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Support Vector Regression for Loss Given Default Modelling 

Xiao Yao1, Jonathan Crook, Galina Andreeva 

Credit Research Centre, The University of Edinburgh Business School, 29 Buccleuch Place, 

Edinburgh EH8 9JS UK 

 

Abstract: Loss given default modelling has become crucially important for banks due to the 

requirement that they comply with the Basel Accords and to their internal computations of 

economic capital. In this paper, support vector regression techniques are applied to predict loss 

given default of corporate bonds, where improvements are proposed to increase prediction 

accuracy by modifying the SVR algorithm to account for heterogeneity of bond seniorities. We 

compare the predictions from SVR techniques with thirteen other algorithms. Our paper has three 

important results. First, at an aggregated level, the proposed improved versions of support vector 

regression techniques outperform other methods significantly. Second, at a segmented level, by 

bond seniority, least square support vector regression demonstrates significantly better predictive 

abilities compared with the other statistical models. Third, standard transformations of loss given 

default do not improve prediction accuracy. Overall our empirical results show that support vector 

regression techniques are a promising technique for banks to use to predict loss given default.  

 

Keywords: Support vector regression; Loss given default, Recovery rate; Credit risk modelling 

 

1. Introduction 

The introduction of the Basel II and Basel III Accords (BIS, 2005a, 2005b, 2011) requires that 

banks in the G20 countries hold specified amounts of capital to reduce the chance of their 

insolvency. The amount of capital required under the Internal Rating Based (IRB) advanced 

approach is based on the calculation of the proportions of defaulted loans that the bank will never 

recover, termed Loss Given Default (LGD). Similarly the proportion has been recovered can be 

defined as recovery rate (RR) equals to one minus LGD. Yet compared with the extensive 

research on modelling the probability of default, there is relatively little research on LGD, and that 

which has been published shows very poor predictive accuracy. In this paper we present improved 

support vector regression (SVR) models that give substantial increases in predictive accuracy 

compared with previously published methods.  

Two types of predictive models have been applied in the empirical literature: parametric and 

non-parametric. Among the parametric models the most popular are linear regression models that 

have shown robustness and effectiveness in LGD prediction and explanation. Acharya et al (2007) 

conclude from including the industry distress dummies into a linear regression model that industry 

distress conditions have negative effects on the RR of defaulted firm debts. Their results suggest 

RR falls during distress periods due to both the downward trend in asset values and the liquidity 
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constraints. Qi and Yang (2009) in the study on LGD of residential mortgages demonstrate that 

LGD can be explained by linear regression that includes debt characteristics, with loan-to-value 

playing the single most important role. These results are confirmed by Khieu et al (2012) who 

estimate RR of bank loans with loan characteristics, borrower characteristics and macroeconomic 

conditions. They suggest loan characteristics are more significant determinants of RR than the 

other factors. Leow et al (2013) investigate the role of macroeconomic variables in two retail loans 

data sets. They find that the inclusion of macroeconomic variables can improve the prediction of 

residential mortgage LGD but bring little improvements for personal loan LGD.  

Empirical LGD distributions are often bi-modal and usually bounded between [0, 1], 

suggesting that linear regression model might fit poorly. Therefore, in order to improve the fit and 

predictive accuracy of the model, various transformations of LGD have been tried prior to the 

application. Gupton and Stein (2002) propose to transform the distribution of LGD into a normal 

distribution by a beta distribution function and then to model the transformed target with nine 

factors. They conduct extensive validation study showing that such beta transformed linear 

regression gives better predictions than historical average methods. Another attractive alternative 

to linear regression is a generalized linear model such as a fractional response model. Dermine and 

Carvalho (2006) employ a complementary log-log model to predict the cumulative RR of 

corporate loans from a Portuguese bank and report the R2 as 0.13 for the 12-month prediction. 

Jacobs and Karagozoglu (2011) propose a beta-link generalized linear model to estimate LGD at 

firm and instrument levels jointly and report a significant improvement in terms of both in-sample 

and out-of-sample performances. Leow & Mues (2011) investigate a two-stage model to predict 

the LGD of UK residential mortgage loans with a combination of a probability of repossession 

model and a haircut model (a model that predicts a proportion of lost value for a repossessed 

property). This study suggests that such two-stage modelling approach works better than a 

single-stage model. Calabrese (2010) applies an inflated beta regression model to predict RR of 

loans from The Bank of Italy where the dependent variable is assumed as a mixture of a 

continuous beta distribution on (0, 1) and a discrete Bernoulli distribution to model the probability 

mass at the boundaries 0 and 1. This study shows that the out-of-sample prediction of inflated beta 

regression model outperforms fractional response regression models in terms of both MSE and 

MAE. Bellotti and Crook (2012) benchmark a number of different transformations and algorithms 

to predict the LGD for credit cards data set. Surprisingly, they find that linear regression (OLS) 

with no variable transformations gives greater predictive accuracy.  

Although parametric models are simple to implement and easy to explain, past research 

reports rather poor predictions of LGD, and generalized linear regression models do not achieve 

significant improvements compared with linear regression. Zhang and Thomas (2010) compare 

both linear regression and survival regression for modelling RR of the personal loans from a UK 

bank, and report the out-of-sample R2 as low as 0.0904 for linear regression, the parametric 

survival models exhibit even poorer predictions. It is also surprisingly interesting to see that given 
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the versatility of distribution allowed in Cox approach, the predictive accuracies can still not be 

improved compared with linear regression model. Similar evidences provided by Bellotti and 

Crook (2012) show the model fit of simple linear regression to be rather weak with R2 of 0.1428, 

still the predictions of this model outperform the other ones including logit and probit models.  

In contrast, non-parametric methods provide much more flexibility in modelling LGD, 

although literature on this topic is not as extensive as for parametric models. One of the major 

advantages of non-parametric methods is distribution-free assumption. Unlike parametric models 

which imply a specific form of the LGD distribution, non-parametric methods do not make any 

prior assumptions when fitting a regression model. This often leads to a better performance 

compared with parametric techniques, as reported by previous research. For example, Bastos 

(2010) compares parametric fractional response regression and a non-parametric regression tree 

model to forecast bank loans RR and finds that the latter is superior. More strong evidence comes 

from Qi and Zhao (2011) who compare six modelling methods including four parametric 

statistical models and two data mining techniques (decision trees and neural networks) for a mixed 

portfolio of bonds and loans. They find non-parametric methods perform significantly better than 

other parametric methods in terms of both model fit and prediction accuracy. Tong et al (2013) 

develop a zero adjusted gamma model to predict LGD of a UK bank where the non-parametric 

smoothing splines are incorporated into the predictor of a mixture gamma distribution. The 

findings show that such semi-parametric formulation gives favourable out-of-sample predictions 

compared with the traditional linear regression. 

This study focuses on another promising non-parametric data mining technique: support 

vector machines (SVM) and application to LGD modelling. SVM has been first studied by Vapnik 

et al (1995, 1998) and are widely applied in engineering, bioinformatics and decision sciences. 

Previous research has revealed that SVM can not only handle non-linear problems well, but also 

avoid the over-fitting problem that is common in the neural networks based on the principle of 

structural risk minimization. SVM models have been widely applied in credit risk modelling as a 

tool to solve classification problems such as in credit scoring, i.e. to classify credit applicants into 

‘Good’ or ‘Bad’ risks. On the other hand, support vector regression (SVR) adapted to regression 

problems have been developed and effectively applied to non-linear regression and time series 

prediction problems. However, until now only one published paper, by Loterman et al (2011), has 

investigated application of SVR for LGD modelling. They conduct a comprehensive 

benchmarking study on six retail loan data sets with 24 techniques, some of which are two-stage 

models including both linear and non-linear techniques and they find that non-linear techniques 

including neural networks and SVR models consistently outperform other traditional linear 

methods. But they do not make any further improvements on SVR models.  

Our paper makes three distinct contributions based on the analysis of the RR of corporate 

bonds. First, the predictive performance of RR is evaluated by using different intercepts to 

separately represent the heterogeneity of different bond seniorities, and a semi-parametric SVR 
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model is proposed to describe linear and non-linear effects of different groups. Second, SVR 

models are applied to losses from corporate bonds for the first time. In addition, the dataset 

comprises a longer time series of observations than previous studies and uses a more 

comprehensive set of predictor variables, including accounting ratios from obligors’ financial 

statements. Macroeconomic factors are also included to allow for any possible systematic 

differences in LGD over time. Third, the paper investigates whether transforming LGD values 

using both logistic and beta distributions prior to analysis can improve SVR model fitting and 

prediction accuracy. The results show that all SVR models substantially outperform other 

statistical models in terms of both model fit and out-of-sample prediction accuracy, and we find 

that the robustness of SVR models is comparable to that of statistical models. However, a logistic 

or beta transformation prior to modelling does not provide any increase in RR predictions. 

The rest of the paper is organized as follows. Section 2 presents the models, the data used in 

this research is described in Section 3. Section 4 discusses the results and conclusions are drawn in 

Section 5.  

 

2. Models 

In this section both parametric regression and SVR models are presented and the proposed 

SVR models are elaborated in more detail. Note that in line with literature and our data the target 

variable is RR instead of LGD. 

2.1. Linear Regression 

Previous empirical research shows that linear regression models appear to be of comparable 

predictive accuracy as other more complicated statistical models (Qi and Zhao, 2011; Bellotti and 

Crook, 2012) even though they have the potential risk to make predictions out of the range 

between 0 and 1. Consider a dataset 1{( , )}Ni i iD y == x  with the covariates m
i RÎx  which is 

m-dimensional and the related dependent variable is iy RÎ , and β  denotes a vector of 

population parameters. The linear regression model is given as follows: 

  
β

2~ (0, )

T
i i i

i

y

N

e

e s

= +x
, (1) 

Maximum likelihood methods can be applied to estimate the parameters.  

2.2. Fractional Response Regression 

Fractional response regression is defined by Papke and Wooldrige (1996) and has been 

widely applied in RR modelling (Dermine and Carvalho, 2006; Bastos, 2010; Khieu et al, 2012; 

Bellotti and Crook, 2012). In this model, the dependent variable is bounded between 0 and 1 by 

imposing a link function. The model is defined as: 

  β( | ) ( )T
i i iE y G=x x , (2) 

where ( )G   denotes some link function such as a logistic transformation function or a 

complementary log-log function such as: 
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β β β

β β

( ) exp( ) / (1 exp( ))

( ) exp( exp( )

T T T
i i i

T T
i i

G

G

= +

= - -

x x x

x x
, (3) 

and the quasi maximum likelihood function can be written as follows: 

  β βlog log( ( )) (1 )log(1 ( ))T T
i i i iL y G y G= + - -x x . (4) 

2.3. Support Vector Regression 

In the following we present three support vector regression models. The first one is least 

squares support vector regression (LS-SVR) proposed by Suykens et al (1999, 2002). Two 

improved models are proposed based on LS-SVR.  

2.3.1. Least Squares Support Vector Regression 

Consider the dataset given in Section 2.1. The LS-SVR is defined based on the quadratic loss 

function such as: 

  
2 2

1

1
min ( , ; )

2 2

. . ( ) , 1,...,

N

i i
i

T
i i i

C
J b u u

s t y b u i Nj
=

= +

= + + =

åw w

w x

,  (5) 

where w  denotes the parameter vector of the associated covariates and b  is the intercept. 

Notice that the error terms 2
iu  are scaled by a regularized parameter C, and ( )ij x  denotes the 

kernel function that maps the data from original data space to a higher dimensional space. This 

model is solved by its dual form problem which will be derived from a Lagrangian function such 

as: 

  
1

( , , ; ) ( , ) ( ( ) )
N

T
i i i i i i i

i

L b u J u b u ya a j
=

= - + + -åw w w x , 

where ia  is the Lagrangian multiplier. Based on the KKT condition, the solution of the dual 

form is equivalent to solving the following linear equation systems： 

  
α

00 T bæ öæ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç=÷ ÷ ÷ç ç ç÷ ÷ ÷ç ÷ ÷ç ç÷ç è ø è øè ø

e

ye K
,  (6) 

where 
1

(1,...,1)T

N´

=e , 1( ,..., )TNy y=y ,α 1( ,..., )TNa a= ,
1

C
= +K K I , where K  is the kernel 

matrix with ( , ) ( ) ( )i j i jj j= ⋅K x x x x  and I  is the identity matrix. The closed form solution is 

obtained as: 

  
α 1

1

1

( )
T

T

b

b

* - *

-
*

-

ìï = -ïïïíï =ïïïî

K y e

e K y

e K e

, (7) 

Finally the estimated regression model can be written as: 

  * *( ) ( , )i i
i

g ba= +åx K x x . (8) 

2.3.2. Least Squares Support Vector Regression with Different Intercepts 
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Now we consider extending LS-SVR by introducing heterogeneity for different groups. In 

this model we assume that observations in the same group have an unobserved homogeneity that 

can be presented by intercepts. Consider a clustered cross section data set such as 

{( , )}, 1,..., , 1,...,kj kj kD y j p k M= = =x  where kjx  denotes the covariates of the j-th sample in 

the k-th group, and kp  is the number of individuals in this group. The total number of cases in 

the whole dataset is 1 2 ... Mp p p N+ + + = , where M  indicates the total number of groups in 

this dataset. The least squares SVR model with different intercepts can be constructed as follows: 

  

2 2 2

1 1 1

1 1
min ( , ; )

2 2 2

. . ( )

1,..., 1,...,

kpM M

k kj k kj
k k j

T
kj kj k kj

k

C
J b u b u

s t y b u

k M j p

j
= = =

= + +

= + +

= =

å ååw w

w x . (9) 

Notice that kb  is a group specific intercept. With such specifications this model is able to predict 

the out-of-sample individuals. The Lagrangian function of model (9) can be written as follows: 

  

2 2 2

1 1 1

1 1

1 1
( , , ; )

2 2 2

( ( ) )

k

k

pM M

k kj kj k kj
k k j

pM
T

kj kj k kj kj
k j

C
L b u b u

b u y

a

a j

= = =

= =

= + +

- + + -

å åå

åå

w w

w x

. 

The KKT conditions are: 

  

( ) 0 ( )

0

0

kj kj kj kj
k j k j

k kj k kj
j jk

kj
kj kj kj

kj

L

L
b b

b

L
Cu u

u C

a j a j

a a

a
a

ìï ¶ïï = - =  =ïï¶ïïï ¶ïï = - =  =íï¶ïïïï ¶ï = - =  =ïï¶ïïî

åå åå

å å

w x w x
w

. (10) 

Then the dual form problem is given as: 

  α α α α α α α
1 1 1

min
2 2 2
T T T T

C
+ + -K W y . (11) 

Here W  is a block diagonal matrix defined as 

1

2

M

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷çè ø

W

W
W

W


, and each kW  is a 

k kp p´  matrix with all elements equal to 1. To solve for the optimal solution it is only necessary 

to solve the following linear system by taking the partial derivative of model (11) with respect to 

α : 

  α
1

( )
C

+ + =K W I y , (12) 

where I  denotes a N N´  identity matrix, and K  is defined as above. Denoting the solution 
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of the above equation as α* , the optimal solution ( , )kb
* *w  for equation (9) is obtained as: 

  

( )
kj

kj
k j

k kj
j

b

a j

a

* *

* *

=

=

åå

å

w x

. (13) 

2.3.3. Semi-parametric least squares support vector regression 

In this study we replace nominal variables representing bond seniorities by dummy variables. 

We assume that these dummy variables have linear effects on RR, therefore, a semi-parametric 

model is proposed. In this semi-parametric model, dummy variables influence the dependent 

variable linearly while other variables are still equipped with kernel functions such that: 

  

β β

β

2 2 2

1 1

1 1 1
min ( , ; )

2 2 2 2

. . ( )

1,..., 1,...,

kpM
T

k kj kj
k j

T T
kj kj kj kj

k

C
J b u b u

s t y b u

k M j p

j
= =

= + + +

= + + +

= =

ååw w

w x z , (14) 

where kjz  is a vector consisting of the dummy variables and β  is the vector of the 

corresponding parameters. Here β  is treated as a vector of fixed effects with respect to the group 

specific variables while kb  are replaced by a common intercept b  as in model (5). The 

Lagrangian function and KKT conditions are as above:  

  

β β

β

2 2 2

1 1

1 1

1 1 1
( , , ; )

2 2 2 2

( ( ) )

k

k

pM
T

kj kj kj
k j

pM
T T

kj kj kj kj kj
k j

C
L b u b u

b u y

a

a j

= =

= =

= + + +

- + + + -

åå

åå

w w

w x z

, 

and 

  

β β
β

( ) 0 ( )

0

0

0

kj kj kj kj
k j k j

kj kj kj kj
k j k j

kj kj
k j k j

kj
kj kj kj

kj

L

L

L
b b

b

L
Cu u

u C

a j a j

a a

a a

a
a

ì ¶ïï = - =  =ïï¶ïïï¶ïï = - =  =ïï ¶ïïí¶ïï = - =  =ïï ¶ïïïï ¶ï = - =  =ïï¶ïïî

åå åå

åå åå

åå åå

w x w x
w

z z

.  (15) 

The dual form is: 

  α α α α α α α α α
1 1 1 1

min
2 2 2 2
T T T T T

C
+ + + -K Z V y , (16) 

where T
ij ki kj=Z z z , and V  is a N N´  matrix with all elements equal to 1. All the other 

notations are the same as model (5). Model (16) can be solved with the same procedure as above 

and the linear equation systems can be obtained as follows: 

  α
1

( )
C

+ + + =K Z V I y . (17) 
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The solution for w  and β  can be derived as: 

  β

( )
kj

kj

kj

kj
k j

kj
k j

k j

b

a j

a

a

* *

* *

* *

=

=

=

åå

åå

åå

w x

z . (18) 

 

2.4. Two-stage model 

A two-stage model is proposed by Bellotti and Crook (2012) to predict the LGD of credit 

cards from a UK retail bank. They first split the LGD into three classes including LGD equal to 0 

or 1 and 0<LGD<1 by a decision tree, and then estimate the LGD belongs to the interval (0, 1) by 

an ordinary linear regression. 

2.5. Transformations 

Two different transformations are employed in this study; one is a logistic transformation 

defined as follows: 

  ln( )
1logit
y

y
y

=
-

, (19) 

and the other is a beta transformation that is widely recognized since it was proposed in Gupton & 

Stein’s seminal paper (Gupton & Stein, 2002). The beta distribution is defined within the interval 

(0, 1) as follows: 

  1 1( )
( ; , ) (1 ) , 0, 0

( ) ( )
p qp q

f y p q y y p q
p q

- -G +
= - > >

G G
, (20) 

where p  and q  are two parameters that control the shape of distribution. Following from the 

idea of Moody’s LossCalc model, the transformed dependent variable becomes 

  1( ( ; , ))betay N Beta y p q-= , (21) 

where 1()N- ⋅ denotes the inverse cumulative normal distribution. These two different 

transformation methods will be applied to all the SVR models.  

 

3. Data 

The source of data is Moody’s Ultimate Recovery Database (MURD) which contains more than 

6000 default debt instruments including bonds, loans and revolvers issued by more than 1700 

American companies. Here the focus is on corporate bonds that are categorized into five types: 

senior secured, senior unsecured, senior subordinated, subordinated and junior subordinated. The 

sample has 1413 observations that range from 1985 to 2011. We follow Qi and Zhao (2011) to 

adopt the preferred method recommended by Moody’s analysts as the ultimate RR of each 

instrument (Moody’s Analytics, 2012). Three different measurements of RR are provided in 



 

 

9

MURD: settlement, liquidity and trading price2 . Table 1 describes the frequency and the 

percentage of each seniority as well as corresponding mean values of RR. It is clear that the mean 

RR tends to be higher for more senior bonds. Subordinated bonds have low frequencies (especially 

junior subordinated bonds) and this may affect the quality of estimation. Therefore, junior 

subordinated, subordinated and senior subordinated bonds are merged together, and are referred to 

as “Subordinated bonds”. Figure 1 shows the distribution of RR for all observations. Clearly the 

distribution is highly skewed between 0 and 0.2, indicating that a large proportion of observations 

have a RR lying in this interval.  

According to Resti and Sironi (2007) the drivers of RR can be categorized into five classes: 

characteristics of the exposure, characteristics of the borrower, bank’s internal factors and 

macroeconomic factors. For the exposure characteristics we only select the variables with enough 

non-missing values. We select the accounting and macroeconomic characteristics that are 

commonly used in the literature are available in our dataset. (Archaya et al, 2007; Qi and Zhao, 

2011; Khieu et al, 2012). The accounting information of the borrowers is incorporated by using the 

ticker (unique identification) of each obligor to match the bond information from MURD with 

financial statements of the corresponding companies in Compustat3. Macroeconomic variables are 

included to capture economic cyclical effects while bank internal factors are unavailable in this 

study. The summarized statistics of all variables are listed in Table 2.  

<Insert Figure1, Table 1 and Table 2 Here> 

Collateral rank refers to the relative importance of the collateral. A higher collateral rank of 

an instrument is expected to be associated with a higher RR. Percent_Above indicates the 

percentage of debt of an obligor that is more senior than the current instrument. It is expected to 

have a negative effect on RR, because a high value of Percent_Above means the current 

instrument has to wait for the complete recovery of the debt of senior instruments before it can be 

recovered. The Orginal_Amount denotes the face amount of the instrument when it was issued. 

There is no agreement on the effects of this variable on RR based on previous research. Dermine 

and Carvalho (2006) find that it negatively affects the RR, but Acharya et al (2007) suggest that 

larger loan volume means the obligor has greater bargaining power in the bankruptcy proceedings 

that will result in a higher RR. Type means the seniority of the bonds. Bonds with higher seniority 

will give higher RR.  

For the accounting variables, we consider both profitability and solvency characteristics of 

the obligors (Acharya et al, 2007). It is expected that with higher profitability and solvency, the 

obligor should have higher RR of its corresponding instruments. EBITDA is used to represent the 

                                                        
2 There are three methods provided in MURD to calculate RR for each instrument. 1) Discount_Settlement_Total: 
The nominal settlement recovery amount discounted back from each settlement instrument’s trading date to the last 
date cash paid of the individual defaulted instruments, using the defaulted instrument’s effective interest rate. 2) 
Discount_Liquidity_Total: The nominal liquidity recovery total discounted back from each settlement instrument’s 
trading date to the last date cash paid of the individual defaulted instruments, using the defaulted instrument’s 
effective interest rate. 3) Discount_Trading_Price: The trading price nominal recovery value discounted from the 
trading date to the instrument’s last date cash paid using the effective interest rate of the pre-defaulted instrument. 
3 Compustat Database is integrated into Wharton Research Data Services. 
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profitability, and solvency is described by the remaining accounting variables. Notice that 

Leverage and Debt_Ratio are expected to have negative effects on RR because higher values 

indicate weak solvency of the company. All the accounting variables are lagged one year before 

the instrument default date. 

Macroeconomic variables are considered to reflect the economic cycle over the period 

covered in this dataset. Because all the obligors are US companies, we only select macroeconomic 

variables closely related with the US economy. GDP and Unemployment_Rate are used as 

coincident indicators to explain the overall economic condition. S&P_Return is the S&P 500 index 

annual return which gives the market performances for each year. The three months Treasury bill 

rate T_Bill is taken as a risk-free interest rate. Macroeconomic variables are lagged two years 

before default date. In summary, the regression model can be presented as follows: 

, , 1

1 2

Recovery Rate Intercept Recovery Characteristics Accounting Variables

Macroeconomic Variables Macroeconomic Variables
i t i i t

t t

-

- -

= + +
+ +

,  (22) 

where subscript i  denotes the i-th instrument and t  is the related default year.  

 

4. Model Specification and empirical results 

The empirical experiment in this paper is presented in two subsections: firstly for all seniorities 

pooled together and secondly, models for individual seniority will be presented separately.  

 

4.1. Aggregated Models 

The aggregated sample is split into training and testing sets, with a stratified sampling method in 

order to keep the same proportions of different bond seniorities in both the training and test sets. 

For each stratum seventy percent of observations are randomly drawn as a training set and the 

remaining thirty percent of observations are left as a testing set. The procedure is repeated 100 

times as cross-validation (with new random samples drawn each time) to ensure the robustness of 

the results. The regularized parameter C and the kernel parameter of SVR models are selected 

based on the principle of design of experiment proposed by Staelin (2003) and the out-of-sample 

prediction results on the testing sets are reported. To compare the performance of these models, 

pair-wise t-tests are used to examine the differences in the mean values of different models and t 

values with corresponding significance levels4 are presented. 

The models presented in Section 2 have been fitted to the aggregated training samples. For 

parametric regression techniques these include linear regression, fractional response regression 

where the logistic link function is adopted, linear regression with a beta transformation and a 

two-stage regression model. For the two-stage model, the observations with RR=0 and RR>0 are 

first classified by logistic regression, and then the cases with RR>0 are further separated such that 

RR=1 and 0<RR<1, and finally an OLS regression is applied to values of RR in the interval (0, 1).  

SVR techniques include least squares support vector regression (LS_SVR, equation (5)), least 

                                                        
4 In this study * denotes significant at 5% confidence level, and ** denotes significant at 1% confidence level. 
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squares support vector regression with different intercepts (LS_SVR_DI, equation (9)) and 

semi-parametric least squares support vector regression (Semi_LS_SVR, equation (14)). Two 

different transformation methods are applied to all these three SVR models. The abbreviation 

names are used in the following description for convenience. For example, Beta_LS_SVR denotes 

the least squares support vector regression with a beta transformation on RR, and 

Log_Semi_LS_SVR means semi-parametric least squares support vector regression with a logistic 

transformation. 

 

4.2. Segmented Models 

RR varies with respect to different bond seniorities, and to control for this and to check if 

segmentation affects the predictive performance of models, the aggregated dataset has been split 

into three subsets, as described in Section 3. Since the models are fitted to each subset separately, 

LS_SVR_DI and Semi_LS_SVR including related models with transformed RR are not evaluated 

here. All the parametric models and LS_SVR models with both original and transformed RR are 

applied to instrument segments. The same procedure of cross-validation is followed as described 

in the previous section. Similarly, the pair wise t-tests are also employed. 

In this experiment variables including Total Assets, Original Amount of the instrument and 

GDP are subjected to a log transformation to scale the variable into an appropriate range. The 

outliers of each numeric variable defined as either larger than 99-th or smaller than 1-th percentile 

are replaced by the corresponding median value. Two different performance measurements are 

selected including root mean squared errors (RMSE), mean absolute errors (MAE) and R square 

(R2) defined as follows: 
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All support vector models adopt the RBF kernels defined as 
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where s  is the scale parameter of the kernel and is tuned in cross-validation. 

In this paper all models are implemented in SAS 9.2 (SAS Inc, 2009), where linear regression 

and fractional response models are fitted in SAS PROC REG and NLMIXED respectively, and all 

SVR models are programmed in SAS PROC IML. 

4.3. Experimental Results 

4.3.1. Results of Aggregated Models 

Table 3 shows the results of cross-validation including the out-of-sample mean values and 
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standard deviations (to indicate robustness) of all the performance metrics as well as the 

corresponding tuned parameters for SVR models. Table 4 gives the t-values of pair wise t-tests of 

differences between the mean values of RMSE, MAE and R2 between each pair of methods. 

From Tables 3 and 4 it is clear to see that all the SVR models outperform the statistical 

models. Among the statistical models, linear regression and fractional response models present 

similar predictive accuracy, but two-stage models appear to give less accurate predictions. Linear 

regression with a beta transformation shows inferior predictive performances compared with linear 

regression without transformation. We assume this is because the RR is not well fitted by the beta 

distribution so that information is lost during such transformation. It also shows that SVR models 

with logistic transformation give worse predictions than with a Beta transformation. Notice that 

the SVR models have comparable standard deviations with statistical models, showing their 

similar robustness. 

More specifically, both LS_SVR_DI and Semi_LS_SVR outperform LS_SVR even though 

LS_SVR performs much better than other statistical techniques in terms of all three performance 

metrics. Semi_LS_SVR obtains the best performance on RMSE and R2, and Panel A in Table 4 

shows that such an improvement is significantly better than the other methods except for 

LS_SVR_DI. Panel B in Table 4 shows that LS_SVR_DI gives a significantly better performance 

in terms of MAE than any other model except Beta_LS_SVR_DI and Beta_Semi_LS_SVR. 

Similarly Panel C in Table 4 provides strong evidences that LS_SVR_DI and Semi_LS_SVR yield 

higher R2 than the others. This confirms that the models proposed in this paper are in general more 

accurate at predicting LGD for bonds than other established methods. Notice also from Table 3 

that transformations of the dependent variable do not increase the accuracy of SVR methods. For 

example, Beta_LS_SVR does not lead to reduced RMSE compared to LS_SVR and a logistic 

transformation reduces accuracy further. Among the statistical models the fractional response 

model appears to be better on RMSE compared with linear regression and a two-stage model at 

the 5% confidence level. Surprisingly linear regression with a beta transformation gives the worst 

performances. In summary, all SVR models result in significantly lower errors in the test set 

compared with statistical models. LS_SVR_DI and Semi_LS_SVR present the highest levels of 

predictive accuracy in terms of all metrics. However, transformations of RR appear to reduce 

predictive accuracy.  

<Insert Table 3 and Table 4 Here> 

4.3.2. Results of Segmented Models 

We test seven methods on the three seniorities of bonds and the out-of-sample performances 

are reported in Panel A to Panel C in Table 5 separately. The pair wise t-test results are presented 

in Table 6. In general LS_SVR outperforms the other models on all three subsets. Both 

Log_LS_SVR and Beta_LS_SVR appear to be inferior in terms of predictive abilities compared 

with the LS_SVR model without any transformation. In comparison, linear regression, fractional 

response and two-stage models are comparable with each other and their performances improve 
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considerably for bonds of higher seniority, while linear regression with a beta transformation 

always performs worst among all methods on all subsets.  

Turning to the results by segments, Panels A.1 to A.3 in Table 6 exhibit the results for senior 

secured bonds. Whilst LS_SVR and the fractional response model obtain similar results on RMSE 

without significant differences, LS_SVR has a significantly lower MAE than the fractional 

response model. Panel A.3 shows LS_SVR has a significant larger R2 than LOG_LS_SVR or 

Beta_LS_SVR. Beta_LS_SVR shows a comparable performance on MAE with LS_SVR although 

this does not hold in terms of RMSE. In contrast, Log_LS_SVR gives the second worst 

performance on RMSE and R2 while its MAE is comparable with the fractional response model. 

Linear regression with a beta transformation still gives the poorest predictions.  

Now considering senior secured and senior unsecured bonds (Table 6 Panels B.1 to B.3 and 

C.1 to C.3), it can be seen that LS_SVR model and the Beta_LS_SVR model have no significant 

differences in terms of RMSE, MAE and R2. Log_LS_SVR gives the least accurate predictions 

among the three SVR models as seen in Panels C.1 to C.3 although the differences between 

Log_LS_SVR and Beta_LS_SVR in terms of RMSE and MAE on subordinated bonds are not 

statistically significant.  

<Insert Table 5 and Table 6 Here> 

4.3.3. Comparison of Aggregated and Segmented Models 

In this section we combine the results of segmented models to examine if the support vector 

models can give better results through segmenting the dataset, as compared to models estimated 

on the aggregated dataset. The combined results are yielded by equation (23). Denote the number 

of observations of each segment testing set as , 1,2, 3in i =  and the RMSE and MAE of each 

segment as RMSEi and MAEi. The combined RMSE, MAE and R2 are given as follows: 
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Because there is no explicit form to calculate R2 across different groups, we simply use the 

arithmetic average as the combined value. The combined results of the segmented models are 

given in Table 7. From Table 7 we see that in general the combined results of segmented models 

are better than models built on aggregated samples for almost all methods, indicating that 

modelling each segment separately and then combining the results together can give better 

predictions than modelling without segmentation. But comparisons of Table 3 with Table 7 show 

that the two improved versions of SVR models proposed in this study, that is LS_SVR_DI and 

Semi_LS_SVR, outperform the combined results from Table 7. This is a surprising result because 

the segmented models allow for all parameters to be estimated for each segment separately, 
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whereas the DI models only allow the intercept to be sector specific. This type of result has been 

observed before in the context of default prediction (Banasik et al, 1996) and may be due to the 

smaller sample size when segmented data used. This result suggests that given the sizes of 

available datasets our improved SVR models can capture the characteristics of each segment better 

than segmented models. In other words, the segmented models take longer to estimate and are less 

accurate compared with our proposed methods. 

<Insert Table 7 Here> 

In summary several conclusions can be drawn as follows. 

i) LS_SVR models present superior in-sample model fitting and out-of-sample predictive 

abilities compared with statistical models when used to model RR of corporate bonds at both an 

aggregated and at a segmented level. For aggregated models, given the sizes of available data sets, 

the improved model LS_SVR_DI proposed in this paper is able to make better use of the bond 

seniority characteristics and give significantly lower RMSE and MAE values and higher R2 than 

LS_SVR models. Another improved version, Semi_LS_SVR, which assumes that dummy 

variables have linear effects on the dependent variable, also suggests that such modifications can 

yield similar performances to LS_SVR_DI.  

ii) For the segmented models, fractional response regression and the LS_SVR give close 

predictions for senior secured bonds, but LS_SVR is more accurate when it comes to lower 

seniority bonds. Among the statistical models, fractional response models show the most accurate 

predictions for all seniorities of bonds, but their performances are inferior to SVR models. Linear 

regression with a beta transformation always gives the poorest performance throughout the study.  

iii) We explore the effects on the transformation of RR. For aggregated models no matter 

whether RR is transformed by a logistic or a beta distribution, the performances of all SVR models 

are noticeably worse than without the transformation. The MAE of Beta_LS_SVR_DI and 

Beta_Semi_LS_SVR are lower compared with LS_SVR, but there are no significant differences 

compared with LS_SVR_DI and Semi_LS_SVR. Little improvements can be seen in terms of R2. 

For the segmented models it is noticed that the Beta_LS_SVR model shows superior performances 

compared with Log_LS_SVR, but it does not make significant improvements compared with 

LS_SVR. Therefore applying a transformation to RR before modelling is not necessarily a 

desirable thing to do.  

iv) In this study we focus on the predictive abilities of RR models and consider three 

performance metrics where RMSE and MAE are absolute measure of goodness of fit and R2 is the 

relative measure. Most empirical research on LGD modelling is interested in explaining the 

determinant variables instead of the out-of-sample prediction accuracies. It is hard to compare our 

empirical results with other similar research directly because the data set and variables used in this 

study are not completely the same with the others. However, it is still interesting to make some 

comparisons to show the superior performance of our proposed SVR models. We selectively 

summarize the most recent studies on LGD/RR modelling in Table 8. One of the most comparable 
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studies is Qi and Zhao (2011) which compares six different techniques on the debt RR of MURD 

from 1985 to 2009 and achieve the best cross-validation results with R2 of 0.529 for neural 

networks, (e.g. Semi_LS_SVR model proposed in our study achieves R2 of 0.7002). Another one 

is Jacobs and Karagozoglu (2011) which proposes a beta-link generalized linear model to predict 

corporate bond instrument level RR from MURD from 1985 to 2008 and reports an out-of-sample 

R2 as 0.6119. This is still outperformed by our proposed SVR models. Khieu et al (2012) consider 

the bank loans RR from MURD, and the in-sample R2 of the models used in their study are 

reported between 0.2 and 0.3. Leow et al (2013) obtain an out-of-sample R2 as 0.3129 of mortgage 

loan LGD from a two-stage model, and the out-of-sample R2 is 0.1428 of personal loan LGD. 

Bellotti and Crook (2012) show a very weak fit of linear regression with the R2 of 0.11 of a credit 

card recovery data from a UK bank. In Leow and Mues (2011) the proposed two-stage model is 

reported to obtain the out-of-sample R2 as 0.268 compared with 0.233 from single stage model on 

a UK residential mortgage loan recovery data set. The only paper that studies SVR for LGD 

modelling is from Loterman et al (2011), which benchmarks 24 different techniques on six bank 

retail RR data sets and reports that LS-SVR and neural network consistently outperform the other 

methods. They apply eight performance metrics to evaluate the model performances, and R2 

reported in this study is still less than 0.5 of the best model for each data set. Whilst comparison 

across different studies should be treated with care because of differences in the data (as already 

noted above), we have shown that our SVR models make substantial increases in predictive 

accuracies. 

 

5. Conclusions 

As far as we know there is no paper that compares the predictive performances of SVR methods to 

predict the RR of defaulted corporate instruments. The aims of this research were first to 

investigate whether SVR methods give more accurate predictions of RR for such instruments than 

other methods in the literature and, second, to devise a SVR method that would allow a financial 

institution to predict LGD for these instruments more accurately than other currently available 

techniques. We have proposed two SVR models; one that includes dummy variables to represent 

the seniority of the issuer and a second that is a semi-parametric SVR.  

 

By comparing the predictive accuracy of these two models with available techniques using a large 

sample of defaulted instruments that are observed between 1987 and 2012 we draw the following 

conclusions. First, when treating all of the instruments in aggregate, both SVR techniques allow 

more accurate predictions of RR to be made than linear regression, fractional response regression 

or a two–stage method that is commonly used in practice. Second, if we consider instruments 

segmented into seniority classes and model the RR within each class separately, LS_SVR gives 

more accurate predictions than the other techniques for more senior categories of bonds and 

LS_SVR and fractional response models give predictions with similar accuracy at lower levels of 
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seniority. Third, a LS_SVR model parameterised on an aggregate sample, surprisingly, gives more 

accurate predictions than one parameterized on sub-samples. Fourth, transformations of the RR do 

not improve the predictive accuracy of LS_SVR models and may well make things worse. Fifth, 

although published work has used different datasets, over different time periods and for different 

credit segments compared with our work, the proposed LS_SVR method we present appears to 

give more accurate predictions than those quoted by other papers. 

 

A limitation of using SVR techniques to predict RR is that they have the characteristics of a ‘black 

box’ in that the role of each variable is difficult to discern. Nevertheless in the context of 

predicting RR this is less important than predictive accuracy. 

 

As we explained earlier LGD is an important component of the regulatory capital formula in the 

Basel Accords. By adopting a more accurate method to predict LGD than the method currently 

used, a bank can more accurately compute the regulatory capital that is required and so gain a 

more accurate estimate of the amount of Tier 1 capital that it needs to hold so as to fulfil the 

requirements of its national regulator. 
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Table 1  
Number and mean recovery rate of each type of bonds 

Seniority No. Percentage Mean 
Junior Subordinated 28 1.98 0.1628 

Subordinated 174 12.31 0.3122 
Senior Subordinated 198 14.01 0.3065 

Senior Unsecured 681 48.20 0.5099 
Senior Secured 332 23.50 0.6287 

Total 1413 100 0.4781 
 
Table 2  
List of variables and their descriptions 

Recovery characteristics 

Collateral_Rank 
Instruments are ranked related to each other based on the structure prior 
to default, taking into consideration collateral and instrument type.  

Percent_Above Percentage of debt which is contractually senior to the current instrument. 
Original_Amount Total original or face amount of the relevant instrument. 

Type 
The instrument seniority classification (senior secured, senior unsecured, 
senior subordinated, subordinated and junior subordinated). 

Accounting variables 
Total_Asset Total assets of the obligor 

EBITDA Earnings before interest 
Leverage Ratio of total debt and total assets 

Debt_Ratio Ratio of current liabilities and long term debt 
Netval_Share Book value per share 

Asset_Tangibility Ratio between intangible assets and tangible assets 

Quick_Ratio 
Sum of cash and short-term investment and total receivables divided by 
the current liabilities. 

Macroeconomic variables 
GDP Annual GDP of USA 

S&P_Return Annual return of S&P 500 Index 
T_Bill Three months annual Treasury bill rate of USA 

Unemployment_Rate US annual unemployment rate 
 
 
 
 
 
 
 
 

 



 

Table 3 
Cross Validation Results of Aggregated Models 
    M1: Linear Regression; M2: Linear Regression with a Beta Transformation; M3: Fractional Response 

Regression; M4: Two-stage Model; M5: Least Squared Support Vector Regression; M6: Least Squared Support 

Vector Regression with Different Intercepts; M7: Semi-Parametric Least Squared Support Vector Regression; M8: 

Least Squared Support Vector Regression with a Logistic Transformation; M9: Least Squared Support Vector 

Regression with Different Intercepts with a Logistic Transformation; M10: Semi-Parametric Least Squared 

Support Vector Regression with a Logistic Transformation; M11: Least Squared Support Vector Regression with a 

Beta Transformation; M12: Least Squared Support Vector Regression with Different Intercepts with a beta 

Transformation; M13: Semi-Parametric Least Squared Support Vector Regression with a Beta Transformation. 

 

Models C σ   RMSE MAE RMSE_Std MAE_Std R2 R2_Std 
M1 - - 0.3258  0.2678  0.0100  0.0066  0.3044 0.0401 
M2 - - 0.3931  0.2761  0.0129  0.0116  0.0137 0.0733 
M3 - - 0.3193  0.2628  0.0023  0.0027  0.3263 0.0367 
M4 - - 0.3343  0.2628  0.0104  0.0082  0.2673 0.0473 
M5 10 5 0.2357  0.1455  0.0128  0.0097  0.6353 0.0374 
M6 10 5 0.2165  0.1302  0.0085  0.0070  0.6920 0.0322 
M7 10 2 0.2136  0.1375  0.0106  0.0079  0.7006 0.0276 
M8 10 2 0.3021  0.1817  0.0206  0.0148  0.3999 0.0798 
M9 10 2 0.2762  0.1508  0.0168  0.0115  0.4986 0.0637 

M10 10 2 0.2726  0.1531  0.0155  0.0111  0.5116 0.0574 
M11 10 2 0.2442  0.1486  0.0120  0.0103  0.6100 0.0355 
M12 10 5 0.2491  0.1351  0.0146  0.0098  0.5921 0.0483 
M13 10 2 0.2402  0.1333  0.0132  0.0088  0.6210 0.0427 



 

Table 4 
Paired t-test of RMSE, MAE and R2 for Aggregated Models 

M1: Linear Regression; M2: Linear Regression with a Beta Transformation; M3: Fractional Response Regression; M4: Two-stage Model; M5: Least Squared Support Vector Regression; 

M6: Least Squared Support Vector Regression with Different Intercepts; M7: Semi-Parametric Least Squared Support Vector Regression; M8: Least Squared Support Vector Regression with a 

Logistic Transformation; M9: Least Squared Support Vector Regression with Different Intercepts with a Logistic Transformation; M10: Semi-Parametric Least Squared Support Vector 

Regression with a Logistic Transformation; M11: Least Squared Support Vector Regression with a Beta Transformation; M12: Least Squared Support Vector Regression with Different 

Intercepts with a beta Transformation; M13: Semi-Parametric Least Squared Support Vector Regression with a Beta Transformation. Note that * and ** means 5% and 1% significance level 

respectively.  

 
Panel A. RMSE 

Models M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 
M1 -             

M2 14.8666 ** -            

M3 -2.2840 * -20.3069 ** -           

M4 2.1242 -12.7945 ** 5.0776 ** -          

M5 -19.9998 ** -31.2288 ** -23.1776 ** -21.5558 ** -         

M6 -30.0270 ** -41.2166 ** -42.0922 ** -31.6218 ** -4.5054 ** -        

M7 -27.7606 ** -38.7626 ** -35.1359 ** -29.3059 ** -4.7946 ** -0.7696 -       

M8 -3.7317 ** -13.4991 ** -2.9919 * -5.0311 ** 9.8714 ** 13.8496 ** 13.7734 ** -      

M9 -9.1471 ** -19.8991 ** -9.1645 ** -10.6021 ** 6.9139 ** 11.4326 ** 11.3623 ** -3.5131 ** -     

M10 -10.3988 ** -21.5448 ** -10.7455 ** -11.9182 ** 6.6185 ** 11.4422 ** 11.3286 ** -4.1258 ** -0.5679 -    

M11 -18.8351 ** -30.4718 ** -22.1614 ** -20.4578 ** 1.7467 6.7916 ** 6.8908 ** -8.7567 ** -5.5885 ** -5.2238 ** -   

M12 -15.6273 ** -26.6494 ** -17.1251 ** -17.1373 ** 2.4883 * 6.9575 ** 7.0943 ** -7.5683 ** -4.3900 ** -3.9792 ** 0.9348 -  

M13 -18.6372 ** -29.8693 ** -21.2853 ** -20.1897 ** 0.8824 5.4428 ** 5.6652 ** -9.1221 ** -6.0752 ** -5.7380 ** -0.8085 -1.6304 - 

 



 

Panel B. MAE 

Models M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 
M1 -             

M2 2.2423 * -            

M3 -2.5281 * -4.0263 ** -           

M4 -1.7127 -3.3757 ** 0.0000 ** -          

M5 -37.5846 ** -31.1408 ** -42.0043 ** -33.2975 ** -         

M6 -51.5678 ** -38.8274 ** -63.7235 ** -44.3443 ** -4.6117 ** -        

M7 -45.6378 ** -35.6070 ** -54.1136 ** -39.6768 ** -2.3057 * 2.4936 * -       

M8 -19.1570 ** -18.1004 ** -19.4367 ** -17.2821 ** 7.3759 ** 11.3417 ** 9.4993 ** -      

M9 -31.8153 ** -27.6581 ** -34.1854 ** -28.5910 ** 1.2702 5.5170 ** 3.4370 ** -5.9443 ** -     

M10 -32.0240 ** -27.6223 ** -34.6237 ** -28.6608 ** 1.8589 6.2918 ** 4.1284 ** -5.5740 ** 0.5188 -    

M11 -35.1325 ** -29.6339 -38.6696 ** -31.2753 ** 0.7900 5.3272 ** 3.0832 ** -6.6187 ** -0.5138 -1.0715 -   

M12 -40.4949 ** -33.4781 -45.2949 ** -36.0326 ** -2.7194 * 1.4670 -0.6874 -9.4656 ** -3.7465 ** -4.3830 ** -3.4237 ** -  

M13 -44.0861 ** -35.3616 -50.7251 ** -38.8184 ** -3.3586 ** 0.9940 -1.2805 -10.1349 ** -4.3573 ** -5.0398 ** -4.0720 ** -0.4927 - 

 

 

 

 

 

 

 



 

Panel C. R2 

Models M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 
M1 -             

M2 -12.5447 ** -            

M3 1.4526 13.7494 ** -           

M4 -2.1572 10.4815 ** -3.5533 ** -          

M5 21.7580 ** 27.2355 ** 21.2622 ** 22.0041 ** -         

M6 27.1741 ** 30.5474 ** 27.0065 ** 26.7612 ** 4.1424 ** -        

M7 29.3449 ** 31.6206 ** 29.3893 ** 28.5278 ** 5.0653 ** 0.7311 -       

M8 3.8555 ** 12.8509 ** 3.0212 * 5.1538 ** -9.6307 ** -12.2390 ** -12.8400 ** -      

M9 9.3024 ** 18.0034 ** 8.4504 ** 10.5111 ** -6.6724 ** -9.7696 ** -10.4912 ** 3.4853 ** -     

M10 10.6694 ** 19.2825 ** 9.8064 ** 11.8427 ** -6.5102 ** -9.8829 ** -10.6993 ** 4.0971 ** 0.5466 -    

M11 20.5739 ** 26.3984 ** 20.0331 ** 20.8932 ** -1.7690 -6.1687 ** -7.2645 ** 8.6733 ** 5.5079 ** 5.2568 ** -   

M12 16.5239 ** 23.7570 ** 15.7985 ** 17.3229 ** -2.5498 * -6.2050 ** -7.0323 ** 7.4292 ** 4.2171 ** 3.8690 ** -1.0767 -  

M13 19.4874 ** 25.8121 ** 18.8716 ** 20.0130 ** -0.9083 -4.7867 ** -5.6448 ** 8.8081 ** 5.7548 ** 5.5136 ** 0.7142 1.6163 - 



 

Table 5 
Cross Validation Results of Segmented Models 

M1: Linear Regression; M2: Linear Regression with a Beta Transformation; M3: Fractional Response 

Regression; M4: Two-stage Model; M5: Least Squared Support Vector Regression; M8: Least Squared Support 

Vector Regression with a Logistic Transformation; M11: Least Squared Support Vector Regression with a Beta 

Transformation. 

Panel A. Senior Secured Bonds 

Models C σ   RMSE MAE RMSE_Std MAE_Std R2 R2_Std 
M1 - - 0.2848  0.2064  0.0361  0.0151  0.3910  0.1595  
M2 - - 0.3692  0.2074  0.0387  0.0869  0.0178  0.0243  
M3 - - 0.1973  0.1401  0.0044  0.0039  0.5423  0.0778  
M4 - - 0.2656  0.1776  0.0283  0.0175  0.4872  0.0561  
M5 10 5 0.2050  0.1144  0.0202  0.0158  0.6866  0.0604  
M8 10 2 0.2953  0.1463  0.0296  0.0211  0.3493  0.1263  
M11 10 2 0.2433  0.1174  0.0247  0.0138  0.5324  0.0970  

 

Panel B. Senior Unsecured Bonds 

Models C σ   RMSE MAE RMSE_Std MAE_Std R2 R2_Std 
M1 - - 0.2977  0.2381  0.0128  0.0093  0.3856  0.0607  
M2 - - 0.3646  0.2546  0.0176  0.0172  0.0770  0.1088  
M3 - - 0.2773  0.2230  0.0032  0.0045  0.4053  0.0516  
M4 - - 0.3049  0.2297  0.0136  0.0115  0.3551  0.0681  
M5 10 5 0.2098  0.1218  0.0146  0.0111  0.6946  0.0415  
M8 10 2 0.2716  0.1501  0.0305  0.0198  0.4839  0.1143  
M11 10 2 0.2159  0.1224  0.0143  0.0121  0.6766  0.0417  

 

Panel C. Subordinated Bonds 

Models C σ   RMSE MAE RMSE_Std MAE_Std R2 R2_Std 
M1 - - 0.3455  0.2683  0.0223  0.0146  0.0778  0.0906  
M2 - - 0.3954  0.2714  0.0280  0.0234  0.2111  0.1625  
M3 - - 0.3169  0.2523  0.0061  0.0075  0.0925  0.0782  
M4 - - 0.3471  0.2675  0.0224  0.0155  0.0683  0.1047  
M5 10 5 0.2719  0.1917  0.0245  0.0150  0.4275  0.0846  
M8 10 2 0.3349  0.1966  0.0389  0.0262  0.1316  0.1556  
M11 10 2 0.3026  0.1839  0.0358  0.0214  0.2916  0.1277  

 

 

 

 



 

Table 6 
Paired t-test of RMSE, MAE and R2 for Segmented Models 

M1: Linear Regression; M2: Linear Regression with a Beta Transformation; M3: Fractional Response 

Regression; M4: Two-stage Model; M5: Least Squared Support Vector Regression; M8: Least Squared Support 

Vector Regression with a Logistic Transformation; M11: Least Squared Support Vector Regression with a Beta 

Transformation. Note that * and ** means 5% and 1% significance level respectively. 

Panel A.1. RMSE on Senior Secured Bonds 

Models M1 M2 M3 M4 M5 M8 M11 
M1 -       

M2 4.2193 ** -      

M3 -6.3657 ** -11.6768 ** -     

M4 -1.1074 -5.7171 ** 6.3095 ** -    

M5 -5.1038 ** -9.9516 ** 0.9854 -4.6113 ** -   

M8 0.5951 -4.0130 ** 8.6644 ** 1.9188 6.6668 ** -  

M11 -2.5102 * -7.2554 ** 4.8509 ** -1.5707 3.1757 * -3.5687 * - 

 

Panel A.2. MAE on Senior Secured Bonds 

Models M1 M2 M3 M4 M5 M8 M11 
M1 -       

M2 0.0300 -      

M3 -11.2477 ** -2.0470 -     

M4 -3.2966 * -0.8894 5.5337 ** -    

M5 -11.1374 ** -2.7858 * -4.1781 ** -7.0920 ** -   

M8 -6.1284 ** -1.8077 0.7645 -3.0209 * 3.2018 * -  

M11 -11.5111 ** -2.7062 * -4.1880 ** -7.1467 ** 0.3784 -3.0328 * - 

 

Panel A.3. R2 on Senior Secured Bonds 

Models M1 M2 M3 M4 M5 M8 M11 
M1 -       

M2 -6.1199 ** -      

M3 2.2557 17.0256 ** -     

M4 1.5053 20.3137 ** -1.5199 -    

M5 4.5856 ** 27.1789 ** 3.8762 ** 6.3998 ** -   

M8 -0.5423 6.8192 ** -3.4423 * -2.6400 * -6.3744 ** -  

M11 2.0040 13.6154 ** -0.2106 1.0672 -3.5703 * 3.0420 * - 

 

 

 

 



 

Panel B.1. RMSE on Senior Unsecured Bonds 

Models M1 M2 M3 M4 M5 M8 M11 
M1 -       

M2 8.1333 ** -      

M3 -4.0908 ** -12.9118 ** -     

M4 1.0200 -7.1014** 5.2266 ** -    

M5 -11.9775 ** -17.9103 ** -11.9484 ** -12.6102 ** -   

M8 -2.0877 -6.9875 ** -0.4918  -2.6382 * 4.8354 ** -  

M11 -11.2767 ** -17.3489 ** -11.0859 -11.9320 ** 0.7897 -4.3748 ** - 

 

Panel B.2. MAE on Senior Unsecured Bonds 

Models M1 M2 M3 M4 M5 M8 M11 
M1 -       

M2 2.2326 -      

M3 -3.8669 ** -4.7025 ** -     

M4 -1.5027 -3.1841 * 1.4355 -    

M5 -21.2486 ** -17.1638 ** -22.3545 ** -17.8611 ** -   

M8 -10.6433 ** -10.5417 ** -9.4989 ** -9.1976 ** 3.2986 * -  

M11 -20.0585 ** -16.6321 ** -20.6173 ** -17.0064 ** 0.0967 -3.1583 * - 

 

Panel B.3. R2 on Senior Unsecured Bonds 

Models M1 M2 M3 M4 M5 M8 M11 
M1 -       

M2 -6.5535 ** -      

M3 0.6542 7.2133 ** -     

M4 -0.8846 5.7324 ** -1.5545 -    

M5 11.1183 ** 14.0324 ** 11.5590 ** 11.2633 ** -   

M8 2.0096 6.8221 ** 1.6582 2.5613 * -4.5843 ** -  

M11 10.4546 13.6151 ** 10.8193 ** 10.6522 ** -0.8095 4.1903 ** - 

 

Panel C.1. RMSE on Subordinated Bonds 

Models M1 M2 M3 M4 M5 M8 M11 
M1 -       

M2 3.6883 * -      

M3 -3.2730 * -7.2476 ** -     

M4 0.1339 -3.5638 * 3.4417 * -    

M5 -5.8778 ** -8.7823 ** -4.7156 ** -5.9934 ** -   

M8 -0.6255 -3.3397 * 1.2095 -0.7191 3.6257 * -  

M11 -2.6911 * -5.4022 ** -1.0418 -2.7879 * 1.8724 -1.6165 - 



 

Panel C.2. MAE on Subordinated Bonds 

Models M1 M2 M3 M4 M5 M8 M11 
M1 -       

M2 0.2974 -      

M3 -2.5791 * -2.0565 -     

M4 -0.0994 -0.3676 2.3355 -    

M5 -9.6819 ** -7.5865 ** -9.5604 ** -9.2977 ** -   

M8 -6.3248 ** -5.6337 ** -5.4075 ** -6.1621 ** 0.4294 -  

M11 -8.6197 ** -7.3007 ** -7.9806 ** -8.3707 ** -0.7897 -0.9933 - 

 
Panel C.3. R2 on Subordinated Bonds 

Models M1 M2 M3 M4 M5 M8 M11 
M1 -       

M2 1.8956 -      

M3 0.3250 -1.7400 -     

M4 -0.1815 -1.9545 -0.4900 -    

M5 7.4640 ** 3.1252 * 7.6934 ** 7.0602 ** -   

M8 0.7905 -0.9349 0.5940 0.8930 -4.4203 ** -  

M11 3.6127 * 1.0305 3.5179 * 3.5777 * -2.3473 * 2.1030 - 

 
Table 7 
Comparison of Combined Results of Segmented models and Aggregated Models 

M1: Linear Regression; M2: Linear Regression with a Beta Transformation; M3: Fractional Response 

Regression; M4: Two-stage Model; M5: Least Squared Support Vector Regression; M8: Least Squared Support 

Vector Regression with a Logistic Transformation; M11: Least Squared Support Vector Regression with a Beta 

Transformation. 

 

Models 
 

Combined results Aggregated Models 
RMSE MAE R2 RMSE MAE R2 

M1 0.3091 0.2392 0.2848 0.3258 0.2678 0.3044 
M2 0.3746 0.2483 0.1019 0.3931 0.2761 0.0137 
M3 0.2732 0.2118 0.3467 0.3193 0.2628 0.3263 
M4 0.3090 0.2281 0.3035 0.3343 0.2628 0.2673 
M5 0.2280 0.1398 0.6029 0.2357 0.1455 0.6353 
M8 0.2962 0.1623 0.3216 0.3021 0.1817 0.3999 
M11 0.2495 0.1386 0.5002 0.2442 0.1486 0.6100 

 

 

 

 

 



 

Table 8 
Comparisons of recovery rates predictive performances of selective literature 

Authors Data Techniques R2 

Qi and Zhao (2011) 
 

MURD, loans and bonds, 
from 1985 to 2009 

Neural networks 
 

0.529 
 

Jacobs and Karagozoglu (2011) 
 

MURD, bonds, from 1985 
to 2008 

Beta-link generalized linear  
model 

0.6119 
 

Khieu et al (2012) 
 

MURD, loans, from 1987 
to 2007 

Linear and fractional  
response regression 

0.2~0.3 
 

Leow et al(2013) Mortgage loan  Two-stage model 0.3129 
Leow et al(2013) Personal loan Linear regression  0.1428 
Bellotti and Crook (2012) Personal loan Linear regression  0.11 
Leow and Mues (2011) Mortgage loan  Two-stage model 0.233 
Loterman et al (2011) 
 

Bank personal loan 
 

Both parametric and 
non-parametric methods 

0~0.5 
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