(fi, gi)/xi] (Ujpjq
′
j) subst. is a homomorphism

= [(fi, gi)/xi] (Ujp
′
jqj) definition of ∼

= [(fi, gi)/xi] Uj [(fi, gi)/xi] p
′
j [(fi, gi)/xi] qj subst. is a homomorphism

= (γi1, γi2) [(fi, gi)/xi] p
′
j [(fi, gi)/xi] qj
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Thus, we have shown that ∼ is compatible with composition on the left.
Next, we will show that ∼ is compatible with composition on the right. Consider the map

(

−→x n 7→ (yi, zi)
k
i=1 ,T

)

. We must show:

(−→x n 7→ (pi, qi)
m
i=1 ,U)

(

−→x n 7→ (yi, zi)
k
i=1 ,T

)

∼
(−→x n 7→

(

p′i, q
′
i

)m

i=1
,U
)

(

−→x n 7→ (yi, zi)
k
i=1 ,T

)

.

Let U ′ = 〈U ∪ ([(pi, qi)/xi]T )〉, and again, let:

(aj , bj) = [(pi, qi)/xi] yj; (cj , dj) = [(pi, qi)/xi] zj

(a′j , b
′
j) =

[

(p′i, q
′
i)/xi

]

yj; (c′j , d
′
j) =

[

(p′i, q
′
i)/xi

]

zj .

Our goal is to show that for each j, there is a Uj ∈ U
′ such that Ujajdjb

′
jc

′
j = Uja

′
jd

′
jbjcj . We

will find such a Uj in two parts. First, we will prove that for each j, there is a Vj ∈ U
′ such

that Vjajb
′
j = Vja

′
jbj . Similarly, the second part is a V ′

j ∈ U
′ such that V ′

j djc
′
j = V ′

j d′jcj . Setting
Uj = VjV

′
j will complete the proof.

Now, we construct Vj . To start the proof, for each l we have:

yl =
∑

j

γljx
j1
1 · · · x

jn
n .

After substituting, we have:

[(pi, qi)/xi] yl =
∑

j

γljp
j1
1 · · · p

jn
n

qj1
1 , · · · , qjn

n

=

∑

j γljp
j1
1 · · · p

jn
n

∏

i6=j qi1
1 · · · q

in
n

∏

i qi1
i · · · q

in
n

,

and

[

(p′i, q
′
i)/xi

]

yl =

∑

j γljp
′j1
1 · · · p

′jn
n

∏

i6=j q′i11 · · · q
′in
n

∏

i q
′i1
i · · · q

′in
n

.
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Now, for each i there exists a Ui ∈ U
′ such that Uipiq

′
i = Uip

′
iqi. Let w = max{ij}; we will show

Vj =

n
∏

i

Uw
i , consider:

(

n
∏

i

Uw
i

)





∑

j

γljp
j1
1 · · · p

jn
n

n
∏

i6=j

qi1
1 · · · q

in
n





n
∏

i

q′i1i · · · q
′in
n

=





∑

j

γljU
w
1 pj1

1 · · ·U
w
n pjn

n

n
∏

i6=j

qi1
1 · · · q

in
n





n
∏

i

q′i1i · · · q
′in
n

=





∑

j

γljU
w
1 pj1

1 · · ·U
w
n pjn

n





n
∏

i6=j

qi1
1 · · · q

in
n



 q′j11 · · · q
′jn
n





n
∏

i6=j

q′i1i · · · q
′in
n









=
∑

j

γljU
w−j1
1 U j1

1 pj1
1 q′j11 · · ·U

w−jn
n U jn

n pjn
n q′jn

n





n
∏

i6=j

qi1
1 · · · q

in
n









n
∏

i6=j

q′i11 · · · q
′in
n





=
∑

j

γljU
w−j1
1

(

U1p1q
′
1

)j1 · · ·Uw−jn
n

(

Unpnq′n
)jn





n
∏

i6=j

qi1
1 · · · q

in
n









n
∏

i6=j

q′i11 · · · q
′in
n





=
∑

j

γljU
w−j1
1

(

U1p
′
1q1

)j1 · · ·Uw−jn
n

(

Unp′nqn

)jn





n
∏

i6=j

qi1
1 · · · q

in
n









n
∏

i6=j

q′i11 · · · q
′in
n





=

(

n
∏

i

Uw
i

)





∑

j

γljp
′j1
1 · · · p

′jn
n

n
∏

i6=j

q′i11 · · · q
′in
n





n
∏

i

qi1
i · · · q

in
n .

Thus, Vj =

n
∏

i

Uw
i as desired. One can similarly derive V ′

j . Therefore we have shown

(−→x n 7→ (pi, qi)
m
i=1 ,U)

(

−→x n 7→ (yi, zi)
k
i=1 ,T

)

∼
(−→x n 7→

(

p′i, q
′
i

)m

i=1
,U
)

(

−→x n 7→ (yi, zi)
k
i=1 ,T

)

,

as desired.
Finally, we will show that ∼ is compatible with the restriction operation. This is immediate

since, in fact,
(−→x n 7→ (pi, qi)

m
i=1 ,U) = (−→x n 7→ (p′i, q

′
i)

m
i=1 ,U) .

Therefore, we have proved that ∼ is a restriction conqruence. 2

Finally, we define RatR as FratR/∼, and have the following:

Proposition 4.17 RatR is a restriction category for any commutative rig R.

It might seem that breaking the construction of rational functions in two stages is unnecessary,
as one could directly define rational functions by generating a ring localized at a multiplicative
set of polynomials. However, this allows reductions in the rational functions such as x

x
to 1. In

the substitution of the restriction set, the numerator after substituting is used; allowing such a
reduction causes some elements to be left out of the restriction set.
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4.5 Embedding of Rational Functions in Par(CRigop
,Loc)

Before we prove that RatR has differential structure, we wish to give a different interpretation of
the partiality of the maps in RatR. To that end, the goal of this section is to prove that RatR

embeds into the partial map category of commutative rigs opposite with respect to localizations.
The definition of a localization as a map of commutative rigs is a direct generalization of localization
for commutative rings, as in [Eisenbud 2004].

Definition 4.18 A localization φ is a rig homomorphism φ : R → S such that there exists a
multiplicatively closed set, U , with φ(U) ⊆ units(S), and for any rig homomorphism f : R → T ,
with f(U) ⊆ units(T ), there is a unique map k : S → T that makes the following diagram commute:

R
φ

//

f   A
AA

AA
AA

S

k
��

T.

Denote the class of localizations by Loc. We would like to show that Loc is a stable system
of monics in CRigop so that there is a partial map category of commutative rigs opposite with
respect to localizations.

If R is a commutative rig, and U is a multiplicatively closed set,R[U−1] is the rig obtained
by making all the elements of U into units. This rig is called the rig of fractions with respect to
a multiplicative set U , as the operations in the rig are defined as for fractions; see for example
[Dummit and Foote 2004]. There is a canonical localization, lU : R // R[U−1]; lU (r) = r

1 . It is
clear that localizations in CRig are epic, contain all isomorphisms, and are closed to composition.
Furthermore, we have the following:

Proposition 4.19 The pushout along a localization exists, and is a localization.

Proof:

Let R,A, S be rigs. Let φ : R→ S be a localization, let f : R→ A be a rig homomorphism, and
let W ⊆ R be a multiplicatively closed set that φ inverts. Then f(W ) is also a multiplicative set,
so we can form the canonical localization lf(W ) : A→ A[(f(W ))−1]. This means that lf(W )f(W ) ⊂
units(A[(f(W ))−1], and so we get a unique k : S → A[(f(W ))−1] such that the following diagram
commutes

R
φ

//

f

��

S

k
��

A
lf(W )

// A[(f(W ))−1]

Next, we show the above square gives a pushout. Suppose Q is a rig, and q0, q1 are rig homo-
morphisms such that the outer square commutes in,
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R
φ

//

f

��

S

k
�� q1

��

A

q0 //

lf(W )

// A[(f(W ))−1]

Q

If we can show that q0 sends f(W ) to units, then we get an arrow from A[(f(W ))−1]→ Q. Now,
q0(f(W )) = q1(φ(W )) by commutativity; thus, q1(φ(W )) ⊂ units(Q), so q0(f(W )) ⊂ units(Q).
Then we induce a map k̂ : A[(f(W ))−1]→ Q. Next, we must show that kk̂ = q1. Now,

φq1 = fq0 = flf(W )k̂ = φkk̂

Since φ is epic, q1 = kk̂. Moreover, since k̂ is the unique map that makes the bottom triangle
commute, the square is indeed a pushout. 2

Thus Loc is a stable system of monics in CRigop, and so we can form its partial map category.

Proposition 4.20 (CRigop,Loc) is an M-category, and Par(CRigop,Loc) is a split restriction
category.

Now we show that for any commutative rig R, RatR embeds into this partial map category.

Proposition 4.21 If R is any commutative rig, then there is a faithful restriction embedding of
RatR into Par(CRigop,Loc).

Proof: Define the following inclusion functor RatR →֒ Par(CRigop,Loc) where in RatR, each

natural number, n, is sent to the commutative rig, R[x1, . . . , xn]. Next every map, n
(f,U)

// m, in
RatR is sent to the cospan

R[x1, . . . , xn][U−1]

R[x1, . . . , xn]

lU
55llllllllllllll

R[x1, . . . , xm],

ξf

iiSSSSSSSSSSSSSS

where ξf is the substitution homomorphism which does the substitution [fi/xi]. Rat is clearly a
bijection on objects. Now assume we have two equal maps; by the definition of the partial map
category, this means we have

R[x1, . . . , xn][U−1]
α
∼= // R[x1, . . . , xn][U ′−1]

R[x1, . . . , xn]

lU
55llllllllllllll

l
U′

22eeeeeeeeeeeeeeeeeeeeeeeeeeeee
R[x1, . . . , xm]

ξf ′

iiSSSSSSSSSSSSSS

ξf

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
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Then,

(pi, qi)α = (p′i, q
′
i) by assumption.

But since α is an isomorphism, it is unit reflecting, meaning that qi ∈ U
′. Similarly, q′i ∈ U . Thus

U ′ = U , so the localization lU = 1lU . By the uniqueness property of localizations, we have that
α = 1R[x1,...,xn][U−1]; therefore, ξf = ξf ′ . Thus f = f ′ which implies (f,U) = (f ′,U ′). Thus the

embedding is faithful. Note the embeddings is a restriction functor, since (−→x n 7→ (pi, qi)
m
i=1 ,U) =

(−→x n 7→ (xi, 1)
n
i=1 ,U) is sent to

R[x1, . . . , xn]
lU // R[x1, . . . , xn]

[

U−1
] ξ(xi)i←−−−− R[x1, . . . , xn],

but ξ(xi)i
= [xi/xi] = lU , which is

R[x1, . . . , xn]
lU // R[x1, . . . , xn] [U−1]

ξ(pi,qi)i←−−−−−− R[x1, . . . , xm] ,

the restriction of the map in the partial map category. This finishes the proof that embedding is a
faithful restriction embedding. 2

We started off by defining a restriction category of rational functions from any commutative rig
as a direct way to view the partiality implicit in rational functions. The above result gives another,
more general, view of the partiality in commutative rigs.

4.6 Rational Functions are a Cartesian Restriction Category

Our next goal is to show the category of rational functions is a differential restriction category.
The first piece we will need to show is that RatR is a cartesian restriction category. Doing so will
require no assumptions about properties of the rig.

Proposition 4.22 RatR is a cartesian restriction category for each commutative rig R.

Proof:

Restriction Terminal Object The object 0 ∈ N will the the terminal object, with !n : n → 0
equal to (−→x n 7→ (), {}) for each n. Moreover, !0 = id0, and !n is always total. Then for any
(−→x m 7→ (pi, qi)

n
i=1 ,U) : n −→ m we have

(−→x n 7→ (pi, qi)
m
i=1 ,U) (−→x m 7→ (), {})

= (−→x n 7→ (),U)

= (−→x n 7→ (xi, 1)
n
i=1 ,U) (−→x n 7→ (), {})

= (−→x n 7→ (pi, qi)
m
i=1 ,U) (−→x n 7→ (), {})

= (−→x n 7→ (pi, qi)
m
i=1 ,U) (−→x m 7→ (), {}) (−→x n 7→ (), {})

= (−→x n 7→ (pi, qi)
m
i=1 ,U) (−→x m 7→ (), {}) (−→x n 7→ (), {})

so that 0 is indeed the terminal object.
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Restriction Products The product of two objects in RatR for any R will be given by addition.
The total projections are

π0 =
(−→x n+m 7→ (xi, 1)

n
i=1 , {}

)

π1 =
(−→x n+m 7→ (xi, 1)

n+m
i=n+1 , {}

)

The pairing is given by the following:

〈(

−→x k 7→ (pi, qi)
n
i=1 ,U

)

,
(

−→x k 7→
(

p′i, q
′
i

)m

i=1
,V
)〉

=
(

(−→x k 7→ (p1, q1), . . . , (pn, qn), (p′1, q
′
1), . . . , (p

′
m, q′m)), 〈U ∪ V〉

)

Now consider:
〈(

−→x k 7→ (pi, qi)
n
i=1 ,U

)

,
(

−→x k 7→
(

p′i, q
′
i

)m

i=1
,V
)〉

π0

=
(

(−→x k 7→ (p1, q1), . . . , (pn, qn), (p′1, q
′
1), . . . , (p

′
m, q′m)), 〈U ∪ V〉

)

(−→x n+m 7→ (xi, 1)
n
i=1 , {}

)

=
(

−→x k 7→ (pi, qi)
n
i=1 , 〈U ∪ V〉

)

=
(

−→x k 7→ (xi, 1)
k
i=1 , 〈U ∪ V〉

)(

−→x k 7→ (pi, qi)
n
i=1 ,U

)

= ((−→x k 7→ (p1, q1), . . . , (pn, qn), (p′1, q
′
1), . . . , (p

′
m, q′m)), 〈U ∪ V〉)

(

−→x k 7→ (pi, qi)
n
i=1 ,U

)

= 〈(−→x k 7→ (pi, qi)
n
i=1 ,U) , (−→x k 7→ (p′i, q

′
i)

m
i=1 ,V)〉

(

−→x k 7→ (pi, qi)
n
i=1 ,U

)

so that π0 is indeed a projection. The same proof, mutatis mutandis, works for π1.

2

It may be helpful to describe the product of two maps. Suppose we have

h =
(

−→x n 7→ (hni, hdi)
k
i=1 ,V

)

: n // k and g =
(

−→x m 7→ (gni, gdi)
j
i=1 ,W

)

: m // j,

and we want to consider the product, (h × g) : n + m // k + j. Let ~x = (x, . . . , xn), ~x′ =
(xn+1, . . . , xn+m). Let h′

i(~x, ~x′) = hi(~x) and g′i(~x, ~x′) = gi(~x
′) Then it is straigtforward to see that

the product of the maps must be

h× g =
(−→x n+m 7→

(

h′
1, . . . , h

′
k, g′1, . . . , g

′
j

)

,
〈

V ∪ ([xn+j/xj ]W
m
j=1)

〉)

Note that the variables in W are shifted to account for the fact that all the g′i are phenomenally in
variables xn+1 to xn+m.

4.7 Rational Functions have Left Additive Restriction Structure

To be a differential restriction category, the category must have cartesian left additive structure.
We will show RatR has such structure, and this structure exists for any commutative rig R.
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Proposition 4.23 For each commutative rig, R, RatR is a left additive restriction category.

Proof: Let (−→x n 7→ (pi, qi)
m
i=1 ,U) , (−→x n 7→ (p′i, q

′
i)

m
i=1 ,V) : n −→ m. Define

(−→x n 7→ (pi, qi)
m
i=1 ,U) +

(−→x n 7→
(

p′i, q
′
i

)m

i=1
,V
)

=
(−→x n 7→

(

piq
′
i + p′iqi, qiq

′
i

)m

i=1
, 〈U ∪ V〉

)

so we are using the addition defined in fr(R[x1, . . . , xn]).

RatR(n,m) is a commutative monoid Clearly, the set of irreducibles are joined by union, and
so that part is commutative. Next, pick any index l, and each component can be commuted
since fr(R[x1, . . . , xn]) is a rig, and so addition is commutative and associative. Thus ev-
ery piece can be commuted, and the addition as defined gives a commutative monoid on
RatR(n,m) if the additive zero is in the hom-object. Take 0nm = (−→x n 7→ ((0, 1))m, {}).
Again, since fr(R[x1, . . . , xn]) is a rig, each component will act as an additive identity, and
since 0nm is total, 0nm is the additive identity for RatR(n,m).

Additive restriction This follows immediately,

(−→x n 7→ (pi, qi)
m
i=1 ,U) + (−→x n 7→ (p′i, q

′
i)

m
i=1 ,V)

= (−→x n 7→ (xi, 1)
n
i=1 , 〈U ∪ V〉)

= (−→x n 7→ (xi, 1)
n
i=1 ,U) (−→x n 7→ (xi, 1)

n
i=1 ,V)

= (−→x n 7→ (pi, qi)
m
i=1 ,U) (−→x n 7→ (p′i, q

′
i)

m
i=1 ,V)

Restriction of additive zero Since 0nm is total, 0nm = 1n.

Left additivity It is clear that the restriction sets will be the same. The substitution distributes
over sums because substitution is a homomorphism.

2

Since, the addition and pairing of maps is componentwise, it is clear that (f × g) + (h × k) =
(f + h) × (g + k) for any maps f, h ∈ RatR(n,m) and g, k ∈ RatR(j, l). It is also a quick
calculation to show that π0, π1, and ∆ are additive. Thus, we end this subsection with the following
proposition:

Proposition 4.24 For every commutative rig R, RatR is a cartesian left additive restriction
category.

4.8 Differential Structure on Rational Functions

We now define the differential structure of RatR. We will use formal partial derivatives to define
this structure. Formal partial derivatives are used in many places: in Galois theory the formal
derivative is used to determine if a polynomial has repeated roots [Stewart 2004], and in algebraic
geometry the rank of the formal Jacobian matrix is used to determine if a local ring is regular
[Eisenbud 2004]. Thus, the differential structure of RatR is an important construct.

Proposition 4.25 If R is a commutative ring, then RatR is a differential restriction category.
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Given a ring, R, there is a formal partial derivative for elements of R[x1, . . . , xn]. Let f =
∑

l

alx
l1
1 · · · x

ln
n be a polynomial. Then the formal partial derivative of f with respect to the variable

xk is
∂f

∂xk
=
∑

l

lkalx
l1
1 · · · x

lk−1

k−1xlk−1
k x

lk+1

k+1 · · · x
ln
n

Extend the above definition to rational functions, where g = p
q

by

∂g

∂xk

=

∂p
∂xk

q − p ∂q
∂xk

q2
.

From the above observation, one can show that the unit has an additive inverse, and since rigs
are multiplicatively closed, every element is forced to have an additive inverse. Thus we need a
ring to define the differential structure on rational functions. Now, if we have f = (f1, . . . , fm) =
(

p1

q1
, . . . , pm

qm

)

, an m-tuple of rational functions in n variables over R, then we can define the formal

Jacobian at a point of Rn as the m× n matrix

Jf (y1, . . . , yn) =







∂f1

∂x1
(y1, . . . , yn) . . . ∂f1

∂xn
(y1, . . . , yn)

...
. . .

...
∂fm

∂x1
(y1, . . . , yn) . . . ∂fm

∂xn
(y1, . . . , yn)







Finally, consider RatR where R is a commutative ring. Then, define the differential structure to
be

(−→x n 7→ (pi, qi)
m
i=1 ,U) : n // m

D[ ](−→x 2n 7→
((

J(pi,qi)(xn+1, . . . , x2n)
)

· (x1, . . . , xn)
)

, [xn+i/xi]R
)

: 2n = n× n // m

For a quick example, consider RatZ and the map
(

x1, x2 7→
(

1
x1

,
x2
1

1+x2

)

, 〈x1, 1 + x2〉
)

. Then the

differential of this map is
(

x1, x2, x3, x4 7→

(

−x1

x3
,
2x3x1(x4 + 1)− x2

3x2

(x4 + 1)2

)

, 〈x3, 1 + x4〉

)

Proof: In [Blute et. al. 2008], the category of smooth functions between finite dimensional R

vector spaces spaces is established as an example of a cartesian differential category using the
Jacobian as the differential structure. The proof for showing that RatR is a differential restriction
category is much the same, so we will highlight pieces where the axioms have changed, and consider
the new axioms. Consider the map f = (−→x n 7→ (f)i,V).

[DR.2] We will show the second part of [DR.2] since it has changed in light of restriction;
that is, we will show 〈0, g〉D[f ] = gf 0. Consider the map

(−→x k 7→ (gi, g
′
i)

n
i=1 ,U

)

. It is
immediate that the rational functions in both maps are all 0. Set V ′ = [xn+i/xi]V. Using
that the zero map is total, it is clear that we must show

[

0/xi, (gi, g
′
i)/xn+i

]

V ′ =
[

(gi, g
′
i)/xi

]

V

A proof by induction on n works here, but the idea is simple. V ′j is just Vj with variable indices

shifted by n. Thus the substitution of (~0, ~g)i for xi into U ′
j is the same as the substitution of

(~0, ~g)n+i = ~gi for xi in Uj.
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[DR.6] Consider the maps
(−→x k 7→ (gi, g

′
i)

n
i=1 ,U

)

,
(−→x k 7→ (hi, h

′
i)

n
i=1 ,W

)

, and
(−→x k 7→ (ki, k

′
i)

n
i=1 ,W

)

.
The restriction set for D[f ] is V ′ = [xn+i/xi]V, and the restriction set for D[D[f ]] is V ′′ =
[x2n+j/xj ]V

′ = [x3n+l/xl]V. For [DR.6], we must prove,
(

−→x k 7→
(

(g1, g
′
1), . . . , (gn, g′n), 0, . . . , 0, (h1, h

′
1), . . . , (hn, h′

n), (k1, k
′
1), . . . , (kn, k′

n)
)

, 〈U ∪W ∪ T 〉
)

D[D[f ]]

= (−→x k 7→ (hi, h′
i)

n
i=1 ,T )

(

−→x k 7→
(

(g1, g
′
1), . . . , (gn, g′n), (k1, k

′
1), . . . , (kn, k′

n)
)

, 〈U ∪W〉
)

D[f ].

A couple manipulations shows the rational functions of the maps are the same. Below, we
understand the substitution to be performed and then the numerator taken. It remains to
prove that the below equality holds:

〈

(U ∪W ∪ T ) ∪
[

(gi, g
′
i)/xi, 0i/xn+i, (hi, h

′
i)/x2n+i, (ki, k

′
i)/x3n+i

]

V ′′
〉

=
〈

U ∪
(

W ∪ T ∪
[

(gi, g
′
i)/xi, (ki, k

′
i)/xn+i

]

V ′
)〉

Which boils down to showing that
[

(gi, g
′
i)/xi, 0i/xn+i, (hi, h

′
i)/x2n+i, (ki, k

′
i)/x3n+i

]

V ′′ =
[

(gi, g
′
i)/xi, (ki, k

′
i)/xn+i

]

V ′.

The argument for the above equality is the same as for [D.2]; we proceed by induction on n.
For n = 1,

[(gn, gd)/x1, (0, 1)/x2, (hn, hd)/x3, (kn, kd)/x4]V
′′

= [(gn, gd)/x1, (0, 1)/x2, (hn, hd)/x3, (kn, kd)/x4] ([x4/x1]V)

So the substitution is void for x1, x2, x3, and we proceed

= [(kn, kd)/x4] ([x4/x1]V)

= [(kn, kd)/x1]V

= [(kn, kd)/x2] ([x2/x1]V)

= [(gn, gd)/x1, (kn, kd)/x2] ([x2/x1]V)

= [(gn, gd)/x1, (kn, kd)/x2]V
′

Similar computations work for the general case of n > 1, so [DR.6] holds.

[DR.8] Let f = (−→x n 7→ (fi)i = 1m,V) : n // m,~x = (x1, . . . , xn), and ~x′ = (xn+1, . . . , x2n).
Then

(1× f )π0 =
(−→x 2n 7→ (xi)

2n
i=1, [xn+i/xi]V

)

π0

=
(−→x 2n 7→ (xi)

n
i=1, [xn+i/xi]V

)

=
(−→x 2n 7→ In×n~x, [xn+i/xi]V

)

=
(−→x 2n 7→

(

J(xi)i
(~x′)

)

· ~x, [xn+i/xi]V
)

= D[f ].

[DR.9] Considering f = (−→x n 7→ (fi)
m
i=1,V), we have

1× f = (−→x n 7→ (xi, 1)
n
i=1 , {})× (−→x n 7→ (xi, 1)

n
i=1 ,V)

=
(

−→x 2n 7→ (xi, 1)
2n
i=1 , 〈[xn+i/xi]V〉

)

= D[f ] .
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2

4.9 Further properties of RatR

In this section we will describe three aspects of RatR. First we will prove that RatR has nowhere
defined maps for each R. Next, after briefly introducing the definition of 0-unitariness for restriction
categories, we will show that if R is an integral domain, then RatR is a 0-unitary restriction
category. Finally, we will show that RatR does not in general have in joins.

Recall from section 2.3 that a restriction category X has nowhere defined maps, if for each
X(A,B) there is a map ∅AB which satisfies J1 and J2. We will show that RatR always has nowhere
defined maps. Intuitively, a nowhere defined rational function should be one whose restriction set
U is the entire rig R[x1, . . . , xn]. This can be achieved with a finitely generated set by simply
considering the set generated by 0, since any such polynomial is in the factor closure of 0.

Proposition 4.26 For any commutative rig R, RatR has nowhere defined maps given by

(−→x n 7→ (1, 1)m
i=1 , 〈0〉) .

Proof:

J1 First, note

(−→x n 7→ (1, 1)m
i=1 , 〈0〉) = (−→x n 7→ (xi, 1)

n
i=1 , 〈0〉) = (−→x n 7→ (1, 1)n

i=1 , 〈0〉)

since 0xi = 0. Next, note that R[x1, . . . , xn] = 〈0〉 = 〈〈0〉 ∪ U〉. Let (ai, bi) = [(1, 1)/xi] (pi, qi);
clearly for each i,

0 = 0ai = 0bi.

Thus, the following equalities are clear:

(−→x n 7→ (1, 1)n
i=1 , 〈0〉) (−→x n 7→ (pi, qi)

m
i=1 ,U)

= (−→x n 7→ (ai, bi)
m
i=1 , 〈〈0〉 ∪ U〉)

= (−→x n 7→ (1, 1)m
i=1 , 〈0〉) .

J2 Consider,

(−→x n 7→ (pi, qi)
m
i=1 ,U)

(

−→x m 7→ (1, 1)k
i=1 , 〈0〉

)

=
(

−→x n 7→ (1, 1)k
i=1 , 〈U ∪ 〈0〉〉

)

=
(

−→x n 7→ (1, 1)k
i=1 , 〈0〉

)

,

which completes the proof that RatR has nowhere defined maps.

2

Now, if R is an integral domain, we would expect that whenever two rational functions agree on
some common restriction idempotent, then they should be equal wherever they are both defined.
To make this idea explicit, we will introduce the concept of 0-unitary for restriction categories2.

2This is related to the concept of 0-unitary from inverse semigroup theory; the relationship will be explored in

detail in a future paper.
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Let X be a restriction category with nowhere defined maps. To define 0-unitariness, we first
define a relation ≤0 on parallel arrows, called the 0-density relation, as follows:

f ≤0 g if f ≤ g and hf = ∅ implies hg = ∅.

X is a 0-unitary restriction category when for any f, g, h:

f ≥0 h ≤0 g implies f ⌣ g.

Lemma 4.27 Let X be a restriction category with nowhere defined maps, and assume h ≤0 f .
Then if f or h equals ∅, then both f and h equal ∅.

Proof: Since h ≤0 f , we have h = h f , and whenever kh = ∅, kf = ∅.
First assume that f = ∅. Then h = ∅ since

h = h f = h ∅ = ∅.

Next, assume that h = ∅. Then by 0-unitariness,

1h = h = ∅ implies 1f = ∅,

which completes the proof. 2

Now we prove that RatR is a 0-unitary restriction category when R is an integral domain.

Proposition 4.28 Let R be an integral domain. Then RatR is a 0-unitary restriction category.

Proof: Consider the maps (−→x n 7→ (fi, f
′
i)

m
i=1 ,U), (−→x n 7→ (gi, g

′
i)

m
i=1 ,V), and (−→x n 7→ (hi, h

′
i)

m
i=1 ,W).

Assume:

(−→x n 7→
(

hi, h
′
i

)m

i=1
,W
)

≤0

(−→x n 7→
(

fi, f
′
i

)m

i=1
,U
)

and
(−→x n 7→

(

hi, h
′
i

)m

i=1
,W
)

≤0

(−→x n 7→
(

gi, g
′
i

)m

i=1
,V
)

.

Now if any of the above maps are ∅, then lemma (4.27) says that all three of the above equal ∅;
therefore,

(−→x n 7→
(

fi, f
′
i

)m

i=1
,U
)

⌣
(−→x n 7→

(

gi, g
′
i

)m

i=1
,V
)

.

Thus, suppose all three are not ∅. Then 0 6∈ U ,V, or W. Then we have

(−→x n 7→
(

fi, f
′
i

)m

i=1
, 〈W ∪ U〉

)

= (−→x n 7→ (hi, h′
i)

m
i=1 ,W)

(−→x n 7→
(

fi, f
′
i

)m

i=1
,U
)

= (−→x n 7→ (hi, h′
i)

m
i=1 ,W)

(−→x n 7→
(

gi, g
′
i

)m

i=1
,V
)

since h f = h = h g,

=
(−→x n 7→

(

gi, g
′
i

)m

i=1
, 〈W ∪ V〉

)

.

Now, since R is an integral domain, the product of two nonzero elements is nonzero. Thus, 0 6∈
〈W ∪ U〉. Thus for each i, there is a Wi 6= 0 ∈ 〈W ∪ U〉 such that Wifig

′
i = Wif

′
igi. Moreover, the

fact that R is an integral domain also gives the cancellation property: if a 6= 0, ac = ab implies
c = b. Thus, we have that fig

′
i = f ′

igi, which proves

(−→x n 7→
(

fi, f
′
i

)m

i=1
,U
)

⌣
(−→x n 7→

(

gi, g
′
i

)m

i=1
,V
)

.

51



Thus, when R is an integral domain, RatR is a 0-unitary restriction category. 2

It may seem natural to ask if RatR has finite joins, especially if R has unique factorization. If
R is a unique factorization domain, it is easy to show that any two compatible maps in RatR will
have the form

(−→x n 7→ (Pi, Qi)
m
i=1 ,U) ⌣ (−→x n 7→ (Pi, Qi)

m
i=1 ,V) ,

where gcd(Pi, Qi) = 1. Thus Qi ∈ U, V , so Qi ∈ 〈U ∩ V〉. Thus from the order theoretic nature
of joins, the only candidate for the join is (−→x n 7→ (Pi, Qi)

m
i=1 , 〈U ∩ V〉). However, reducing the

restriction sets of compatible maps by intersection does not define a join restriction structure on
RatR, as stability will not always hold. For a counterexample, consider the maps

(1, 〈x− 1〉) ⌣ (1, 〈y − 1〉) .

By the above discussion, (1, 〈〈x − 1〉 ∩ 〈y − 1〉〉) must be (1, 〈1〉). We will show that s(f ∨ g) 6=
sf ∨ sg. Consider the map

(

(x2, x2), {}
)

. Then

(

(x2, x2), {}
)

(1, 〈1〉) = (1, 〈1〉) .

However,
(

(x2, x2), {}
)

(1, 〈x − 1〉) = (1, 〈x + 1, x− 1〉)

and
(

(x2, x2), {}
)

(1, 〈y − 1〉) = (1, 〈x + 1, x− 1〉) .

The “join” of the latter two maps is (1, 〈x + 1, x− 1〉) 6= (1, 〈1〉). So, the join defined in this way
satisfies J.1-J.5, but J.6 fails. Thus, in general RatR does not have joins.

5 Join completion and differential structure

In the final two sections of the paper, our goal is to show that one adds joins or relative complements
of partial maps, differential structure is preserved. These are important results, as they show that
one can add more logical operations to the maps of a differential restriction category, while retaining
the differential structure.

5.1 The join completion

As we have just seen, a restriction category need not have joins, but there is a universal construc-
tion which freely adds joins to any restriction category. We show in this section that if the original
restriction category has differential structure, then so does its join completion. By join completing
RatR, we thus get a restriction category which has both joins and differential structure, but is very
different from the differential restriction category of smooth functions defined on open subsets ofRn.

The join completion we describe here was first given in this form in [Cockett and Manes 2009],
but follows ideas of Grandis from [Grandis 1989].

Definition 5.1 Given a restriction category X, define Jn(X) to have:

• objects: those of X;
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• an arrow X
A //Y is a subset A ⊆ X(X,Y ) such that A is down-closed (under the restriction

order), and elements are pairwise compatible;

• X
1X // X is given by the down-closure of the identity, ↓1X ;

• the composite of A and B is {fg : f ∈ A, g ∈ B};

• restriction of A is {f : f ∈ A};

• the join of (Ai)i∈I is given by the union of the Ai.

From [Cockett and Manes 2009], we have the following result:

Theorem 5.2 Jn(X) is a join-restriction category, and is the left adjoint to the forgetful functor
from join restriction categories to restriction categories.

Because we will frequently be dealing with the down-closures of various sets, the following
lemma will be extremely helpful.

Lemma 5.3 (Down-closure lemma) Suppose A,B ⊆ X(A,B). Then we have:

(i) ↓A ↓B =↓(AB);

(ii) ↓A =↓(A );

(iii) 〈↓A, ↓B〉 =↓〈A,B〉;

(iv) ↓A+ ↓B =↓(A + B);

(v) D[↓A] =↓D[A].

Proof:

(i) If h ∈↓(AB), then ∃f ∈ A, g ∈ B such that h ≤ fg. So h fg = h, and h f ∈↓A, b ∈↓B, so
h ∈↓A ↓B. Conversely, if mn ∈↓A ↓B, there exists f, g such that m ≤ f ∈ A,n ≤ g ∈ B. But
composition preserves order, so mn ≤ fg, so mn ∈↓(AB).

(ii) Suppose h ∈ ↓A . So there exists f ∈ A such that h ≤ f . Since restriction preserves order,
h ≤ f . But since h ∈ ↓A , h is idempotent, so we have h ≤ f . So h ∈↓(A ). Conversely,

suppose h ∈↓(A ), so h ≤ f for some f ∈ A. Then we have h = h f = h f , so h is idempotent
and h ≤ f , so h ∈ ↓A .

(iii) Suppose h ∈↓〈A,B〉, so h ≤ 〈f, g〉 for f ∈ A, g ∈ B. Then h = h 〈f, g〉 = 〈h f, g〉, and
h f ∈↓A, g ∈↓B, so h ∈ 〈↓A, ↓B〉. Conversely, suppose h ∈ 〈↓A, ↓B〉, so that h = 〈m,n〉 where
m ≤ f ∈ A,n ≤ g ∈ B. Since pairing preserves order, h = 〈m,n〉 ≤ 〈f, g〉, so h ∈↓〈A,B〉.

(iv) Suppose h ∈↓A+ ↓B, so h = m + n, where m ≤ f ∈ A, n ≤ g ∈ B. Since addition preserves
order, h = m + n ≤ f + g, so h ∈↓(A + B). Conversely, suppose h ∈↓(A + B). Then there
exist f ∈ A, g ∈ B so that h ≤ f + g. Then h = h (f + g) = h f + h g (by left additivity), so
h ∈↓A+ ↓B.
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(v) Suppose h ∈ D[↓A]. Then there exists m ≤ f ∈ A so that h ≤ D[m]. But differentiation
preserves order, so h ≤ D[m] ≤ D[f ], so h ∈↓D[A]. Conversely, suppose h ∈ D[A]. Then
there exists f ∈ A so that h ≤ D[f ], so h ∈ D[↓A].

2

5.2 Cartesian structure

We begin by showing that cartesianess is preserved by the join completion.

Theorem 5.4 If X is a cartesian restriction category, then so is Jn(X).

Proof: We define 1 and X × Y as for X, the projections to be ↓π0 and ↓π1, the terminal maps to
be ↓(!A), and

〈A,B〉 := {〈f, g〉 : f ∈ A, g ∈ B}

This is compatible by Proposition 2.14, and down-closed since if h ≤ 〈f, g〉, then

h = h 〈f, g〉 = 〈h f, g〉

so since A is down-closed, this is also in 〈A,B〉.
The terminal maps do indeed satisfy the required property, as

A ↓(!A) = A !A = {f !A : f ∈ A} = {f : f ∈ A} = A,

as required.
To show that 〈−,−〉 satisfies the required property, consider

〈A,B〉 ↓π0 = {〈f, g〉π0 : f ∈ A, g ∈ B} = {g f : f ∈ A, g ∈ B} = B A

and similarly for ↓π1.
We now need to show that 〈−,−〉 is universal with respect to this property. That is, suppose

there exists a compatible down-closed set of arrows C with the property that C ↓π0 = B A and
C ↓π1 = AB. We need to show that C = 〈A,B〉.

To show that C ⊆ 〈A,B〉, let c ∈ C. Since ↓(Cπ0) = C ↓π0 = B A, there exists f ∈ A, g ∈ B
such that cπ0 = g f . Then, since ↓(Cπ1) = C ↓π1 = AB, there exists a c′ such that c′π1 = f g.
Then

c′ cπ0 = c′ c cπ0 = c′ c g f

and since c ⌣ c′,
c′ cπ1 = c′ c c′π1 = c′ c f g

Thus, by the universality of c′ c 〈f, g〉, c′ c = c′ c 〈f, g〉. Thus

c ≤ c′ c = c′ c 〈f, g〉 ≤ 〈f, g〉,

so since 〈A,B〉 is down-closed, c ∈ 〈f, g〉.
To show that 〈A,B〉 ⊆ C, let f ∈ A, g ∈ B. Then there exists c such that

cπ0 = g f = 〈f, g〉π0.
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Thus, there exists f ′ ∈ A, g′ ∈ B such that

cπ1 = f ′ g′ = 〈f ′, g′〉π1.

Now, we have
〈f ′, g′〉 〈f, g〉π0 = 〈f ′, g′〉 〈f, g〉 〈f, g〉π0 = 〈f ′, g′〉 〈f, g〉 cπ0

and since f ⌣ f ′ and g ⌣ g′, 〈f, g〉⌣ 〈f ′, g′〉, so we also get

〈f ′, g′〉 〈f, g〉π1 = 〈f ′, g′〉 〈f, g〉 〈f ′, g′〉π1 = 〈f ′, g′〉 〈f, g〉 cπ1.

Thus, by the universality of 〈f ′, g′〉 〈f, g〉,

〈f, g〉 ≤ 〈f ′, g′〉 〈f, g〉 = 〈f ′, g′〉 〈f, g〉 c ≤ c .

Since C is down-closed, this shows 〈f, g〉 ∈ C, as required. 2

5.3 Left additive structure

Next, we show that left additive structure is preserved.

Theorem 5.5 If X is a left additive restriction category, then so is Jn(X), where

0Jn(X) :=↓0 and A + B := {f + g : f ∈ A, g ∈ B}

.

Proof: By Proposition 3.2, A + B is a compatible set. For down-closed, suppose h ≤ f + g. Then
h = h (f + g) = h f + h g. Since A and B are down-closed, h f ∈ A, h g ∈ B, so h ∈ A + B.

That this gives a commutative monoid structure on each hom-set follows directly from Lemma
5.3, as does 0 =↓1. Finally,

A + B = {f + g : f ∈ A, g ∈ B} = {f + g : f ∈ A, g ∈ B} = {f g : f ∈ A, g ∈ B} = A B .

so that Jn(X) is a left additive restriction category. 2

Theorem 5.6 If X is a cartesian left additive restriction category, then so is Jn(X).

Proof: Immediate from Theorem 3.11. 2

5.4 Differential structure

Finally, we show that differential structure is preserved. There is one small subtlely, however. To
define the pairing or addition of maps in Jn(X), we merely needed to add or pair pointwise, as the
resulting set was automatically down-closed and pairwise compatible if the original was. However,
note that A being down-closed does not imply {D[f ] : f ∈ A} down-closed. Axiom [D.9] requires
that differentials be total in the first component. However, this is not always true of an arbitrary
h ≤ D[f ]. Thus, to define the differential in the join completion, we make take the down-closure
of {D[f ] : f ∈ A}.
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Theorem 5.7 If X is a differential restriction category, then so is Jn(X), where

D[A] :=↓{D[f ] : f ∈ A}

Proof: Checking the differential axioms is a straightforward application of our down-closure
lemma. For example, for [D.1], by the down-closure lemmas,

D[0Jn(X)] = D[↓0] =↓D[0] =↓0 = 0Jn(X)

and

D[A + B] =↓{D[f + g] : f ∈ A, g ∈ B} =↓{D[f ] + D[g] : f ∈ A, g ∈ B} = D[A] + D[B] .

Similarly, to check [D.5]:

D[AB] =↓{D[fg] : f ∈ A, g ∈ B} =↓{〈D[f ], π1f〉D[g] : f ∈ A, g ∈ B} = 〈D[A], ↓π1A〉DB

where the last equality follows from several applications of the down-closure lemmas. All other
axioms similarly follow. 2

Finally, it is easy to see the following:

Proposition 5.8 The unit X // Jn(X), which sends f to ↓f , is a differential restriction functor.

Proof: The result immediately follows, given the additive, cartesian, and differential structure of
Jn(X). 2

Thus, by Proposition 3.24, we have

Corollary 5.9 If X is a differential restricion category, and f is additive/strongly additive/linear,
then so is ↓f in Jn(X).

6 Classical completion and differential structure

In our final section, we show that differential structure is preserved when we add relative com-
plements to a join restriction category. This process will greatly expand the possible domains of
definition for differentiable maps, even in the standard example. The standard example (smooth
maps on open subsets) does not have relative complements. By adding them in, we add smooth
maps between any set which is the complement of an open subset inside some other open subset. Of
course, this includes closed sets, and so by applying this construction, we have a category of smooth
maps defined on all open, closed and half open-half-closed sets. This includes smooth functions
defined on points; as we shall see below, this captures the notion of the germ of a smooth function.

6.1 The classical completion

The notion of classical restriction category was defined in [Cockett and Manes 2009] as an interme-
diary between arbitrary restriction categories and the boolean restriction categories of [Manes 2006].

Definition 6.1 A restriction category X with restriction zeroes is a classical restriction cate-

gory if
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1. the homsets are locally Boolean posets (under the restriction order), and for any W
f

//X,Y
g

//Z,

X(X,Y )
f◦(−)◦g

// X(W,Z)

is a locally Boolean morphism;

2. for any disjoint maps f, g (that is, f g = ∅), f ∨ g exists.

Example 6.2 Sets and partial functions form a classical restriction category.

For our purposes, the following alternate characterization of the definition, which describes
classical restriction categories as join restriction categories with relative complements, is more
useful.

Definition 6.3 If f ′ ≤ f , the relative complement of f ′ in f , denoted f \ f ′, is the unique map
such that

• f \ f ′ ≤ f ;

• g ∧ (f \ f ′) = ∅;

• f ≤ g ∨ (f \ f ′).

The following can be found in [Cockett and Manes 2009]:

Proposition 6.4 A classical restriction category is a join restriction category with relative com-
plements f \ f ′ for any f ′ ≤ f .

Just as one can freely add joins to an arbitrary restriction category, so too can one freely
add relative complements to a join restriction category. We will first describe this completion
process, then show that cartesian, additive, and differential structure is preserved when classically
completing. This is of great interest, as classically completing adds in a number of new maps, even
to the standard examples.

Definition 6.5 Let X be a join restriction category. A classical piece of X is a pair of maps
(f, f ′) : A // B such that f ′ ≤ f .

One thinks of a classical piece as a formal relative complement.

Definition 6.6 Two classical pieces (f, f ′), (g, g′) are disjoint, written (f, f ′) ⊥ (g, g′), if f g =
f ′ g ∨ f g′ . A raw classical piece consists of a finite set of classical pieces, (fi, f

′
i) that are

pairwise disjoint, and is written
⊔

i∈I

(fi, f
′
i) : A // B.

One defines an equivalence relation on the set of raw classical maps by:

• Breaking: (f, f ′) ≡ (ef, ef ′) ⊔ (f, f ′ ∨ fe) for any restriction idempotent e = e ,

• Collapse: (f, f) ≡ ∅.
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The first part of the equivalence relation says that if we have some other domain e, then we can
split the formal complement (f, f ′) into two parts: the first part, (ef, ef ′), inside e, and the second,
(f, f ′ ∨ fe), outside e. The second part of the equivalence is obvious: if you formally take away all
of f from f , the result should be nowhere defined.

Definition 6.7 A classical map is an equivalence class of raw classical maps.

Proposition 6.8 Given a join restriction category X, there is a classical restriction category Cl(X)
with

• objects those of X,

• arrows classical maps,

• composition by
⊔

i∈I

(fi, f
′
i)
⊔

j∈J

(gj , g
′
j) :=

⊔

i,j

(figj , f
′
igj ∨ fig

′
j),

• restriction by
⊔

i∈I

(fi, f ′
i) :=

⊔

i∈I

(fi , f ′
i ),

• disjoint join is simply ⊔ of classical pieces,

• relative complement is

(f, f ′) \ (g, g′) := (f, f ′ ∨ g f) ⊔ (g′ f, g′ f ′).

In [Cockett and Manes 2009], this process is shown to give a left adjoint to the forgetful functor
from classical restriction categories to join restriction categories.

We make one final point about the definition. We defined (f, f ′) ⊥ (f0, f
′
0) if f f0 = f ′ f0 ∨f f ′

0 .
Note, however, that it suffices that we have ≤, since

f ′ f0 ∨ f f ′
0 ≤ f f0 ∨ f f0 = f f0

We will often use this alternate form of ⊥ when checking whether maps we give are well-defined.

6.2 Cartesian Structure

Our goal is to show that if X has differential restriction structure, then so does Cl(X). We begin
by showing that cartesian structure is preserved.

Definition 6.9 Given a join restriction category X, define

〈
∐

i

(fi, f
′
i),
∐

j

(gj , g
′
j)〉 :=

∐

i,j

(

〈fi, gj〉, 〈f
′
i , gj〉 ∨ 〈fi, g

′
j〉
)

Lemma 6.10 The above describes a well-defined map in Cl(X).
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Proof: First, we need to check
(〈f, g〉, 〈f ′, g〉 ∨ 〈f, g′〉)

defines a classical piece. Indeed, since f ′ ⌣ f and g ⌣ g′, the two maps being joined are compat-
ible, so we can take the join. Also, since f ′ ≤ f and g′ ≤ g, the right component is less than or
equal to the left component.

Now, we need to check that
∐

i,j

(

〈fi, gj〉, 〈f
′
i , gj〉 ∨ 〈fi, g

′
j〉
)

defines a raw classical map. That is, we need to check that the pieces are disjoint. That is, we need
to show that if

(f, f ′) ⊥ (f0, f
′
0) and (g, g′) ⊥ (g0, g

′
0)

then
(〈f, g〉, 〈f ′, g〉 ∨ 〈f, g′〉) ⊥ (〈f0, g0〉, 〈f

′
0, g

′
0〉 ∨ 〈f0, g

′
0〉).

Consider:

〈f, g〉 〈f0, g0〉

= f f0 g g0

= (f ′ f0 ∨ f f ′
0 )(g′ g0 ∨ g g′0 )

= f ′ f0 g′ g0 ∨ f f ′
0 g′ g0 ∨ f ′ f0 g g′0 ∨ f f ′

0 g g′0
≤ f g′ f0 g0 ∨ f g f0 g0 ∨ f ′ g f0 g0 ∨ f g f0 g′0
= (f ′ g ∨ f g′ )(f0 g0 ) ∨ (f g )(f ′

0 g0 ∨ f0 g′0 )

= 〈f ′, g〉 ∨ 〈f, g′〉 〈f0, g0〉 ∨ 〈f, g〉 〈f ′
0, g0〉 ∨ 〈f0, g′0〉

so that
(〈f, g〉, 〈f ′, g〉 ∨ 〈f, g′〉) ⊥ (〈f0, g0〉, 〈f

′
0, g

′
0〉 ∨ 〈f0, g

′
0〉),

as required.
Finally, we need to check that this is a well-defined classical map. Thus, we need to check it is

well-defined with respect to collapse and breaking. For collapse, consider

〈(f, f ′), (g, g)〉 = (〈f, g〉, 〈f ′, g〉 ∨ 〈f, g〉) = (〈f, g〉, 〈f, g〉) ≡ ∅

as required.
For breaking, suppose we have

(g, g′) ≡ (g, g′ ∨ eg) ⊥ (eg, eg′)

Then

〈(f, f ′), (g, g′ ∨ eg) ⊥ (eg, eg′)〉

= (〈f, g〉, 〈f ′, g〉 ∨ 〈f, g′ ∨ eg〉) ⊥ (〈f, eg〉, 〈f ′, eg〉 ∨ 〈f, eg′〉)

= (〈f, g〉, 〈f ′, g〉 ∨ e〈f, g′ ∨ eg〉) ⊥ (e〈f, g〉, e(〈f ′, g〉 ∨ 〈f, g′〉)

≡ (〈f, g〉, 〈f ′, g〉 ∨ 〈f, g′〉)

= 〈(f, f ′), (g, g′)〉
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as required. Thus, the above is a well-defined classical map. 2

We now give some lemmas about our definition. Note that once we show that this pairing does
define cartesian structure on Cl(X) , these lemmas follow automaticially, as they are true in any
cartesian restriction category (see Lemma 2.14) However, we will need these lemmas to establish
that this does define cartesian structure on Cl(X).

Lemma 6.11 For f, g, e = e in Cl(X), e〈f, g〉 = 〈ef, g〉 = 〈f, eg〉.

Proof: It suffices to show the result for classical pieces. Thus, consider

〈(e, e′)(f, f ′), (g, g′)〉

= 〈(ef, e′f ∨ ef ′), (g, g′)〉

= (〈ef, g〉, 〈e′f ∨ ef ′, g〉 ∨ 〈ef, g′〉)

= (e〈f, g〉, e′〈f, g〉 ∨ e〈f ′, g〉 ∨ e〈f, g′〉

= (e, e′)(〈f, g〉, 〈f ′, g〉 ∨ 〈f, g′〉

= (e, e′)〈(f, f ′), (g, g′)〉

as required. Putting the e in the right component is similar. 2

Lemma 6.12 For any c in Cl(X), 〈cπ0, cπ1〉 = c.

Proof: It suffices to show the result for classical pieces. Thus, consider

〈(c, c′)(π0, ∅), (c, c
′)(π1, ∅)〉

= 〈(cπ0, c
′π0), (cπ1, c

′π1)〉

= (〈cπ0, cπ1〉, 〈c
′π0, cπ1〉 ∨ 〈cπ0, c

′π1〉)

= (c, c′ 〈cπ0, cπ1〉 ∨ c′ 〈cπ0, cπ1〉)

= (c, c′ c ∨ c′ c)

= (c, c′)

as required. 2

It will be most helpful if we can give an alternate characterization of when two classical maps
are equivalent. To that, we prove the following result:

Theorem 6.13 In Cl(X), (f, f ′) ≡ (g, g′) if and only if there exist restriction idempotents e1, . . . , en

such that for any I ⊆ {1, . . . , n}, if we define

eI :=



©i∈Iei, (©i∈Iei)





∨

j 6∈I

ej









then for each such I,
eI(f, f ′) = eI(g, g′)

or they both collapse to the empty map.
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Proof: As discussed in [Cockett and Manes 2009], breaking and collapse form a system of rewrites,
so that if two maps are equivalent, they can be broken into a series of pieces, each of which are
either equal or both collapse to the empty map. Thus, it suffices to show that the above is what
occurs after doing n different breakings along the idempotents e1, . . . , en. To this end, note that the
two pieces left after breaking (f, f ′) by e are given by pre-composing with (e, ∅) and (1, e); indeed:

(e, ∅)(f, f ′) = (ef, ef ′) and (1, e)(f, f ′) = (f, ef ∨ f ′)

Thus, if n = 1, the result holds. Now assume by induction that the result holds for k. Then for
any subset I ⊆ {1, . . . n}, breaking eI by (ek+1) gives the pieces

(en+1, ∅)(◦ei, (◦ei)(∨ej) = (en+1 ◦ ei, (en+1 ◦ ei)(∨ej))

and
(1, en+1)(◦ei, (◦ei)(∨ej) = (◦ei, (◦ei)(en+1) ∨ (◦ei)(∨ej)) = (◦ei, (◦ei)(en+1 ∨ ej))

Thus, we get all possible idempotents eI′ , where I ′ ⊆ {1, . . . , n + 1}, as required. 2

Theorem 6.14 If X is a cartesian restriction category, then so is Cl(X).

Proof: Define the terminal object T as for X, and the unique maps by !A := (!A, ∅). Then for any
classical map

∐

(fi, f
′
i), we have

∐

(fi, f
′
i) =

∐

(!Afi , !Af ′
i ) =

(

∐

(fi , f ′
i )
)

(!A, ∅)

as required. So Cl(X) has a partial final object.
We define the product objects A × B as for X, the projections by (π0, ∅ and (π1, ∅, and the

product map as above. To show that our putative product composes well with the projections,
consider

〈(f, f ′), (g, g′)〉(π0, ∅)

= (〈f, g〉, 〈f ′, g〉 ∨ 〈f, g′〉)(π0, ∅)

= (〈f, g〉π0, 〈f
′, g〉π0 ∨ 〈f, g′〉π0)

= (g f, g f ′ ∨ g′ f )

= (g , g′ )(f, f ′)

= (g, g′) (f, f ′)

as required. Composing with π1 is similar.
Finally, we need to show that the universal property holds. It suffices to show that if cπ0 ≤ f

and cπ1 ≤ g, then c ≤ 〈f, g〉. Suppose we have the first two inequalities, so that

c f ≡ cπ0 by breaking with idempotents (e1, . . . , en)

and
c g ≡ cπ1 by breaking with idempotents (d1, . . . , dm).

We claim that c 〈f, g〉 ≡ c by breaking with idempotents (e1, . . . en, d1, . . . , dm). By the previous
theorem, it suffices to show they are equal (or both collapse to the empty map) when composing
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with an element of the form in the theorem for an arbitrary subset K ⊆ {1, . . . n, n + 1, . . . n + m}.
However, if I = K∩{1, . . . , n} and J = K ∩{n+1, . . . n+m}, then such an element can be written
as

(eI , eIeI′)(dJ , dJdJ ′)

since that equals
(eIdJ , (eIdJ)(eI′ ∨ dJ ′))

which is eK . Thus, writing e for (eI , eIeI′) and d for (dJ , dJdJ ′), it suffices to show that edc 〈f, g〉 =
edc (or they both collapse to the empty map). However, we know that

ec f = ecπ0 and dc g = dcπ1

(or one or the other collapses to the empty map). Pairing the above equalities, we get

〈ec f, dc g〉 = 〈ecπ0, dcπ1〉

which, by lemma 2.14, reduces to
(ed)c 〈f, g〉 = edc

as required. If either equality has both sides collapsing to the empty map, then both sides of the
above collapse to the empty map, since we showed earlier that pairing is well-defined when applied
to collapsed maps. Thus, we have the required universal property, and Cl(X) is cartesian. 2

6.3 Left additive structure

Next, we show that left additive structure is preserved.

Definition 6.15 Suppose that X is a left additive restriction category with joins. Given classical
maps

∐

(fi, f
′
i) and

∐

(gj , g
′
j), define their addition to be the map

∐

i,j

(fi + gj, (f
′
i + gj) ∨ (fi + g′j))

Lemma 6.16 The above is a well-defined classical map.

Proof: The proof is nearly identical to that for showing that our pairing definition gives a well-
defined classical map.

2

Theorem 6.17 If X has the structure of a left additive restriction category, then so does Cl(X),
where addition of maps is defined as above, and the zero map is given by (0, ∅).

Proof: It is easily checked that the addition and zero give each homset the structure of a com-
mutative monoid. For the restriction axioms,

(f, f ′) + (g, g′)

= (f + g, (f ′ + g) ∨ (f + g′))

= (f + g , f ′ + g ∨ f + g′ )

= (f g , f ′ g ∨ f g′ )

= (f , f ′ )(g , g′ )

= (f, f ′) (g, g′)
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and clearly (0, ∅) is total. For the left additivity, consider

(f, f ′)(g, g′) + (f, f ′)(h, h′)

= (fg, f ′g ∨ fg′) + (fh, f ′h ∨ fh′)

= (fg + fh, ((f ′g ∨ fg′) + fh) ∨ (fg + (f ′h ∨ fh′)))

= (fg + fh, (f ′g + fh) ∨ (fg′ + fh) ∨ (fg + f ′h) ∨ (fg + fh′))

= (fg + fh, f ′ (fg + fh) ∨ f ′ (fg + fh) ∨ (fg′ + fh) ∨ (fg + fh′)) since f ′ ≤ f

= (f(g + h), f ′ f(g + h) ∨ f(g′ + h) ∨ f(g + h′))

= (f(g + h), f ′(g + h) ∨ f(g′ + h) ∨ f(g + h′))

= (f, f ′)(g + h, (g′ + h) ∨ (g + h′))

= (f, f ′)((g, g′) + (h, h′))

as required. Thus Cl(X) is a left additive restriction category. 2

Theorem 6.18 If X has the structure of a cartesian left additive restriction category, then so does
Cl(X).

Proof: Immediate from Theorem 3.11. 2

6.4 Differential Structure

Finally, we show that if X has differential restriction structure, so does Cl(X).

Definition 6.19 If X is a differential join restriction category, and
∐

(fi, f
′
i) is a classical map,

define its differential to be
∐

(D[fi],D[f ′
i ])

Lemma 6.20 The above is a well-defined classical map.

Proof: If f ′ ≤ f , then D[f ′] ≤ D[f ], so it is a well-defined classical piece. If (f, f ′) ⊥ (g, g′), then

Df Dg

= (1× f )(1 × g )

= 1× f g

= 1× (f ′ g ∨ f g′ ) since (f, f ′) ⊥ (g, g′)

= (1× f ′ g ) ∨ (1× f g′ )

= (1× f ′ )(1 × g ) ∨ (1× f )(1 × g′ )

= Df ′ Dg ∨Df Dg′

so (Df,Df ′) ⊥ (Dg,Dg′), so it is a well-defined raw classical map.

That this is well-defined under collapsing is obvious. For breaking, suppose we have

(f, f ′) ≡ (f, f ′ ∨ ef) ⊥ (ef, ef ′)
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for some restriction idempotent e = e . Then consider

D[(f, f ′ ∨ ef) ⊥ (ef, ef ′)]

= (Df,Df ′ ∨D(ef)) ⊥ (D(ef),D(ef ′))

= (Df,Df ′ ∨ (1× e)Df) ⊥ ((1 × e)Df, (1× e)Df ′)) by lemma 3.16

≡ (Df,Df ′) by breaking the restriction idempotent (1× e).

Thus the map is well-defined under collapsing and breaking, so is a well-defined classical map. 2

Theorem 6.21 If X is a differential join restriction category, then so is Cl(X).

Proof: Most axioms involve a straightforward calculation and use of the lemmas we have devel-
oped. We shall demonstrate the two most involved calculations: [D2] and [D5]. For [D2], consider

〈(g, g′), (k, k′)〉D(f, f ′) + 〈(h, h′), (k, k′)〉D(f, f ′)

= (〈g, k〉, 〈g′ , k〉 ∨ 〈g, k′〉)(Df,Df ′) + (〈h, k〉, 〈h′, k〉 ∨ 〈h, k′〉)(Df,Df ′)

= (〈g, k〉Df, 〈g′, k〉Df ∨ 〈g, k′〉Df ∨ 〈g, k〉Df) + (〈h, k〉Df, 〈h′, k〉Df ∨ 〈h, k′〉Df ∨ 〈h, k〉Df ′)

= (〈g, k〉Df + 〈h, k〉Df, [〈g′, k〉Df + 〈h, k〉Df ] ∨ [〈g, k′〉Df + 〈h, k〉Df ] ∨ [〈g, k〉Df ′ + 〈h, k〉Df ]

∨[〈g, k〉Df + 〈h′, k〉Df ] ∨ [〈g, k〉Df + 〈h, k′〉Df ] ∨ [〈g, k〉Df + 〈h, k〉Df ′])

We can simplify a term like 〈g, k′〉Df as follows:

〈g, k′〉Df = 〈g, k′ k〉Df = k′ 〈g, k〉Df

And for a term like 〈g, k〉Df ′, we can simplify it as follows:

〈g, k〉Df ′ = 〈g, k〉D(f ′ f) = 〈g, k〉(1 × f ′ )Df = 〈g, kf ′ 〉Df = 〈g, kf ′ k〉Df = kf ′ 〈g, k〉Df

Thus, continuing the calculation above, we get

= (〈g, k〉Df + 〈h, k〉Df, [〈g′, k〉Df + 〈h, k〉Df ] ∨ k′ [〈g, k〉Df + 〈h, k〉Df ] ∨ kf ′ [〈g, k〉Df + 〈h, k〉Df ]

∨[〈g, k〉Df + 〈h′, k〉Df ] ∨ k′ [〈g, k〉Df + 〈h, k′〉Df ] ∨ kf ′ [〈g, k〉Df + 〈h, k〉Df ′])

= (〈g, k〉Df + 〈h, k〉Df, [〈g′, k〉Df + 〈h, k〉Df ] ∨ [〈g, k〉Df + 〈h′, k〉Df ]

∨k′ [〈g, k〉Df + 〈h, k〉Df ] ∨ kf ′ [〈g, k〉Df + 〈h, k〉Df ])

= (〈g, k〉Df + 〈h, k〉Df, [〈g′, k〉Df + 〈h, k〉Df ] ∨ [〈g, k〉Df + 〈h′, k〉Df ]

∨[〈g, k′〉Df + 〈h, k′〉Df ] ∨ [〈g, k〉Df ′ + 〈h, k〉Df ′]) using the above calculations in reverse

= (〈g + h, k〉Df, 〈g′ + h, k〉Df ∨ 〈g + h′, k〉Df ∨ 〈g + h, k′〉Df ∨ 〈g + h, k〉Df ′) by [D2] for X

= (〈g + h, k〉, 〈g′ + h, k〉 ∨ 〈g + h′, k〉 ∨ 〈g + h, k′〉)(Df,Df ′)

= 〈(g + h, (g′ + h) ∨ (g + h′)), (k, k′)〉(Df,Df ′)

= 〈(g, g′) + (h, h′), (k, k′)〉D(f, f ′)
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as required. For [D5], consider

〈D(f, f ′), (π1, ∅)(f, f ′)〉D(g, g′)

= 〈(Df,Df ′), (π1f, π1f
′)〉(Dg,Dg′)

= (〈Df, π1f〉, 〈Df ′, π1〉 ∨ 〈Df, π1f
′〉)(Dg,Dg′)

= (〈Df, π1f〉Dg, 〈Df ′, π1f〉Dg ∨ 〈Df, π1f
′〉Dg ∨ 〈Df, π1f〉Dg′)

Now, we can simplify

〈Df ′, π1f〉 = 〈D(f ′ f), π1f〉 = 〈(1× f ′ )Df, π1f〉 = (1× f ′ )〈Df, π1f〉

(where the second equality is by Lemma 3.16), and

〈Df, π1f
′〉 = 〈Df, π1f ′ f〉 = 〈Df, (1× f ′ )π1f〉 = (1× f ′ )〈Df, π1f〉

where the second equality is by lemma 2.14. Thus, the above becomes

= (〈Df, π1f〉Dg, (1× f ′ )〈Df, π1f〉Dg ∨ 〈Df, π1f〉Dg′)

= (D(fg), (1 × f ′ D(fg) ∨D(fg′)) by [D5] for X

= (D(fg),D(f ′g) ∨D(fg′)) by Lemma 3.16

= D(fg, f ′g ∨ fg′)

= D((f, f ′)(g, g′))

as required. 2

Now that we know that the classical completion of a differential restriction category is again a
differential restriction category, it will be interesting to see what type of maps are in the classical
completion of the standard model. For example, consider f ′(x) = 2x defined everywhere but x = 5,
and f(x) = 2x defined everywhere. Taking a relative complement would give us a map defined only
at x = 5, and has the value 2x = 10 there. But if differential structure is retained, in what sense
is this map “smooth”?

Of course, this map is really an equivalence class of maps. In particular, imagine we have a
restriction idempotent e = e (that is, an open subset), which includes 5. Then we have

(f, f ′) ≡ (ef, ef ′) ⊔ (f, f ′ ∨ ef) = (ef, ef ′) ⊔ (f, f) ≡ (ef, ef ′)

So that this map is actually equivalent to any other map defined on an open subset which includes
5. This is precisely the definition of the germ of a function at 5. Thus, the classical completion
process adds germs of functions at points.

Of course, it also allows us to take joins of germs and regular maps, so that for example we could
take the join of the above map, and something like x−1

x−5 , giving a total map which has “repaired”
the discontinuity of the second map at 5. The fact that this restriction category is a differential
restricion category is perhaps now much more surprising. Clearly, this will be an example that will
need to be explored further.

Finally, given the additive, cartesian, and differential structure of Cl(X), the following is im-
mediate:
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Proposition 6.22 The unit X // Cl(X), which sends f to (f, ∅), is a differential restriction
functor.

And as a result, we have the following:

Corollary 6.23 Suppose X is a differential restriction category with joins, and f ′ ≤ f . Then:

(i) if f is additive in X, then so are (f, ∅) and (f, f ′) in Cl(X);

(ii) if f is strongly additive in X, then so is (f, ∅) in Cl(X);

(iii) if f is linear in X, then so are (f, ∅) and (f, f ′) in Cl(X).

Proof: By Proposition 3.24, (f, ∅) retains being additive/strongly additive/linear, and since (f, f ′)
is a relative complement, (f, f ′) ≤ f , so is additive/linear if f is. 2

7 Conclusion

There are a number of different expansions of this work that are possible. The first deals with
smooth manifolds. A similar construction to that found in [Grandis 1989] allows one to build a
new restriction category of manifolds out of any join restriction category. For example, applying
this construction to continuous functions defined on open subsets of Rn gives one the usual cate-
gory of real manifolds. An obvious expansion of the present theory is to understand what happens
when we apply this construction to a differential restriction category with joins. Clearly, this will
build categories of smooth maps between smooth manifolds. In general, however, one should not
expect this to again be a differential restriction category, as the derivative of a smooth manifold
map f : M //N is not a map M×M //N , but instead a map TM //TN , where T is the tangent
bundle functor. Thus, we must show that one can describe the tangent bundle of any object in
the manifold completion of a differential restriction category. This is the subject of a future paper,
and will allow for closer comparisons between the theory presented here and synthetic differential
geometry.

Another avenue for research is the links between this theory and classical work in algebraic and
differential geometry. Given that the rational functions example embeds into affine schemes, there
is a clearly a connection with the work of Grothedieck. Given that the classical completion of the
standard model involves germs of smooth functions, there is clearly a connection with differential
geometry.

Finally, the definition of an “integral category” still remains to be defined, and the links with
this theory should lead to interesting results.
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