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Tangent category definition

Definition (Rosický 1984, modified Cockett/Cruttwell 2013)

A tangent category consists of a category X with:

an endofunctor T : X→ X;

a natural transformation p : T → I ;

for each M, the pullback of n copies of pM : TM → M along itself
exists (and is preserved by each Tm), call this pullback TnM;

for each M ∈ X, pM : TM → M has the structure of a commutative
monoid in the slice category X/M, in particular there are natural
transformation + : T2 → T , 0 : I → T ;

(Note: composition will be in diagrammatic order.)
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Tangent category definition (continued)

Definition

(canonical flip) there is a natural transformation c : T 2 → T 2 which
preserves additive bundle structure and satisfies c2 = 1;

(vertical lift) there is a natural transformation ` : T → T 2 which
preserves additive bundle structure and satisfies `c = `;

various other coherence equations for ` and c ;

(universality of vertical lift) elements d of T 2M which have
T (p) = 0 are uniquely given by elements of T2M (the second
element of T2M is simply p of d).
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Examples

(i) Finite dimensional smooth manifolds with the usual tangent bundle
structure.

(ii) Convenient manifolds with the kinematic tangent bundle.

(iii) Any Cartesian differential category is a tangent category, with
T (A) = A× A and T (f ) = 〈Df , π1f 〉.

(iv) The infinitesimally linear objects in any model of synthetic
differential geometry.

(v) Both commutative ri(n)gs and its opposite category have tangent
structure, as well as various categories in algebraic geometry.

(vi) The category of C −∞-rings has tangent structure.
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Some theory

The following are definable concepts in tangent categories:

(i) vector bundles;
(ii) connections;
(iii) differential forms.

A tangent category in which T is representable by D has an
associated rig R with RD ∼= R × R (ie., R satisfies the
Kock-Lawvere axiom).
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Vector fields

A vector field on M is simply a section of pM : TM → M.

The 0 natural transformation provides for every M a vector field
0M : M → TM.

Since vector fields have the same projection, one can also add two of
them: x + y := 〈x , y〉+.

More interesting is that if one has negatives, one can define the Lie
bracket of two vector fields x , y , [x , y ], by the universal property of
the vertical lift:

〈xT (y)−, yT (x)c〉+

is an element of T 2M with T (p) = 0, so [x , y ] is defined to be the
first part of the corresponding unique element of T2M.
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Some bracket properties

It is relatively easy to prove that:

1 [x , y ] is again a vector field.

2 The operation is additive in both variables:

[x1 + x2, y ] = [x1, y ] + [x2, y ] and [x , y1 + y2] = [x , y1] + [x , y2].

3 Negation reverses the order:

[x , y ]− = [y , x ].
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Jacobi identity

But the big problem is determining whether the following Jacobi identity
holds:

[x , [y , z ]] + [z , [x , y ]] + [y , [z , x ]] = 0.

Rosický provided a proof which was 80 pages and assumed the existence
of additional limits. (Which are potentially problematic in some models).
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Jacobi identity in the standard model

In smooth manifolds, vector fields x on M are the same as derivations X
on the ring C∞(M), and the Lie bracket of X and Y is simply

XY − YX

So that the Jacobi identity is straightforward:

[X , [Y ,Z ]] + [Z , [X ,Y ]] + [Y , [Z ,X ]]

= X [Y ,Z ]− [Y ,Z ]X + Z [X ,Y ]− [X ,Y ]Z + Y [Z ,X ]− [Z ,X ]Y

= XYZ − XZY + YZX − ZYX + ZXY − ZYX

−XYZ + YXZ + YZX − YXZ − ZXY + XZY

= 0

But we can’t do this in a general tangent category!
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Some sample calculations

The calculations quickly get complicated in a tangent category:

Since the terms are defined by a universal property, it gets tricky to
use “parts” of each term to cancel other parts of the other terms.

Rosický realized that instead of trying to see their universal property,
it was easier to post-compose the terms with the lift `:

[x , y ]` = xT (y)T 2(x)T 3(y)− T (−)T (c)µ1T (µ1)

where

µ1 = 〈Tp, p〉+ is the multiplication of a monad on T : X→ X.

Then post-compose the Jacobi term

[x , [y , z ]] + [z , [x , y ]] + [y , [z , x ]]

with ``, use the fact that ` is a morphism of monads, and try to get
the 0 term out.

What we need is an easier way to manipulate terms like those given
above.
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Such terms can be represented graphically

We can use the graphical language of the 2-category CAT to do this.
The object M can be represented as a functor M : 1→ X.
A vector field x on M is then a natural transformation x : M → MT .
Represent ` : T → TT by ◦.
Represent c : TT → TT by a crossing of wires.
Represent µ1 : TT → T by ⊕.
Negation − : T → T is represented by •.

For example, the following diagram

[x , y ] ◦ =

x

y

x

y

•

•

⊕

⊕

represents [x , y ]` = xT (y)T 2(x)T 3(y)− T (−)T (c)µ1T (µ1).



Introduction Vector fields and their Lie bracket Graphical language Second notation Conclusions

More graphical examples

Another identity that can be established is that:

x

y

◦

◦

⊕

=

y

⊕

x

◦

◦

From this identity, one can also prove:

x

[x,y ] ◦

⊕
=

[x,y ]

x

◦

⊕
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Further graphical examples

And also:

x

y

x̃

ỹ

◦

◦

⊕

⊕
⊕

=

y

x̃

ỹ

x

⊕

◦

◦

⊕

⊕

(Where now we write x̃ for the negation of x .)
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One expansion of [x , [y , z ]] + [z , [x , y ]] + [y , [z , x ]]``

ỹ
x̃
y
x

z̃
x̃
ỹ
x
y
z

z̃
ỹ
z
y

x̃
ỹ
z̃
y
z
x

x̃
z̃
x
z
ỹ
z̃
x̃
z
x
y

⊕
⊕

⊕
⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕
⊕

⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕

⊕
⊕

⊕
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Simplifying even further

To simplify further, we use an additional layer of notation.

We present terms in the graphical calculus as a sequence of vector
fields, subscripted by which level they are connected to by ` or µ1.

For example,

[x , y ] ◦ =

x

y

x

y

•

•

⊕

⊕

is written as [x , y ]12 = x̃1ỹ2x1y2 (1).
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Lemmas in this notation

We can represent the other graphical identities in this notation:

x

y

◦

◦

⊕

=

y

⊕

x

◦

◦

is x12y13 = y13x12 (2) (two terms lifted to have a level in common
commute), and

x

[x,y ] ◦

⊕
=

[x,y ]

x

◦

⊕

is x1[x , y ]12 = [x , y ]12x1 (3) (brackets commute with their constituents);
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Lemmas in this notation

and

x

y

x̃

ỹ

◦

◦

⊕

⊕
⊕

=

y

x̃

ỹ

x

⊕

◦

◦

⊕

⊕

becomes x12y3x̃12ỹ3 = y3x̃12ỹ3x12 (4).
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Final version of the proof

In this notation, we can now give a relatively short version of the proof:

[[x , y ], z ]123[[y , z ], x ]123[[z , x ], y ]123

= [x , y ]12z3[y , x ]12z̃3[y , z ]23x1[z , y ]23x̃1[x , z ]31ỹ2[z , x ]31y2 (by 1)

= [x , y ]12[x , z ]31z3[y , x ]12z̃3[y , z ]23x1[z , y ]23x̃1ỹ2[z , x ]31y2 (by 2,3)

= [x , y ]12[x , z ]31z3[y , x ]12z̃3[y , z ]23x1[z , y ]23x̃1ỹ2x1y2ỹ2z̃3x̃1z3y2 (by 1)

= [x , y ]12[x , z ]31z3[y , x ]12z̃3[y , z ]23x1[z , y ]23[x , y ]12ỹ2z̃3x̃1z3y2 (by 1)

= [x , y ]12[x , z ]31z3[y , x ]12z̃3[x , y ]12[y , z ]23x1[z , y ]23ỹ2z̃3x̃1z3y2 (by 2,3)

= [x , y ]12[x , z ]31z3[y , x ]12z̃3[x , y ]12[y , z ]23x1z̃3ỹ2z3y2ỹ2z̃3x̃1z3y2 (by 1)

= [x , y ]12[x , z ]31z3[y , x ]12z̃3[x , y ]12[y , z ]23x1z̃3ỹ2x̃1z3y2 (negation)

= [y , z ]23[x , y ]12[x , z ]31z3[y , x ]12z̃3[x , y ]12x1z̃3ỹ2x̃1z3y2 (by 2,3)
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Final version of the proof (continued)

= [y , z ]23[x , y ]12[x , z ]31[y , x ]12z̃3[x , y ]12z3x1z̃3x̃1x1ỹ2x̃1z3y2 (by 4)

= [y , z ]23[x , y ]12[x , z ]31[y , x ]12z̃3[x , y ]12[z , x ]13x1ỹ2x̃1z3y2 (by 1)

= [y , z ]23[x , y ]12[x , z ]31[z , x ]13[y , x ]12z̃3[x , y ]12x1ỹ2x̃1z3y2 (by 2,3)

= [y , z ]23[x , y ]12[y , x ]12z̃3[x , y ]12x1ỹ2x̃1z3y2 (negation)

= [y , z ]23z̃3[x , y ]12x1ỹ2x̃1y2ỹ2z3y2 (negation)

= [y , z ]23z̃3[x , y ]12[y , x ]12ỹ2z3y2 (by 1)

= [y , z ]23z̃3ỹ2z3y2 (negation)

= [y , z ]23[z , y ]23 (by 1)

= 0123 (negation)
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Conclusions

We have proven Jacobi’s identity for tangent categories by making
judicious use of the graphical language of 2-categories and then
simplifying that further.

This method may be useful in proving other identities in tangent
categories such as the identities of Bianchi and Ricci (these involve
connections).

The result itself may be useful in newly-evolving models of
differential geometry (for example, diffeological spaces).

Is a more conceptual proof possible?
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