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Generalized multicategories in the literature

There have been many instances of work on generalized
multicategories:

Albert Burroni: T -catégories (1971);

Claudio Hermida: Lax Bimod(T)-algebras (2001);

Tom Leinster: T -categories (2004);

Maria Manuel Clementino, Dirk Hofman, Walter Tholen:
(T ,V )-algebras (2003-),

and others: each of these has many interesting examples.
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Generalized multicategories in the literature

There have been many instances of work on generalized
multicategories:

Albert Burroni: T -catégories (1971);

Claudio Hermida: Lax Bimod(T)-algebras (2001);

Tom Leinster: T -categories (2004);

Maria Manuel Clementino, Dirk Hofman, Walter Tholen:
(T ,V )-algebras (2003-),

and others: each of these has many interesting examples.

Our goal today is to briefly give a framework in which all of these
various notions of generalized multicategories are unified.

Main idea: use a type of double category rather than bicategories.
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What are categories?

Let’s start with categories. A category can be seen as a span of

sets C0
�C // C0:

C1

C0

cod
����

��
C1

C0

dom
��?

??
?

then we can view the composition operation as a span morphism
C2 // C, and the identity as a span morphism 1C0

// C; the
axioms for a category define how these morphisms interact.

This leads to the following definition:
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Categories

Definition

A monoid in a bicategory B consists of an object X , an arrow

X
�C // X , and 2-cells C2 // C, 1X

// C (plus axioms).

We have:

a monoid in Span(Set) is a category;

a monoid in the bicategory of V-matrices is a V-category;

a monoid in the bicategory of spans for an arbitrary category
C with pullbacks is an internal C -category.

Notice that the idea of a monoid in a bicategory covers not only
categories, but also “generalized” categories (enriched and
internal). But there is a problem:
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Functors?

If a (generalized) category is a monoid in some bicategory, what is
a functor?
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Functors?

If a (generalized) category is a monoid in some bicategory, what is
a functor?

No easy answer. A functor uses functions, not spans. We need
access to to another type of arrow between the objects of the
bicategory:

for Span(set), we need functions;

for V-mat, we also need functions;

for Span(C), we need the arrows of C.

So, instead of bicategories, we move to double categories. In fact,
we will move one step further:
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Virtual double categories

Definition

A virtual double category consists of:

a set of objects and vertical arrows (forming a category),

a set of horizontal arrows (no composites assumed),

cells of the form:

Y0 Y1
�
q

//

X0

Y0

f

��

X0 XnXn

Y1

g

��

X0 X1
�p1 // X1 X2

�p2 // X2 · · ·
�p3 //

· · · Xn
�pn

//

�� α

as well as “unit” cells with no horizontal domain.

Think of the vertical arrows as things like functions, and the
horizontal arrows as things like spans.
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Bicategories vs. virtual double categories

So a bicategory has data like

X0 X1

p

##
X0 X1

q

;;��
α
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Bicategories vs. virtual double categories

So a bicategory has data like

X0 X1

p

##
X0 X1

q

;;��
α

whereas a virtual double category has data like

Y0 Y1
�
q

//

X0

Y0

f

��

X0 XnXn

Y1

g

��

X0 X1
�p1 // X1 X2

�p2 // X2 · · ·
�p3 //

· · · Xn
�pn

//

�� α
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Monoids in a virtual double category

Definition

A monoid in a virtual double category consists of a horizontal cell

X
�p // X and cells

X X
�p // X X

�p //X

X

X

XX X
�
p

//
�� x̄ and

X

X


























X

X

44
44

44
4

44
44

44
4

X X
�
p

//
�� x̂

satisfying associativity and identity axioms.
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Monoid morphisms

Definition

A monoid morphism between monoids (X , p) and (Y , q) consists

of a vertical arrow X
f // Y and a cell

X X
�p //

Y Y
�
q

//

X

Y

f
��

X

Y

f
���� f̄

(we can also define monoid bimodules that correspond to
profunctors).
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The Mod construction

Call this construction Mod: it takes any virtual double category
and produces a new virtual double category. Mod takes:

(Sets, functions, spans) 7→ (Categories, functors, profunctors);

(Sets, functions, V -matrices) 7→ (V -categories, V -functors,
V -profunctors);

(objects of C, arrows of C, spans of C 7→ (internal
C-categories, internal C-functors, internal C-natural
transformations).

Notice there are no other assumptions, i.e. we don’t ask for
composites of profunctors.
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What are multicategories?

The arrows of a multicategory have as their domain multiple

object. So, the data for a multicategory can be seen as a span
C0

// MC0:
C1

C0

cod
����

��
C1

MC0

dom
��?

??
?

where M is the free monoid monad. The composition and
identities have a similar expression as a morphism of spans, but we
need to use the multiplication and unit of the monad M.
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Generalized multicategories: idea

The realization with generalized multicategories: replace M by
some other arbitrary “monad”, get other interesting things. For
example:

(Barr) the ultrafilter monad on sets: topological spaces;

other examples include symmetric multicategories, braided
multicategories, Lawvere theories, globular operads, graded
categories, approach spaces, etc.
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Monads in what sense?

Problems:

in what sense are these monads?

what does it mean “take monoids” when we modify the
horizontal cells?

They appear to be monads on a bicategory. But there is a
problem: some monads are actually lax. But there is no 2-category
of bicategories, lax functors, and lax (or op-lax) transformations, so
there is no sense in which these could be monads in some
2-category.

How have others gotten around this? Work with only particular

bicategories (spans, matrices, or profunctors) and make particular
definitions.
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Virtual double categories to the rescue again!

But, when we work with the relevant virtual double categories
rather than bicategories, we can define monads on them. In
particular:

there is a 2-category of virtual double categories, functors,
and transformations (because the transformations have
vertical components);

thus, there is a well-defined notion of “monad on a virtual
double category”;

the definition of “monad” used in other papers is often very
closedly related to this notion.
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Horizontal kleisli construction

Given a monad T on a virtual double category X, define a new
virtual double category H-Kl(X,T ) with

objects those of X;

vertical arrows those of X;

a horizontal arrow X
�p // Y is a horizontal arrow X

�p // TY

in X;

cells are defined using the unit and multiplication of T .



Introduction Categories Multicategories Conclusion

Horizontal kleisli construction

Given a monad T on a virtual double category X, define a new
virtual double category H-Kl(X,T ) with

objects those of X;

vertical arrows those of X;

a horizontal arrow X
�p // Y is a horizontal arrow X

�p // TY

in X;

cells are defined using the unit and multiplication of T .

Even if horizontal composites exist in X, they need not exist in
H-Kl(X,T )! This the main reason for using virtual double
categories.
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Generalized multicategories: definition

Given a monad T on a virtual double category X, the virtual
double category of generalized T -multicategories is given by

applying H-Kl(X,T ),

then applying Mod.
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Generalized multicategories: definition

Given a monad T on a virtual double category X, the virtual
double category of generalized T -multicategories is given by

applying H-Kl(X,T ),

then applying Mod.

We get a new virtual double category with:

objects generalized multicategories,

vertical arrows multicategory functors,

horizontal arrows multicategory profunctors.

Includes a wealth of examples.
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Conclusion

Solves three problems at once:

gives an easy definition of the functors (and profunctors)
between generalized multicategories;

shows how the input for a generalized multicategoy is a
monad;

deals with lack of horizontal composition.
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Conclusion

Solves three problems at once:

gives an easy definition of the functors (and profunctors)
between generalized multicategories;

shows how the input for a generalized multicategoy is a
monad;

deals with lack of horizontal composition.

This construction also

unifies previous definitions;

splits the construction into two parts, making it more easily
analysable.
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Paper

Lots more on this subject:

different types of generalized multicategories;

when H-Kl(X,T ) has composites;

representable generalized multicategories;

as well as comparisons to previous theories, can be found in:

“A unified framework for generalized multicategories”
(Cruttwell and Shulman), available at arxiv.org:0907.2460.
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