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Loss Given Default Models incorporating 

Macroeconomic Variables for Credit Cards 

 

1. Introduction 

Loss Given Default (LGD) is the loss incurred by a financial institution when an 

obligor defaults on a loan, given as the fraction of exposure at default (EAD) unpaid 

after some period of time.  It is usual for LGD to have a value between 0 and 1 where 

0 means the balance is fully recovered and 1 means total loss of EAD.  LGD is an 

important value that banks need to estimate accurately for several reasons.  Firstly, it 

can be used along with probability of default (PD) and EAD to estimate expected 

financial loss.  Secondly, a forecast of LGD for an individual can help determine the 

collection policy to be used for that individual following default.  For example, if high 

LGD is expected, then more effort may be employed to help reduce this loss.  Thirdly, 

an estimate of LGD, and therefore portfolio financial risk, is an integral part of the 

operational calculation of capital requirements to cover credit loss during extreme 

economic conditions.  The Basel II Capital Accord [2006] allows banks the 

opportunity to estimate LGD using their own models with the advanced internal 

ratings based (IRB) approach.   

 

In this paper we focus on modelling and forecasting LGD for UK retail credit cards 

based on account variables (AVs) and also the inclusion of macroeconomic variables 

(MVs).  Our prior expectation is that as interest rates rise, so the cost of mortgage and 

other debt increases, making it more difficult for an obligor to repay outstanding 
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credit card balances and so increasing the mean LGD.  Equally, an increase in 

unemployment level means more people find themselves in circumstances where they 

cannot repay credit and this would also increase the mean LGD.  On the other hand, 

an increase in earnings would mean more people have more income available to pay 

off debt and would therefore decrease mean LGD.  In addition it is possible that some 

defaulters are more likely to be less able to repay than others when the state of the 

economy changes. For example, those who are unemployed at the time of credit card 

application may be particularly sensitive to interest rate increases, as may home 

owners. Similarly borrowers with a higher default balance may be particularly 

sensitive to increases in interest rates.  For this reason we also consider interactions 

between MVs and account data.  We consider four key research questions:- 

 

Q1. Which credit card application and default variables are the key drivers of 

retail LGD? 

Q2. What is the best modelling approach for retail LGD? 

Q3. How well do the models perform at forecasting LGD? 

Q4. Does the inclusion of MVs lead to improved models of retail LGD? 

 

We investigate these questions by building several alternative models of LGD.  We 

find that there are many important drivers of LGD taken from application details and 

default information.  Given that the distribution of LGD is a bimodal U-shape, we 

consider a Tobit model and a decision tree model along with various transformations 

of the dependent variable.  Although LGD is not easy to model and poor model fit is 

typical, nevertheless we find that models can be built which provide improved 

estimates of LGD and good forecasts of mean LGD across a portfolio of accounts.  
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Surprisingly, we find that the best forecasting model is Ordinary Least Squares (OLS) 

regression.  Economic conditions are included as values of MVs for bank interest rate, 

unemployment level and earnings growth at time of account default.  We find that the 

first two MVs are statistically significant explanatory variables that give rise to 

improved forecasts of LGD in hold-out tests at both an account and portfolio level.  

Building LGD models with MVs also addresses the Basel II requirement to estimate 

“downturn LGD” since stressed values of MVs can be used in the model to forecast 

LGD during poor economic conditions.  This can be done by stressing interest rate 

values as we explain in our conclusions.  

 

The modelling and forecast of LGD for retail credit using macroeconomic conditions 

is a new area of study.  There is an extensive literature regarding LGD models for 

corporate loans (see eg Altman et al [2005]).  However, there is less about forecasting 

LGD.  An exception is Gupton and Stein [2005] who describe a predictive LGD 

model for corporate loans using Moody-KMV’s Losscalc© software.  There is also 

very little literature regarding retail credit LGD, even though this is a large financial 

market: total lending in the UK consumer credit market reached over £1.4 trillion in 

2009 [source: Bank of England].  Grippa et al [2005] publish empirical LGD models 

for a sample of 20,724 Italian accounts that includes small businesses along with 

households.  They observe differences in LGD and recovery periods across different 

geographic regions and different recovery channels.  They also conducted a 

multivariate analysis that showed a statistically significant negative relationship 

between the presence of collateral or personal guarantee and LGD, and a positive 

relationship with size of loan.  However, the range of variables used is far more 

limited than would be available to a financial institution that has made credit card or 
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personal loans and the study did not attempt to forecast LGD.  Dermine and de 

Carvalho [2005] model LGD for loans to small and medium sized firms in Portugal.  

They apply mortality analysis and include annual GDP growth as an explanatory 

variable.  However, they found that GDP growth was not significant.  They suggest 

that this may be due to the fact that the period of analysis, 1995 – 2005, did not 

include a significant recession.  We may also note that their training sample size (374 

defaults) was relatively small and may not have been large enough for a significant 

relationship between the economy and LGD to be discovered.  Querci [2005] provides 

an LGD model for loans to small businesses and individuals by an Italian bank.  This 

study shows the importance of regional differences on LGD variation but does not 

include time varying macroeconomic conditions.  Figlewski et al [2007] model the 

effect of macroeconomic factors on corporate default with a detailed study of 

numerous economic conditions including unemployment level, inflation, GDP and a 

production index.  They found that many of these MVs were significant explanatory 

variables.  Saurina and Trucharte [2007] model PD for retail mortgage portfolios in 

Spain.  They show that the GDP growth rate is a significant cyclical variable in the 

regression and has a negative sign as we would expect.  That is, during downturns 

(low GDP growth), PD increases.  However, they also include an interest rate variable 

and, although it has a positive sign and is significant, they report that including 

interest rates does not improve accuracy.   

 

The novelties of our paper are that unlike published work (1) we consider forecasts of 

LGD for retail credit cards, (2) we report results of model comparison, (3) we include 

macroeconomic conditions in our models and (4) we do this using  a very large 

sample across several different credit card products.  In section 2 we describe our 
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modelling and performance assessment methods.  In section 3 we discuss the 

application and macroeconomic data used.  In section 4 we provide model 

comparisons and test results along with a description of an explanatory model with 

MVs.  Finally in Section 5 we provide some conclusions and discussion. 

 

2. Method 

We consider several models as combinations of different variables, modelling 

frameworks and data transformations. 

2.1 Models 
 
In general, for retail credit, there are five categories of circumstances that will affect 

the amount an individual repays on a defaulted loan and can be used to build models 

of LGD: 

(1) individual details, some of which can be collected at time of application such 

as age, income, employment, housing status and address; 

(2) account information at default: date or age of account at default and 

outstanding balance; 

(3) changes in personal circumstances of an obligor over time; 

(4) macroeconomic or business conditions on date of default, or possibly with a 

lag or lead on date of default; 

(5) operational decisions made by the bank, such as the level of risk they were 

willing to accept on the credit product and the process they use to follow up 

bad debt. 

Of these, the richest source of explanatory variables we have is the information 

provided at time of application for credit along with the credit bureau score collected 
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by the bank at time of application.  This is data falling into category (1).  We also 

include category (2) data, account information at default. Including this data implies 

the model is conditional on default.  It is possible to build models unconditionally but 

this is outside the scope of this paper.  It is difficult for a lender to extract data in 

category (3).  It cannot easily keep track of an individual’s employment status or, 

even less so, his or her personal difficulties, such as divorce or illness, that may lead 

him or her to be unable to fully repay debt.  It is possible to use account behaviour 

data or a behavioural score but we do not do this in this study since such information 

is not homogeneous within the data we have.  It is understood that LGD is likely to be 

time dependent, varying over the business cycle [Schuermann 2005].  Therefore we 

include macroeconomic conditions (4).  Including a bank’s operational decisions (5) 

for each credit card product over time could also be fruitful.  However, this 

information was not available for our study.   

 

To answer Q4, we build and compare models with and without MVs.  The question 

can be further explored by contrasting with models that also include interaction terms 

between AVs and MVs.  To help answer Q3 we should contrast our models with a 

simple model built with no variables.  Within the context of OLS this simple model 

effectively forecasts LGD to be the mean value taken from the training data set.  If the 

more complex models give improved forecasts over this simple model then the 

variables we include provide useful information for LGD estimation.  Therefore we 

have four model structures based on including different explanatory variables:- 

• Simple: no covariates in the model. 

• AV: account variables only. 

• AV&MV: account and macroeconomic variables. 
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• AV&MV with interactions: also includes interaction terms between AVs and 

MVs.  It is not feasible to include all interaction terms so variable selection is 

used as described later in Section 3.3.   

We do not restrict our models to OLS but also consider three alternatives.  Tobit and a 

decision tree model are considered since they have a structure better suited to the 

bimodal nature of LGD.  Least absolute value regression is also considered since it 

may be that the absolute error may be a more sensible criterion for estimating LGD 

than least square error. 

 

Since LGD follows a truncated distribution with a large number of cases at the 

extreme values 0 and 1, the Tobit model may be better suited since it takes account of 

bounds on a dependent variable iy  through truncation.  The two-tailed Tobit model 

uses a latent variable y* to model boundary cases such that iiiy ε+⋅= xβ*  where 

( )( )*,0max,1min ii yy = .  Assuming the distribution of the residuals conditional on x 

is normal, the following log-likelihood function is constructed for maximum 

likelihood estimation of β  and variance of residuals 2σ : 

( ) ∑∑∑
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where φ  and Φ  are the probability and cumulative density functions for the standard 

normal distribution respectively.  This likelihood function is constructed by 

considering the probabilities of the dependent variable being between the boundaries 

and also on each boundary separately [Greene 1997, pp. 962-966].   
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The decision tree model uses two logistic regression sub-models to model the special 

cases for total loss and no loss, ie LGD = 1 and 0 respectively, as binary classification 

problems.   Then, if 0<LGD<1, an OLS regression model is used.  This decision tree 

model is illustrated in Figure 1.  We may expect this decision tree to be good at 

modelling LGD due to the large number of boundary cases at 0 and 1 which allow us 

to naturally approach the problem as a hybrid of two classification problems and a 

regression problem.  This approach is meaningful since we may suppose there are 

special conditions which would make a customer pay back the full amount of debt or 

to pay back nothing, rather than just a portion.  LGD is forecast for an account i as the 

expected value given the three sub-models, ie ( ) ( )( )iiii Lppp 110 11 −+−  where ip0  is 

the probability of LGD=0 for account i computed from the second estimated logistic 

regression model, ip1  is the probability of LGD=1 from the first estimated logistic 

regression model and iL  is the estimate of LGD assuming the loss is fractional and 

computed from the regression model. 

 

FIGURE 1 HERE 

 

As is conventional in the literature we model LGD in terms of recovery rate (RR) 

rather than LGD directly, where RR = 1-LGD.  Our working definition of RR is 

 

default of dateat  balance goutstandin
default following  period aover  made repayments of sumRR t

= . 

 

The choice of recovery period is a business decision.  We consider a recovery period 

of t=12 months following default.  Often banks are interested in longer periods or 
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want to estimate recovery at close of account, but as we discover, a 12 month model 

can be used to estimate for longer recovery periods.  It is possible to calculate LGD in 

alternative ways.  For example, time after default could be an event, such as account 

charge off, rather than a fixed period; or the market value of the bad debt based on 

sale of the exposure in the market could be taken into account along with repayments; 

or administration costs of following up default may be included in the LGD 

calculation.  However, these alternatives are beyond the scope of this paper.  Loss of 

interest payments could also be included in the definition of LGD but this is not 

required by Basel II.   

 

Since the distribution of RR is bimodal and U-shaped, we also consider modelling 

fractional logit, beta distribution and probit transformations of RR. 

 

Fractional logit transformation: ( ) ( )RRRRTRR −−= 1loglog .   

The fractional logit model is particularly attractive since it deals specifically with 

response variables in the range 0 to 1, like RR, by transforming them into a larger 

range of values.  It has been applied in several other econometric analyses [Papke & 

Wooldridge 1996] and was applied in particular by Dermine and Neto de Carvalho 

[2005] for modelling LGD for corporate loans. 

 

Beta distribution transform: ( )( )1,0,,,beta1 βαRRTRR
−Φ=  where Φ  is the 

cumulative density function of the standard normal distribution and βα ,  are 

parameters estimated from training data using maximum likelihood estimation. The 

Beta distribution is appealing since it is able to model bimodal variables with a U-

shaped distribution over the interval 0 to 1.  It is therefore particularly useful for RR 
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and tends to transform RR into an approximately normal distribution.  Figure 2 shows 

a distribution of the Beta transformation of RR for the credit card default data we use.  

It illustrates how the transformation creates an approximately normal distribution 

between two extreme values.  The Beta distribution has been used successfully in 

Moody’s KMV Losscalc© software package for modelling RR [Gupton & Stein 

2005]. 

 

FIGURE 2 HERE 

 

Probit transformation : 





 ≤

Φ= −

n
RRRi

T i
RR

|}:{|1  where Φ  is the cumulative 

density function of the standard normal distribution and nRR ,,1   are observed RRs 

taken from training data.  This transformation uses a nonparametric approach to 

transform RR into a normal distribution based on the empirical distribution in the 

training data. 

2.2 Model assessment 
 
For OLS we report adjusted R2 for model fit.  This is for two reasons.  Firstly, the 

various models we consider are nested so inevitably those with additional covariates 

will give improved R2 model fit.  The adjusted R2 compensates for the additional 

variables.  Secondly, reporting R2 is misleading since it does not give a fair 

comparison between different studies with different sample sizes.   

 

We report coefficient estimates for the OLS model with RR as dependent variable.  

However, since RR is not normally distributed, the error terms may not be normally 

distributed.  Therefore conventional  estimators of standard errors may not be 
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unbiased.  Instead we use a bootstrap to construct distributions for the coefficient 

estimates [Kennedy 2003, section 4.6].  As Lam and Veall [2002] show when OLS is 

used with non-normal, and in particular bimodal, distributed error terms, the bootstrap 

gives accurate estimates of confidence intervals where the usual analytic method fails.   

 

We report the relative effect of each MV within the model.  The coefficient estimates 

for MVs are multiplied by their standard deviation over the training period to derive 

standardized coefficient estimates.  They show change in RR for a one standard 

deviation change in the covariate value and are therefore comparable and give an 

indication of the relative importance of each MV within the model.  This approach 

was taken to study the effects of MVs on corporate default by Figlewski et al [2007].  

Since our credit card data spans the period from 1999 to 2005, standard deviations for 

each MV are computed based on values within this period. 

2.2.1 Hold-out test procedure for forecasts 
 
To test the effectiveness of the LGD model for forecasts, we use a hold-out sample, 

testing on credit card default data that is independent and follows chronologically 

after the period of the training data used to build the models.  This approach allows us 

to simulate the expected operational use of LGD models in retail credit when a 

financial institution may want to assess the LGD risk on a new batch of defaults based 

on the performance of past defaults.  In detail, we select cohorts of test data sets 

consisting only of accounts that default in a particular quarter.  For each of these 

cohorts we train only on default data available prior to that quarter.  Since we need to 

measure LGD after a period of t months following default, we need to ensure that date 

of defaults in the training data are at least t months prior to the beginning of the test 

quarter.  This test procedure is illustrated in Figure 3.  So, for example, if our test set 
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was 2003Q3 and we are considering LGD after 12 months, our training data would 

consist of all cases that default within the period from 1999Q1 to 2002Q2.  To 

estimate robust models with MVs we should train over the whole business cycle 

which is usually considered between 3 to 5 years.  Therefore we consider taking 

training data sets with a minimum of 3 years of defaults. This then gives us 10 

quarters of test set data from 2003Q1 to 2005Q2.  Results across these independent 

test sets then form a time series of forecast results. 

 

FIGURE 3 

 
The accuracy of forecasts relative to the observed true values is measured at the 

account level by mean square error (MSE).  However, we are also interested in how 

well the model is able to estimate the observed, or true, mean LGD or RR over a 

portfolio of accounts.  Therefore, for each test set quarter we measure the difference 

between forecast and observed mean RR across all test cases.  If this difference is 

greater than zero, then the model is generally overestimating RR, whereas when it is 

less than zero, it is underestimating RR.  The closer the difference between forecast 

and observed RR is to zero, the better the estimate.  The mean value of both the MSE 

and absolute value of difference in forecast and observed mean RR (abs diff RR) 

across the several test quarters are reported in order to get an aggregate measure of 

performance.   

 

Since RR must be between 0 and 1, we truncate all forecasts of RR to fall within that 

range prior to measuring performance for all cases and all models.  Also, to generate 

comparable results, performance is measured between predicted and observed RR, 

regardless of which transformation of RR is modelled.  Therefore, if a transformation 
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of RR is used, the inverse transform is applied to extract predicted RR and 

performance is measured on this rather than the transformed value.  This is reasonable 

since ultimately the value we want to model is RR and the transform should merely be 

a means to that end. 

2.2.2 Forecasting 24 month LGD using a 12 month LGD model 
 
For these experiments, we will be assessing models of LGD after 12 months.  

However, financial institutions often follow a bad debt over several years, so they are 

also interested in forecasting LGD over a longer period of say 24 or 48 months.  For 

this reason, we also assess the 12 month model to see how well it forecasts for longer 

periods in comparison with a 24 month model.  If it does well, then this implies that a 

single LGD model may be used to forecast for any LGD period.  A 12 month LGD 

model can be used to forecast 24 month LGD by calibrating the 12 month forecasts to 

24 month forecasts.  A simple way to do this is to use OLS regression on the 24 

month LGD training data to build a linear model of 24 month RR with an intercept 

and 12 month RR as the explanatory variable.  This model is then used to convert 12 

month to 24 month forecasts.  We use the same training and testing scheme as is set 

out above.  For 24 month LGD we use 6 quarters of test data from 2003Q1 to 

2004Q2. 

 

3. Data 

3.1 Application data 
 

For this study we have available a data set consisting of over 55,000 credit card 

accounts in default over the period 1999 to 2005 for customers across the whole of the 
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UK.  Account holders are expected to make a minimum payment of outstanding 

balance each month.  We define default as a case where a credit card holder has failed 

to make minimum payments for three consecutive months or more.  This is a typical 

definition of default for credit cards [Thomas et al 2002, p.123] and is in line with the 

default definition given by the Basel II Accord [BCBS 2006].  The data consists of 

four different credit card products which are a selection from those offered by a 

financial institution.  As is typical for LGD, its distribution in our data set is between 

0 and 1 and approximately U-shaped1.  The calculation of LGD should ideally include 

administration costs for managing and implementing a collection procedure following 

account default.  Unfortunately, this information was not available for the credit card 

data we used.  The credit card data we use has many details extracted at time of 

application.  These include the applicant’s housing and employment status, age, 

income, total number of known credit cards and length of relationship with bank (time 

with bank).  A credit bureau score is also provided and is from the same source and so 

is homogeneous across products.  Demographic information is provided to classify the 

areas of residence of the credit card holder at time of application.  The demographic 

information was from the same source for all credit card products and was coded into 

four broad categories: (1) council or poor housing, (2) rural, (3) suburban or wealthy 

area and (4) others.  Additionally, information at time of default is also included in the 

data.  This consists of balance outstanding at default and age of credit card account.  

We include balance at default since there is strong evidence from past studies that it is 

an important effect [Grippa et al 2005; Dermine and de Carvalho 2006] and it makes 

sense to include it operationally, especially if it improves forecasts of LGD.  Table 2 

shows the full list of variables used.  Some variables, time with bank, income and age, 

have a small percentage of missing values (less than 6% of accounts).  For each of 
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these variables, we code missing values to 0 and create a dummy variable to indicate a 

missing value to capture the mean value amongst accounts with missing values. 

 

Several studies have found that PD and LGD are positively correlated (see Rösche 

and Scheule (2006)).  We also found this to be the case in our data. Nevertheless, PD 

is not included in our models since it is effectively represented by including the 

application variables that are usually used to model it, along with macroeconomic 

variables that may explain the joint systematic risk to both PD and LGD (Altman et al 

2005). 

 

Any single credit card portfolio is liable to have operational effects that will alter 

overall risk over time for that specific product, such as changes in cut-offs on credit 

score when accepting applications.  This may lead to idiosyncratic links to economic 

conditions and therefore poorer models using MVs.  By combining data across several 

products the impact of these idiosyncratic effects will be reduced and changes in risk 

over time are more likely to be linked to more objective effects such as the economy.  

Additionally, combining several products into one data set will increase the training 

set size.  These two factors should lead to stronger MV models and we test this 

hypothesis by running experiments for all products combined and also for each 

product separately.  When all products are included in the data set, a dummy variable 

is used to indicate which product the account belongs to, in order to model different 

levels of RR between products. 
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3.2 Macroeconomic variables 
 

We consider these three series of macroeconomic data for the UK which we believe 

would have a strong direct effect on mean LGD for UK retail credit cards:- 

• Selected UK retail banks’ base interest rates. 

• UK unemployment level: measured as thousands of adults (16+) unemployed . 

• (Earnings) UK earnings index (2000 = 100) for the whole economy including 

bonuses as a ratio of the retail price index. 

 

These are all available from the UK Office for National Statistics as monthly data.  

We use non-seasonally adjusted data for earnings since we expect that seasonal 

changes in the economy may have some effect on abilities to repay.  We would also 

have preferred to use non-seasonally adjusted data for the unemployment level but 

unfortunately this was not available.  GDP growth for the UK is a common indicator 

of economic conditions but we have not included it since it is not available as monthly 

data which is the granularity that lenders typically require and therefore the 

granularity we require for our models.  The MVs are included for each case at the date 

of default but it may be that if there is a relationship between MVs and LGD then this 

is lagged or led.  For example, changes in interest rates may, in general, affect ability 

to pay several months later. We experimented with several different lag lengths and 

found better performance for lags of 0 and 6 months. For this reason, we also consider 

LGD models with MVs lag or lead 6 months.  

 
Each MV has a time trend: interest rates and unemployment level are generally falling 

over the period 1999-2005 whilst real earnings are steadily increasing.  Indeed, 

earnings generally increase exponentially with time therefore we include it in our 
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model as growth in log earnings over 12 months to remove this obvious time trend.  

The three MV time series we use are shown in Figure 4.  We ensure that any model fit 

of MVs as explanatory variables is not simply because they follow a time trend that 

matches a trend in RR by including date of default explicitly in the models.  If a MV 

is a good explanatory variable simply because of a time trend, then the inclusion of 

date of default should weaken its effect within the model.  Including date of default in 

the AV model also allows us to test whether improvements in forecasts are simply due 

to a time trend rather than specifically economic conditions.   

 

FIGURE 4 

 

Different effects on LGD over time could be captured by using dummy variables for 

cohorts either at the yearly or quarterly level.  There are two reasons we do not do this 

however.  Firstly, the freedom gained when using any time dummies could simply 

absorb the effect we expect the MVs to explain.  Secondly, although fine for 

explanatory models, it is not clear how such time dummies could be used for 

forecasting on a hold-out sample since the dummy variables for the period of the 

hold-out cohort will necessarily have the value 0 for all cases in the training data and 

so will not have a coefficient estimate. 

 
High correlation between MVs is a potential problem since this could lead to 

multicollinearity within the LGD model and therefore distort parameter estimates.  

We can test for multicollinearity by measuring the variance inflation factor (VIF) 

given by ( ) 121 −
− R  when each MV is regressed on all other model covariates 

(Kennedy 2003).  A high VIF indicates multicollinearity and a VIF greater than 5 is 

an indication that there may be a problem. 
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3.3 Inclusion of interaction terms 
 

Since there are many possible combinations of variables to form interaction terms, the 

number included in the model is controlled using forward variable selection.    All 

AVs are included in the model but an iterative process is used to include MVs and 

interaction terms between AVs and MVs.  At each step, each of the outstanding MVs 

and interaction terms not already in the model are added separately.  The term that 

maximally increases a fit criterion is added to the model.  The process is repeated 

until no new interaction terms are found that improve fit.  There are several possible 

fit criteria that could be used and it is common to use an F-test.  However, since we 

are interested in forecasting, we use Akaike’s information criterion (AIC) [Akaike 

1973].  This has the advantage that it takes account of the parameter space of the 

model and discourages complex models with large numbers of variables.  In turn, this 

discourages over-fitting to the training data set.  We approximate AIC by 

( ) pn 2MSEln +  where n and p are number of observations and number of parameters 

in the model respectively and MSE is the mean square error for observations in the 

training data.  We find using the AIC criterion gives better forecasts than using the 

standard F-test.  Further discussion of variable selection methods and use of AIC for 

predictive models is given by Miller [1990].  The variable selection procedure we use 

is further constrained so that for each interaction term included, its constitutive terms 

are also automatically included [Brambor 2005]. 

4 Results 
 

Section 4.1 describes forecast performance for comparison of the different models.  

Then section 4.2 describes the best performing model for forecasts and its statistically 
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significant explanatory variables.  Models for longer recovery periods are considered 

in the third section. 

 

4.1 Model comparisons 
 
Table 1 shows forecast results for different models.  Focussing on the first section 

showing results for a 12 month recovery period and for all products combined, it is 

clear that the standard OLS model with both AVs & MVs performs best for both 

measures of forecast performance.  The more complex models, Tobit, decision tree or 

least absolute value regression give worse performance and so does using any of the 

transformations of RR.  We may expect OLS to do well for the MSE measure, but we 

may expect that one of the alternative models would  be better when estimating mean 

RR over the portfolio.  In particular we may expect least absolute value regression to 

be better since it is a linear loss function.  However OLS forecasts best estimates of 

mean RR. This is a robust result which was obtained with many alternative 

experiments. The inclusion of interaction terms gives slightly worse forecasts than the 

AV&MV model so including interaction terms does not provide any benefit in 

estimating LGD.  It is also notable that the simple model that effectively forecasts the 

mean RR from the training data set does well and outperforms many of the more 

complex models.  Nevertheless using AVs along with MVs shows considerable gain 

in performance over the simple model. 

 

TABLE 1 

 

We also consider MVs with lags or leads of 6 months.  We consider lags since it is 

possible that the effect of the economy on obligor behaviour may be delayed.  We 
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consider a lead since this would give the values of MVs midway through the recovery 

period.  Table 1 shows that using lags or leads on MVs gives worse forecasts than 

using MV values at time of default and are almost as bad as not including MVs at all.   

 

The second section of Table 1 shows results for separate products.  It is clear that the 

AV&MV model does not do consistently well for separate products and rarely as well 

as when all products are combined.  In many cases the simple model with no 

explanatory variables is the best performing for forecasting mean RR.  This is due 

partly to operational peculiarities within each portfolio that may have a spurious link 

to macroeconomic movements and also partly to reduced training sample size.  These 

results suggest that better LGD models can be built when data from different products 

are combined. 

 

Figures 5 and 6 show forecast time series results for the first three models listed in 

Table 1 in more detail for each test quarter.  They show that the AV&MV model 

performs consistently better over time.  Figure 5 shows that MSE is lower for 

AV&MV than either the simple or AV model and improves over time, possibly a 

result of having training data over a longer period of the business cycle to model the 

MV effects.  Figure 6 shows that overall the AV&MV model forecasts mean RR 

much more closely than the other models as is evidenced by how close the difference 

between forecast and observed mean RR is to zero.  In contrast the AV model is 

consistently over-estimating RR over time.  In 2004Q2, the simple model achieves the 

best result but this is serendipitous since its forecasts are simply moving from 

underestimating to overestimating RR at that time.  These results show that including 

MVs is important to improve LGD forecast results.  It should be noted, however, that 
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in our study at least 3 years of training data is required.  We found that using less than 

this led to unstable models with MVs that occasionally extremely over or under 

estimate LGD. 

 

FIGURE 5 

FIGURE 6 

4.2 Explanatory model 
 

Table 1 shows that the AV&MV model using OLS regression was the best 

performing forecaster so we describe this model estimate in further detail.  We report 

model fit results for LGD models built on all data from 1999 to 2005.    Including 

MVs in the LGD model improves fit to training data and is statistically significant.  

The AV model has an adjusted R2 model fit of 0.105.  When MVs are included this 

increases to 0.110.  When interaction terms between MVs and application variables 

are also included using forward selection, the adjusted R2 is 0.111.  This small 

increase indicates that adding interactions does not give a noticeable improvement 

reinforcing the results observed for forecasting.  Table 2 shows coefficient estimates 

using OLS regression with the AV&MV model.  Since the error residuals are non-

normal we have used bootstrap to compute statistical significance.  The reported p-

values are from a normal-based distribution imposed on bootstrap coefficient 

estimates.  This is reasonable since we found the 95% confidence intervals for the 

normal-based distributions matched closely those for the empirical percentile 

distribution sharing never less than 92% of the others’ range.   

 

TABLE 2 
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Many of the model variables are statistically significant at a 0.01 level.  In particular, 

housing status is important with council and private tenants having generally lower 

RR than home owners; the longer the time that the customer has been with the bank 

(time with bank) and the longer the individual has held the credit card prior to default 

(time on books at default) both tend to increase RR; individuals with higher income 

also tend to have higher RR.  All these are indicators of customer stability which we 

would expect to give lower risk.  Higher credit bureau scores tend to give higher RR, 

which again shows that individuals with expected low credit risk tend to pay back 

more of their bad debt.  Also, the size of the initial balance at default has a negative 

effect on RR which is what we would expect since higher outstanding debt is more 

difficult to pay back.  We note a positive correlation between default balance and 

income, which suggests that people with high income tend to build up larger balances 

on their credit card.  Indeed if we remove default balance from the model the sign on 

income becomes negative since it becomes a surrogate for the missing default balance 

variable.  However, when both income and default balance are in the model together 

then the sign on income becomes positive which is what we would expect since the 

availability of higher income implies a greater capacity to repay the outstanding 

balance. Employment status has less impact, although we see that home makers tend 

to have lower RR.  Demographic information was important with those living in areas 

classified as council or poor housing tending to have lower RR than those in rural, 

suburban or wealthy areas.  

 

Table 2 shows that coefficient estimates for MVs have the expected signs.  That is, 

the parameter estimate for interest rates is negative meaning that higher interest rates 
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at the time of default tend to give lower RR.  Similarly, higher unemployment levels 

are also linked to lower RR.  However, higher earnings growth, year-on-year, leads to 

increased RR which suggests earnings growth leads to better recoveries.  Bank 

interest rates and unemployment level are both statistically significant at a 0.01 level, 

although earnings growth is not statistically significant in the model.  The coefficient 

estimate for date of default is statistically significant but has a relatively small effect 

when its annual effect is compared with standardized estimates for the significant MV 

coefficients as shown in Table 2.  This implies that the effect of the MVs is not due to 

a simple time trend.  Bank interest rate clearly has the largest magnitude with 

unemployment level having less than half the interest rate effect.  Additionally we 

find that the VIF for any of the MVs when regressed on all other covariates in model 

(1) was always less than 2 which is sufficiently small that we should not expect that 

the results are affected by multicollinearity.  Since including interaction terms did not 

improve forecasts or model fit we do not report interaction terms in the explanatory 

model. 

4.3 Forecasting 24 month LGD with a 12 month LGD model 
 
We test whether it is possible to use a model built for a 12 month recovery period to 

forecast for a 24 month period.  Following the procedure given in section 2.2.2 we get 

RR (24 months) = 0.13 + 0.92 × RR (12 months) 

with adjusted R2 = 0.70.  This model always gives a higher estimated RR after 24 

months than after 12 months.  This is intuitively correct since we would normally 

expect RR for an individual not to decrease over time.  This model is used to compare 

the AV&MV model built on the 12 month period with one built on the 24 month 

period using the  procedure described in Section 2.2.2.  Results are shown in the third 

section of Table 1.  The 12 month MV model outperforms the 24 month model for 
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forecasts of 24 month RR for both reported forecast measures.  However, this is 

natural since the recovery period buffer between training and test data (see Figure 2) 

implies that the 12 month model is built from more recent data.  These results indicate 

that working with a 12 month LGD model is sufficient since the same model can also 

be used to model longer periods.  However, with further investigation, we expect that 

some hybrid model combining the 12 and 24 month trained LGD models would be the 

most effective. 

 

5. Conclusion 

In the introduction we posed four main research questions.  We discuss conclusions 

relating to each of these questions in turn. 

 

Q1. Which credit card application and default variables are the key drivers of retail 

LGD? 

Our experiments have shown that application variables can be used to model LGD.  In 

particular, Table 2 shows that home status, time with bank and credit bureau score are 

strong explanatory variables.  Additionally, we found that income and balance at 

default form a joint effect.  The negative correlation of default balance with RR 

matches the findings of Dermine and Neto de Carvalho [2005] that size of loan is a 

significant explanatory variable for RR.  We found that default balance contributes to 

forecasts of LGD since when it is removed from the AV&MV model, forecast 

performance is worse.  Other variables at time of default such as age of obligor and 

age of account also influence LGD.  Interestingly age has a positive effect on LGD 

(negative on RR) and we found the linear relation between age and LGD remained 
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even when age was replaced by several age categories using dummy variables.  This 

is surprising since we would normally expect risk to reduce with maturity.  That is, 

for PD models, typically the positive effect of age peaks in the mid-30’s.   

 

Q2. What is the best modelling approach for retail LGD? 

Despite trying several different combinations of variables, models such as Tobit and a 

decision tree and various transformations of the dependent variable – all of which 

should in theory be good models for bimodal LGD – it turns out the best forecast 

model in our experiments was simple OLS.  Why this may be so is unclear, although 

we conjecture that since LGD is difficult to model, with poor model fit, this implies 

that regression forecasts tend to fall in a narrow range away from the boundary cases 

of 0 and 1, therefore models dealing carefully with the boundary cases are superfluous 

in practice. 

 

Q3. How well do the models perform at forecasting LGD? 

Model fit is weak with R2 = 0.11 but such low values are typical of modelling LGD.  

On a sample of 1118 defaulted financial leases, De Laurentis and Riani [2005] report 

R2 values from 0.20 to 0.45 after outliers were deliberately removed.  On a data set of 

374 defaulted loans to small and medium size firms, Dermine and Neto de Carvalho 

[2005] report a pseudo R2 value of 0.13 when considering a 12-month recovery 

period.  The lower R2 value we report is partly a consequence of the large sample size 

of our data.  In contrast, if we restrict our sample size to just 500 randomly selected 

cases we get R2 = 0.20.  This is more typical of other studies but nevertheless it is 

misleading and we get adjusted R2 = 0.13 which is closer to the value for the full 
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sample.  Therefore we report adjusted R2 in our main results and suggest its use for 

comparison of LGD models across studies with different sample sizes. 

 

For forecasts, the simple model – which effectively forecasts mean LGD from the 

training data set – does very well and outperforms many of the complex models as 

can be seen in Table 1.  Nevertheless we still see a modest improvement in MSE 

when model AV&MV compared with the simple model with no variables.  For 

financial institutions, even a small improvement in estimating risk is welcome.  When 

we turn to estimates of LGD across the portfolio however, we can see from Figure 6 

that the AV&MV is plainly the better forecaster when compared with the simple 

model.  In this way, these models may prove particularly valuable for estimation of 

risk at the portfolio level. 

 

Our experiments focussed on modelling LGD for a recovery period of 12 months.  

However, financial institutions may be interested in longer periods.  Nevertheless, we 

have shown that a 12 month LGD model can be used successfully to forecast 24 

month LGD. 

 

Q4. Does the inclusion of MVs lead to improved models of retail LGD? 

Our database spanned the period 1999 to 2005.  Figure 4 shows that this period 

covered a range of economic conditions in the UK with interest rates generally 

decreasing and an overall reduction in unemployment.  Earnings generally rose, 

although at some times growth was higher than others.  This period does have the 

disadvantage for our analysis that there were no major recessions or downturns to 

train from and towards 2005 the UK economy was stable and fairly unremarkable.  
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This is a point also noted by Dermine and de Carvalho [2005] with regard to their 

study.  We speculate that a very good macroeconomic model of LGD should have 

training data across the entire business cycle.  Unfortunately, due to practical reasons 

of data availability, we were unable to provide this.  Nevertheless, given this 

limitation, we still found the MV model to be effective.  We show that adding bank 

interest rates and unemployment level as MVs into a LGD model yields better model 

fit and that these variables are statistically significant explanatory variables.  

Additionally including these MVs improves forecasts with generally better MSE and 

estimates of mean RR across test quarters.  Although the improved MSE is modest, 

Figure 5 suggests that the AV&MV models improve relatively with the duration or 

size of the training data set.  Comparing the AV&MV model with the AV model in 

Figure 6 shows a clearly better forecast of LGD at the portfolio level.  We also report 

results using the model for separate products where we found that the AV&MV 

model was less effective, suggesting that several products are required to build 

effective LGD models based on macroeconomic conditions. 

 

We found that the inclusion of interaction terms between AVs and MVs did not 

generally improve performance and led to slightly worse results.  The poor 

performance of the model with interaction terms affirms the comment by Gayler 

[2006] that the main effects are believed to be more stable than interactions for 

prediction in credit scoring.  Nevertheless we feel that there is likely to be some useful 

interaction effects between MVs and application terms; eg those with high 

outstanding debt, say a mortgage on a property, are more likely to be affected by 

changes in bank interest rates.  The problem is to determine which of them are 

important prior to modelling.  The automated forward selection process we use is 
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clearly insufficient for this task.  Gayler [2006] recommends that prior expert 

knowledge is used to determine stable interactions.  Therefore useful future work 

could be conducted to incorporate expert credit advice into the model build stage prior 

to automated modelling.   

 

Finally, we ran a simple experiment using MV models for stress testing with 

hypothetical changes in interest rates. For example, we substituted the maximum and 

minimum interest rate values that occurred during our training period (6% and 3.5%) 

into the AV&MV model for the last of our test periods, 2005Q2. The forecast mean 

RR changed by -17% and +24% respectively.  These results are plausible in the sense 

that the forecast mean LGDs were in the range we would expect given historic data.  

Nevertheless further work is needed to use models with MVs for stress testing.  

Firstly, a method to calibrate stress test estimates is needed.  Secondly the linearity of 

the models along with the truncated distribution of LGD implies that extreme values 

of MVs – necessary for stress testing – will have a too-extreme effect on forecasts of 

LGD.  A logit transform of RR would help dampen extreme predictions.  However, 

our experiments show this is not the best model in terms of forecasts.  Alternatively, a 

logit transform of MVs, prior to their use in the model, might also mitigate the 

problem of extreme forecasts of RR.  This is another area of further work. 

 

Acknowledgements 

We would like to thank our commercial partners for their assistance and comments in 

preparing this paper.  Research was funded by UK EPSRC grant number 

EP/D505380/1, working as part of the Quantitative Financial Risk Management 

Centre. 



   

 29 of 40 

 



   

 30 of 40 

References 

Akaike, H. (1973).  Information theory and an extension of the maximum principle.  

Proc. 2nd Int. Symp. Information Theory, Akademia Kiado, Budapest, 267-281. 

 

Altman, E.I., Resti, A. and Sironi, A. (2005).  Loss given default: a review of the 

literature.  Recovery Risk ed. Altman, E., Resti, A. and Sironi, A. (Risk Books). 

 

Bank for International Settlements BIS (2005).  Stress testing at major financial 

institutions: survey results and practice.  Working report from Committee on the 

Global Financial System. 

 

Basel Committee on Banking Supervision (BCBS 2006). Basel II: International 

Convergence of Capital Measurement and Capital Standards, Basel. 

 

Bellotti, T. and Crook, J. (2007).  Modelling and predicting loss given default for 

credit cards.  Quantitative Financial Risk Management Centre working paper. 

 

Brambor, T., Clark, W.R. and Golder, M. (2005). Understanding interaction models: 

improving empirical analyses. Political Analysis 14: 63-82. 

 

De Laurentis, G. and Riani, M. (2005).  Estimating LGD in the Leasing Industry: 

Empirical Evidence from a Multivariate Model.  In Altman, E., Resti, A. and Sirona, 

A. (eds) Recovery Risk, Risk Books, London. 

 



   

 31 of 40 

Dermine, D. and Neto de Carvalho, C. (2005). Bank loan losses-given-default: a case 

study.  Journal of Banking and Finance vol.30, issue 4, 1219-1243 

 

Figlewski, S., Frydman, H. and Liang, W. (2007).  Modeling the Effect of 

Macroeconomic Factors on Corporate Default and Credit Rating Transitions.  NYU 

Stern Finance working paper. November 2007. 

 

Financial Services Authority FSA (2005). Stress Testing.  Discussion paper 05/2 

FSA(UK). 

 

Gayler, R. (2006).  Comment on “Classifier technology and the illusion of progress – 

Credit scoring” by Hand, D.,  Statistical Science vol 21, no 1, 19-23. 

 

Grippa, P.S., Iannotti, F. and Leandri, F. (2005) Recovery rates in the banking 

industry: stylised facts emerging from the Italian experience. In Altman, E., Resti, A. 

and Sirona, A. (eds) Recovery Risk, Risk Books, London. 

 

Gupton, G.M. and Stein, R.M. (2005).  Losscalc V2: dynamic prediction of LGD, 

modelling methodology.  Moody’s KMV Company. 

 

Hand, D. (2006).  Classifier technology and the illusion of progress.  Statistical 

Science vol 21, no 1, 1-14. 

 

Kennedy, P. (2003).  A Guide to Econometrics (5th edition).  Blackwell. 



   

 32 of 40 

Lam, J-P. and Veall, M.R. (2002).  Bootstrap prediction intervals for single period 

regression forecasts.  International Journal of Forecasting 18 pp 125-130. 

 

Miller, A.J. (1990).  Subset Selection in Regression.  Chapman & Hall NY. 

 

Querci, F. (2005).  Loss Given Default on a medium-sized Italian bank’s loans: an 

empirical exercise.  European Financial Management Association  

2005 (Milan, Italy). 

 

Rosche, D. and Scheule, H. (2006) A multifactor approach for systematic default and 

recovery risk. In Engelmann B and Rauhmeier, R. (eds) The Basel II Risk Parameters. 

Springer, Berlin. 

 

Saurina, J. and Trucharte, C. (2007).  An assessment of Basel II procyclicality in 

mortgage portfolios.  Banco de España. 

 

Schuermann, T. (2005).  What do we know about Loss Given Default?  In Altman, E., 

Resti, A. and Sirona, A. (eds) Recovery Risk, Risk Books, London. 

 

Thomas, L.C., Edelman, D.B. and Crook, J.N. (2002). Credit Scoring and its 

Applications. SIAM Monographs on Mathematical Modeling and Computation. 

SIAM: Philadelphia, USA. 



   

 33 of 40 

Foot Notes 

For reasons of commercial confidentiality, to protect our data supplier, we cannot 

reveal exact distributions or values of LGD for our data, nor descriptive details of 

other variables.  This is usual in this research area when large portfolios of live 

financial data are being studied.  Nevertheless since our focus is on reporting forecast 

performance, this should not be a hindrance to scientific reporting. 
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 Tables 

Table 1. 

Aggregate forecast results for different models. 

Experiment Result 
Recovery 

period 
Product RR 

transform 
Model Explanatory 

variables 
MSE Abs RR 

diff 

12 month  
All 

None 

OLS regression 

None (simple) 0.168 0.0384 
AV 0.156 0.0645 

AV & MV 0.151 0.0130 
AV & MV & 
interaction 

terms 
0.152 0.0169 

AV & MV lag 6 0.155 0.0529 
AV & MV  

lead 6 0.154 0.0445 

Tobit  0.163 0.0620 
Decision tree  0.221 0.1766 

Least absolute 
value regression  0.173 0.1144 

Beta  AV & MV 0.166 0.0748 
Logit OLS regression  0.175 0.1086 
Probit   0.198 0.2041 

Beta Tobit  0.188 0.1053 
Decision tree  0.192 0.0414 

12 month 

1   
None (simple) 0.160 0.0383 

AV 0.159 0.0795 
AV & MV 0.155 0.0534 

2 None 
 

OLS regression 
 

None (simple) 0.175 0.0391 
AV 0.163 0.0732 

AV & MV 0.195 0.1361 

3   
None (simple) 0.165 0.0380 

AV 0.155 0.0774 
AV & MV 0.151 0.0431 

4   
None (simple) 0.156 0.0412 

AV 0.149 0.0771 
AV & MV 0.142 0.0227 

24 month All None 

OLS regression  0.194 0.0554 
OLS model built 

for 12 month 
recovery period 

AV & MV 
0.183 0.0525 

 
Abs RR diff is the absolute difference between observed and forecast mean RR over 

each test quarter.  Results are given as mean values across the series of test quarters 

from 2003Q1 to 2005Q2 or 2004Q2 for 12 or 24 month recovery periods respectively.  

Figures in bold show best results for each recovery period and product group. 
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Table 2. 
Coefficent estimates for OLS recovery rate model.  

 
Variable Coefficient 

estimate 
Standard 
error 

z P>|z| 

Intercept 1.43 0.162 8.83 0 
Home status (D):    Council tenant -0.158 0.00544 -29.0 0 

Private tenant -0.146 0.00451 -32.4 0 
Term time accommodation -0.118 0.0410 -2.87 0.004 

Other -0.116 0.00702 -16.6 0 
Lives with parents -0.0643 0.00577 -11.1 0 

Excluded category: Own home     
Time with bank 0.0812 0.00716 11.4 0 
No data on time with bank (D) 0.0220 0.00774 2.84 0.004 
Income (log) 0.0280 0.00770 3.63 0 
Income unknown (D) 0.129 0.0328 3.94 0 
Number of cards -0.0153 0.00335 -4.56 0 
Years at current address 0.00175 0.000238 7.36 0 
Employment status (D): Home maker -0.0363 0.0109 -3.34 0.001 

Unemployed -0.0338 0.0230 -1.47 0.141 
Retired -0.00570 0.0102 -0.56 0.577 

Part time -0.00451 0.00904 -0.50 0.618 
Self employed -0.00339 0.00525 -0.65 0.519 

Other 0.0230 0.00622 3.69 0 
Student 0.0266 0.0120 2.21 0.027 

Excluded category: Employed     
Age at default -0.00348 0.000187 -18.6 0 
Age unknown (D) 0.0586 0.0146 4.03 0 
Credit bureau score 0.186 0.0117 15.9 0 
Demographic group (D):     

Council or poor housing area -0.0404 0.00385 -10.5 0 
Rural area 0.0349 0.00933 3.74 0 

Suburban or wealthy area 0.0355 0.00498 7.11 0 
Excluded category: Other     

Credit card product (D):              1 0.00744 0.00523 1.42 0.155 
2 0.00803 0.00660 1.22 0.223 
3 0.0147 0.00505 2.90 0.004 

Excluded category: 4     
Time on books at default (months) 0.000489 0.000133 3.68 0 
Balance at default (log) -0.165 0.00369 -44.8 0 
Date of default -0.0000161 0.000006 -2.74 0.006 

annual effect -0.00588    
Macroeconomic variables:     
Bank interest rates -0.0505 0.00296 -17.1 0 

standardized estimate -0.0404    
Unemployment level -0.000191 0.000048 -3.94 0 

standardized estimate -0.0195    
Earnings growth (log) 0.839 0.484 1.73 0.083 

standardized estimate +0.0032    
 
Training data set for AV&MV model included all available cases from 1999 to 2005.  

Standard errors and p-values are computed with bootstrap estimation with 10000 

repetitions.  Values in italics show standardized estimates for MVs and effect over 

one year for the coefficient on default date.  Dummy variable taking the value 0 or 1, 

for false and true respectively, are indicated by (D). 
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Figures 
 

Figure 1. 

Decision tree model.   

 
The first two binary decision boxes (white) are modelled by logistic regression, whilst 

the final decision box models LGD using OLS regression. 
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Figure 2.  

Distribution of recovery rates following application of a beta distribution 

transformation1. 

Beta(RR)

 
 

 

 

Figure 3.  

 Illustration of hold out test procedure for one quarter of test data. 

 

 

The test data set holds all cases that default in the same financial quarter and the 

training data set comprises all cases that default and have full recovery period prior to 

the test quarter. 

                                                 
1 Axes values withheld for reasons of commercial confidentiality of data provider. 
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Figure 4.  

UK macroeconomic data 1999-2005. 
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Figure 5.  

MSE of forecasts for each test data set from 2003Q1 to 2005Q2 for three OLS 
models with different variables. 
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Figure 6.  

Difference between forecast and observed mean RR. 
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Results relate to each test data set from 2003Q1 to 2005Q2 for three OLS model with 

different variables. 
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