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Introduction

One use of Cartesian differential categories: to sort out the
different notions of “generalized smooth space” that have been
proposed. In this talk, I’ll discuss:

Cartesian differential categories.

Its close relation, tangent categories.

See how differential rings arise from instances of tangent
categories.

Propose an alternative for a general “algebraic” framework to
discuss tangent and differential structure.
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Differential categories

Definition (Blute/Cockett/Seely 2007)

A Cartesian differential category consists of a category with
finite products and an addition on hom-sets which has, for each
map f : X −→ Y , a map D[f ] : X × X −→ Y satisfying seven
axioms (chain rule, D preserves addition, symmetry of partial
derivatives, etc.)

Think of Df as the Jacobian of f .

As an example of the axioms, the chain rule is given by asking
that D(gf ) = D(g)〈D(f ), f π1〉.
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Examples of Cartesian differential categories

Cartesian spaces: objects natural numbers, a map f : n −→ m
is a smooth map f : Rn −→ Rm.

The coKleisli category of a monoidal differential category.

Cockett and Seely (2011): “cofree” Cartesian differential
categories exist.

Cockett: Cartesian differential structure exists on polynomial
functors.

Blute, Erhard and Tasson showed convenient vector spaces
and smooth maps are a Cartesian differential category.
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Tangent category definition

Cartesian differential structure does not exist on categories of
manifolds. The idea behind tangent categories is to axiomatize its
replacement: the tangent bundle functor.

Definition (Rosicky 1984, modified Cockett/Cruttwell 2013)

A tangent category consists of a category X with:

an endofunctor X T−−→ X;

a natural transformation T
p−−→ I ;

for each M, the pullback of n copies of TM
pM−−−→ M along

itself exists (and is preserved by T ), call this pullback TnM;

such that for each M ∈ X, TM
pM−−−→ M has the structure of a

commutative monoid in the slice category X/M, in particular

there are natural transformation T2
+−−→ T , I

0−−→ T ;
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Tangent category definition continued...

Definition

(canonical flip) there is a natural transformation c : T 2 −→ T 2

which preserves additive bundle structure and satisfies c2 = 1;

(vertical lift) there is a natural transformation ` : T −→ T 2

which preserves additive bundle structure and satisfies c` = `;

various other coherence equations for ` and c ;

(universality of vertical lift) the map

T2M
v := T (+)〈`π1, 0Tπ2〉−−−−−−−−−−−−−−→ T 2M

is the equalizer of

T 2M TM.
T (p) //

T 2M TM.
0pT (p)

//
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Analysis examples

The canonical example: the tangent bundle functor on the
category of finite-dimensional smooth manifolds.

Any Cartesian differential category X has associated tangent
structure:

TM := M ×M,Tf := 〈Df , f π1〉
with:

p := π1;
Tn(M) := M ×M . . .×M (n + 1 times);
+(〈x1, x2, x3〉) := 〈x1 + x2, x3〉, 0(x1) := 〈0, x1〉;
`(〈x1, x2〉) := 〈〈x1, 0〉, 〈0, x2〉〉;
c(〈〈x1, x2〉, 〈x3, x4〉〉) := 〈〈x1, x3〉, 〈x2, x4〉〉.
v(〈x1, x2, x3〉) = 〈〈x1, 0〉, 〈x2, x3〉〉;
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Manifold and algebraic examples

If the Cartesian differential category has a compatible notion
of open subset, the category of manifolds (Grandis) is a
tangent category, with tangent functor locally as above.

This is one way to show that the category of
finite-dimensional smooth manifolds is a tangent category.
Similarly, convenient vector spaces have tangent structure, as
do manifolds built on convenient vector spaces.
The category cRing of commutative rings is a tangent
category with:

TA := A[ε] = {a + bε : a, b ∈ A, ε2 = 0},
and natural transformations as for Cartesian differential
categories.
cRingop is a tangent category as, with

TA := AZ[ε] = S(ΩA)

(symmetric ring of the Kahler differentials of A).
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SDG examples

Recall that a model of SDG consists of a topos with an internal
commutative ring R that satisfies the Kock-Lawvere axiom: if we
define

D := {d ∈ R : d2 = 0},

then the canonical map

φ : R × R −→ RD ,

given by φ(a, b)(d) := a + b · d , is invertible.

The full subcategory of microlinear objects in a model of SDG
is a tangent category, with

TM := MD .

Any tangent category with a representable tangent functor
produces a model of SDG (uses the universality of vertical
lift).
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Cartesian Tangent to Cartesian Differential

Every Cartesian tangent category has an associated Cartesian
differential category:

Definition

For an object A in a Cartesian tangent category, differential
structure on A consists of a commutative monoid structure
+ : A× A −→ A, 0 : 1 −→ A on A together with a map p̂ : TA −→ A
such that

A
p̂←−− TA

p−−→ A

is a product diagram and p̂ is compatible with + and 0.

Theorem (Cockett/Cruttwell)

The differential objects in a Cartesian tangent category form a
Cartesian differential category, where, for f : A −→ B, we define

D(f ) := A× A ∼= TA
T (f )−−−−→ TB

p̂−−→ B,

For example, functoriality of T gives the chain rule:
D(fg) = 〈Df , π1f 〉D(g).
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Tangent spaces and differential objects

Definition

For a point 1
a−−→ M of an object of a tangent category, say that

the tangent space at a exists if the pullback of a along pM

exists:

1 Ma
//

Ta(M)

1
! ��

Ta(M) TM
i // TM

M

pM��

and this pullback is preserved by T .

Theorem (Cockett/Cruttwell)

Tangent spaces correspond to differential objects.

(The proof uses the universality of vertical lift.)
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Differential and tangent categories

Theorem (Cockett/Cruttwell)

There is an adjunction between small Cartesian differential
categories and small Cartesian tangent categories (with appropriate
morphisms):

cartDiffCats cartTanCats
,,
cartTanCatscartDiffCatskk ⊥

This provides additional examples of Cartesian differential
categories.
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Two general constructions of tangent categories

Theorem (Cockett/Cruttwell)

If (X,T ) is a tangent category in which T has a left adjoint L,
then (Xop, L) is also a tangent category.

Theorem (Rosicky)

If (X,T ) is a tangent category, then the category of functors from
X to set which preserve the equalizers and pullbacks of tangent
structure is a tangent category, with tangent functor T∗(F ) := FT .
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Theory: vector fields in a tangent category

Definition

If (X,T ) is a tangent category with an object X ∈ X, a vector
field on X is a map X

v−−→ TX with pv = 1.

Rosicky showed how to use the universal property of vertical
lift to define the Lie bracket of two vector fields in a tangent
category with negatives.

Cockett/Cruttwell showed in any tangent category, T and T 2

are monads; with the Kleisli category of T containing vector
fields and their addition.
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Differential rings

Definition

A differential ring consists of a ring R with a map ∂ : R −→ R
such that for r , s ∈ R,

∂(0) = 0, ∂(r + s) = ∂(r) + ∂(s), and ∂(rs) = ∂(r)s + r∂(s).

For example, if M is a smooth manifold and v a vector field on M,
the set of smooth functions C∞(M,R) can be given the structure
of a differential ring.
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Ring objects in tangent categories

Definition

Let (X,T ) be a tangent category. A tangent ring object is a ring
object R ∈ X such that:

R has a map p̂ : TR −→ R making it into a differential object
with respect to its addition;

the map p̂ : TR −→ R is also compatible with the
multiplication of R.

For example, if X is the coKleisli category of a monoidal
differential category, then the monoidal unit I will be a tangent
ring object for the associated tangent category. (For example, R in
the standard example or in convenient vector spaces).
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Differential rings for tangent categories

Proposition

Suppose (X,T ) is a tangent category, R a tangent ring object, and
v a vector field on X ∈ X. Then the hom-set X(X ,R) can be
given the structure of a differential ring, with differential
∂v : X(X ,R) −→ X(X ,R) defined by mapping f : X −→ R to

X
v−−→ TX

Tf−−−→ TR
p̂−−→ R

This includes potentially new interesting examples of differential
rings; for example, any vector field on a convenient manifold gives
a differential ring.
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The problem

By above, we have that every vector field on X gives a
differential on X(X ,R). (With appropriate definitions of map,
this is functorial).

Using Hadamard’s lemma, for a smooth manifold M,
differentials on C∞(M,R) bijectively correspond to vector
fields on M.

But, for a general Cartesian differential category or tangent
category X there is not necessarily a correspondence between
differentials on X(X ,R) and vector fields on X .
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General duality between analysis and algebra

For any category X, there is a fundamental adjoint pair:

setX
op

(setX)op

Alg
,,
(setX)opsetX

op

Spec

kk ⊥

where

Alg(F )(X ) = setX
op

(F , γ(X )) and Spec(G )(X ) = setX(G , γ′(X )).

From Lawvere’s paper Taking categories seriously (1986), “The
conjugacies [above] are the first step toward expressing the duality
between space and quantity fundamental to mathematics”.
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The analysis/algebra pair for the canonical example

For the standard Cartesian differential category, these
categories are fundamentally important:

the category on the left includes smooth manifolds and
diffeological spaces;

when restricted to those functors which preserve finite
products, the category on the right is the category of C∞

algebras.
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Tangent structure lifts to the algebraic category

Moreover, tangent structure from X lifts to tangent structure on
(setX)op:

If X is a Cartesian differential category, then by the earlier
result, the subcategory of setX whose elements preserve
products has tangent structure T∗, where T∗(F ) = FT .

But since set is cocomplete, this has a left adjoint (left Kan
extension) which restricts to the full subcategory of
product-preserving functors; call it T!.

Again by an earlier result about tangent structure, T! is a
tangent functor on the category (setX)op.

These tangent functors have been implicitly used in the
literature on C∞ algebras, but not explicitly identified as
tangent structure.

Moreover, this works for any Cartesian differential category X
(or tangent category, if we restrict to functors which preserve
the limits of tangent structure).
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Vector fields on T!(C
∞(M))

For A ∈ (setX)op, we have the following equivalences:

A −→ T!A ∈ (setX)op

⇔ T!A −→ A ∈ setX

⇔ A −→ T∗A ∈ setX

In the particular case of A = C∞(M) for some smooth manifold
M, in particular we get a map

C∞(M,R) −→ C∞(M,TR)

⇔ C∞(M,R) −→ C∞(M,R)× C∞(M,R)

which, being a vector field, in particular simply consists of a map

C∞(M,R) −→ C∞(M,R)

Furthermore, the naturality of this map with respect to +, · : R×R
−→ R makes this operation into a derivation on C∞(M,R).
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Tangent functors on diffeological spaces

This means that for a general “space” X ∈ setX
op

,
T!(Alg(X )) is a good “algebraic” version of the tangent
bundle of X .

The replacement for differential rings is vector fields on
T!(Alg(X )).

We then have three possibilities for a “tangent bundle”
functor on objects X ∈ setX

op
:

T!(X ),Spec(T!(Alg(X )),T!(Spec(Alg(X )).

For the canonical Cartesian differential category X and X a
smooth manifold, these are all the same; but they are distinct
for more general X (say, convenient manifolds).

The functor T! (on setX
op

) is a standard definition of the
tangent bundle for a diffeological space.
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Future work

Determine relationships between the various tangent functors
above.
Are they tangent structure on the category of spaces setX

op
?

Under what circumstances does the adjunction between
“smooth spaces” and “smooth algebras” restrict to an
equivalence?
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