10.1071/CP24043

Crop & Pasture Science

Supplementary Material

Forage accumulation and nutritive value in extensive, intensive, and integrated pasture-based beef cattle production systems

Rolando Pasquini Neto^{A,*}, Althieres José Furtado^A, Gabriele Voltareli da Silva^A, Annelise Aila Gomes Lobo^A, Adibe Luiz Abdalla Filho^{A,B}, Henrique Bauab Brunetti^B, Cristiam Bosi^B, André de Faria Pedroso^B, José Ricardo Macedo Pezzopane^B, Patrícia Perondi Anchão Oliveira^{A,B}, and Paulo Henrique Mazza Rodrigues^A

^AFaculty of Veterinary Medicine and Animal Science, University of São Paulo, 225 Duque de Caxias North Avenue, Pirassununga, São Paulo 13635-900, Brazil.

^BEmbrapa Southeast Livestock, km 234 Washington Luiz Highway, 'Fazenda Canchim', São Carlos, São Paulo 13560-970, Brazil.

*Correspondence to: Rolando Pasquini Neto Faculty of Veterinary Medicine and Animal Science, University of São Paulo, 225 Duque de Caxias North Avenue, Pirassununga, São Paulo 13635-900, Brazil Email: netopasquini@alumni.usp.br

Table S1. Meteorological data parameters and pastures irrigation by sprinkling water depths management (mm) in IP600 system during the experimental period (September 2019 to 2021).

	<i>5</i> 2021).		Meteo	rologic	al data		Eto – P	Sprinkler
Years	Months	Tmax	Tmin	RH	Eto	P		Irrigation
		$^{\circ}\mathrm{C}$	$^{\mathrm{o}}\mathrm{C}$	%	mm	mm	mm	mm
	SEPT	29.8	17.3	61.9	101.0	62.0	39.0	20.0
2019	OCT	31.3	17.9	63.6	127.7	65.2	62.5	72.5
2019	NOV	29.0	17.8	79.2	114.3	148.2	0.0	10.0
	DEC	28.5	18.9	82.7	108.6	196.0	0.0	6.7
	JAN	29.0	18.9	83.3	121.4	243.6	0.0	0.0
	FEB	27.2	18.7	90.3	88.3	370.2	0.0	0.0
	MAR	28.8	17.6	76.2	119.3	65.6	53.7	45.0
	APR	27.5	15.9	69.1	103.2	4.4	98.8	50.0
	MAY	24.6	13.4	64.1	84.3	23.2	61.1	72.0
2020	JUNE	25.7	15.3	70.6	74.8	29.2	45.6	44.0
2020	JUL	26.5	14.3	57.5	89.7	1.4	88.3	45.0
	AUG	26.6	14.0	55.8	94.1	16.6	77.5	63.0
	SEPT	31.3	19.7	43.0	113.1	34.2	78.9	64.0
	OCT	30.6	18.1	61.6	110.9	62.2	48.7	53.0
	NOV	29.7	16.3	66.4	135.4	116.6	18.8	32.0
	DEC	27.8	18.4	84.9	115.5	287.4	0.0	11.0
	JAN	29.4	19.4	80.5	128.2	122.2	6.0	22.0
	FEB	28.9	18.3	79.1	107.7	121.2	0.0	29.0
	MAR	28.9	18.5	72.1	114.1	158.7	0.0	12.1
	APR	27.2	16.3	69.1	103.8	13.3	90.5	73.6
2021	MAY	26.3	14.9	63.8	83.1	21.2	61.9	40.0
	JUNE	24.7	13.5	69.0	73.4	40.0	33.4	53.0
	JUL	24.6	11.2	49.5	85.2	11.0	74.2	71.0
	AUG	28.0	14.7	52.2	93.7	3.0	90.7	77.0
	SEPT	32.2	17.9	50.0	104.7	4.4	100.3	91.0
Av	rerage	28.2	16.7	67.8	1297.8	1110.5	-	-
S	Sum	-	-	-	2595.5	2221.0	1129.9	1056.9

Tmax, Maximum temperature. Tmin, Minimum temperature. RH, Relative humidity. Eto, Reference evapotranspiration. P, Rainfall. Eto – P, Accumulation of the difference between evapotranspiration and rainfall.

Table S2. Chemical soil characteristics at different levels of intensification of pasture-based beef cattle production systems (DP0, SP200, RP200, RP400 and IP600), in the 0-20 cm layer in 2019, 2020 and 2021.

Treatments	рН	рН	O. M.	P	K^{+}	Ca^{2+}	$\mathrm{Mg}^{2^{+}}$	Al^{3+}	H+A1	AS	EVN	V	m
	(H_2O)	(CaCl ₂₎	$(g dm^{-3})$	$(mg dm^{-3})$		(1	nmol _c dm ⁻³	3)		(mmol	c dm ⁻³)	(%	ó)
						2	019					,	
DP0	5.4 ^{Bc}	4.8^{Bc}	21.0 ^{Cc}	4.0 ^{Cc}	1.2 ^B	17.5 ^{Bc}	7.5^{Bc}	1.0^{Aa}	37.5 ^{Aa}	26.0^{Bc}	63.5 ^{Abc}	41.0^{B}	5.5 ^{Aa}
SP200	6.0^{Bb}	5.2^{Bb}	20.3^{Cc}	6.9^{Cc}	1.5^{B}	24.2^{Bbc}	11.8^{Bbc}	0.4^{Ab}	21.7^{Ab}	37.3^{Bbc}	58.9^{Bc}	63.8^{B}	1.4^{Ab}
RP200	6.6^{Ba}	5.9^{Ba}	40.5^{Ca}	13.5 ^{Ca}	1.9^{B}	46.0^{Aa}	23.0^{Aa}	$0.0^{ m Ac}$	25.0^{Ab}	71.0^{Aa}	96.0^{Aa}	73.5^{B}	0.0^{Ab}
RP400	6.1^{Bab}	5.4^{Bb}	27.5^{Cb}	7.5 ^{Cbc}	1.5^{B}	26.0^{Bbc}	13.5^{Bbc}	$0.0^{ m Ac}$	25.5^{Ab}	41.0^{Bbc}	66.5^{Bbc}	61.0^{B}	0.0^{Ab}
IP600	6.3^{Bab}	5.6^{Bab}	24.5^{Cbc}	11.5 ^{Cab}	2.0^{B}	34.0^{Aab}	17.5^{ABab}	$0.0^{ m Ac}$	26.0^{Ab}	53.5^{ABab}	79.5^{ABab}	66.0^{B}	0.0^{Ab}
							020						
DP0	6.0^{A}	5.3 ^{Ac}	32.5^{Bc}	7.5 ^B	2.7 ^A	32.0^{Ab}	16.5 ^{Ab}	0.0^{B}	25.0^{B}	51.5 ^{Ab}	76.5 ^{Ab}	65.0^{A}	0.0^{B}
SP200	6.8^{A}	6.1^{Aab}	29.5^{Bc}	12.5^{B}	1.4^{A}	47.5^{Aa}	22.5^{Aab}	0.0^{B}	$16.0^{\rm B}$	71.0^{Aab}	87.5^{Aab}	82.0^{A}	0.0^{A}
RP200	7.0^{A}	6.2^{Aab}	52.0^{Ba}	21.5^{B}	5.5 ^A	46.0^{Aab}	22.0^{Aab}	0.0^{A}	17.5^{B}	73.5^{Aab}	91.0^{Aab}	81.0^{A}	0.0^{A}
RP400	7.1^{A}	6.4^{Aa}	37.5^{Bb}	11.5^{B}	3.3^{A}	55.5^{Aa}	25.5^{Aa}	0.0^{A}	17.0^{B}	84.0^{Aa}	101.0^{Aa}	83.5^{A}	0.0^{A}
IP600	6.3^{A}	5.6 ^{Abc}	31.0^{Bc}	13.5^{B}	3.9^{A}	44.0^{Aab}	23.0^{Aab}	0.0^{A}	22.5^{B}	71.0^{Aab}	93.5 ^{Aab}	75.5 ^A	0.0^{A}
						2	021						
DP0	5.7 ^{Bb}	4.9^{Bb}	40.5 ^{Abc}	5.5 ^A	2.6^{A}	21.0 ^{ABb}	11.0^{ABb}	0.0^{B}	36.0^{Aa}	34.5^{ABb}	70.5^{Ab}	49.5^{Bb}	0.0^{B}
SP200	6.3^{Bab}	5.6^{Ba}	34.0^{Ac}	17.0^{A}	3.9^{A}	47.0^{Aa}	23.0^{Aa}	0.0^{B}	21.0^{Ac}	74.0^{Aa}	95.0^{Aa}	78.0^{Ba}	0.0^{A}
RP200	6.8^{Ba}	6.1^{Ba}	65.0^{Aa}	15.5 ^A	4.7^{A}	52.5^{Aa}	25.5^{Aa}	0.0^{A}	22.0^{Ac}	82.5 ^{Aa}	104.5 ^{Aa}	78.5^{Ba}	0.0^{A}
RP400	6.6^{Ba}	5.7^{Ba}	49.0^{Ab}	18.5 ^A	6.0^{A}	51.0^{Aa}	26.5^{Aa}	0.0^{A}	25.0^{Abc}	83.5^{Aa}	108.5^{Aa}	77.0^{Ba}	0.0^{A}
IP600	5.7^{Bb}	5.1 ^{Bb}	37.5 ^{Abc}	20.0^{A}	4.0^{A}	24.0^{Bb}	13.0^{Bb}	0.0^{A}	30.5^{Aab}	41.0^{Bb}	71.5^{Bb}	56.5 ^{Bb}	0.0^{A}
N. C. 11	1 1	', 11	. 1'	, 1°CC		1.1	1	1. cc	•	4 1 T' 1	1 1 1 /	(O O C)	

Means followed by capital letters indicate differences in years and lowercase letters differences in treatments by Fisher's test (p<0.05).

Table S3. Chemical soil characteristics at different levels of intensification of pasture-based beef cattle production systems (DP0, SP200, RP200, RP400 and IP600), in the 0-20 cm layer in 2019, 2020 and 2021.

	$S.SO_4$	В	Cu	Fe	Mn	Zn
Treatments			(mg	dm ⁻³)		
-			2019			
DP0	13.0 ^{Aab}	0.27^{Bb}	1.7 ^{Ac}	62.5 ^{Aa}	1.3 ^{Bc}	1.4 ^{Ab}
SP200	8.3^{Ac}	$0.29^{ m Bab}$	1.0^{Ac}	48.3^{Ab}	1.8^{Bc}	0.8^{Ab}
RP200	14.5^{Aa}	0.42^{ABab}	13.0^{Aa}	26.0^{Bc}	40.4^{Aa}	1.9 ^{Ab}
RP400	10.5^{Ab}	0.47^{ABa}	5.6^{Ab}	14.5^{Bd}	22.9^{Ab}	7.4^{Aa}
IP600	14.5 ^{Aa}	0.35^{Aab}	$2.4^{ m Abc}$	32.0^{Ac}	1.2^{Bc}	2.7^{Ab}
			2020			
DP0	6.5^{Bb}	0.58^{Aa}	1.6 ^A	25.0^{B}	7.9 ^A	1.9 ^A
SP200	8.5^{Ab}	0.41^{ABab}	1.5^{A}	25.0^{B}	5.7^{A}	1.6^{A}
RP200	7.0^{Bb}	0.51^{Aab}	2.1^{B}	22.0^{B}	5.6^{B}	1.3 ^A
RP400	11.5 ^{Aa}	0.51^{Aab}	1.9 ^A	22.5^{B}	4.3^{B}	1.3^{B}
IP600	8.5^{Bb}	0.37^{Ab}	2.0^{A}	29.5^{A}	5.3 ^{AB}	1.4 ^A
			2021			
DP0	8.0^{Bc}	0.41 ^{Aab}	1.7 ^A	28.0^{Bc}	10.0^{Aa}	1.1 ^A
SP200	9.0^{Ac}	0.49^{Aa}	2.6^{A}	31.0^{Bbc}	4.6^{ABb}	2.1^{A}
RP200	16.0^{Aa}	$0.28^{ m Bb}$	4.3^{B}	$40.0^{\mathrm{Aa}}\mathrm{b}$	3.9^{Bb}	2.3^{A}
RP400	12.5^{Aab}	0.32^{Bab}	2.8^{A}	44.0^{Aa}	4.3^{Bb}	2.8^{B}
IP600	10.0^{Bbc}	0.34^{Aab}	1.9^{A}	29.0^{Ac}	6.5^{Aab}	1.2^{A}

Means followed by capital letters indicate differences in years and lowercase letters differences in treatments by Fisher's test (p<0.05).

Table S4. Chemical soil characteristics at different levels of intensification of pasture-based beef cattle production systems (DP0, SP200, RP200, RP400 and IP600), in the 20-40 cm layer in 2019, 2020 and 2021.

Treatments	pН	рН	O. M.	P	K^{+}	Ca^{2+}	$\mathrm{Mg}^{2^{+}}$	Al^{3+}	H+Al	AS	EVN	V	m
	(H ₂ O)	(CaCl ₂₎	(g dm ⁻³)	$(mg dm^{-3})^{-1}$		(1	nmol _c dm ⁻³	3)		(mmol	c dm ⁻³)	(%	o)
	,					2	2019				,	`	
DP0	5.3 ^{Bc}	4.7 ^{Cb}	13.5 ^{Cc}	2.5 ^{Aa}	1.0^{B}	15.5 ^{Bc}	6.5^{Bc}	2.5^{Aa}	38.5 ^A	23.0^{Bc}	61.5 ^{Ab}	37.5 ^{Cb}	10.0 ^{Aa}
SP200	5.7^{Bb}	5.0^{Cb}	11.8 ^{Cc}	3.1^{Ba}	1.0^{B}	18.7^{Bbc}	8.7^{Bbc}	1.3^{Ab}	25.2^{A}	28.4^{Bbc}	53.5^{Bb}	53.9 ^{Cab}	4.9^{Ab}
RP200	6.4^{Ba}	5.7 ^{Ca}	32.0^{Ca}	6.0^{ABa}	1.3^{B}	39.0^{Aa}	17.5 ^{Aa}	$0.0^{ m Ac}$	24.5 ^A	57.5 ^{Aa}	82.0^{Aa}	70.5^{Ca}	$0.0^{ m Ac}$
RP400	6.1 ^{Bab}	5.4 ^{Ca}	25.0^{Cb}	5.5^{Ba}	1.2^{B}	22.5^{Bbc}	10.0^{Bbc}	$0.0^{ m Ac}$	23.0^{A}	33.5^{Bbc}	56.5^{Bb}	59.0^{Ca}	0.0^{Ac}
IP600	6.2^{Ba}	5.4 ^{Ca}	15.5 ^{Cc}	4.0^{Ba}	1.2^{B}	28.5^{Bab}	13.5^{ABab}	$0.0^{ m Ac}$	23.0^{A}	43.0^{Bab}	66.0^{Bb}	65.0^{Ca}	$0.0^{ m Ac}$
							2020						
DP0	5.9 ^{Ac}	5.2 ^{Ab}	24.0^{Bbc}	4.5 ^A	1.9 ^A	29.5 ^{Ab}	13.0^{Ab}	0.0^{B}	23.5^{B}	44.5 ^{Ab}	68.0^{Ab}	62.5 ^A	0.0^{B}
SP200	6.5 ^{Aabc}	5.8^{Aab}	22.0^{Bc}	7.0^{A}	1.8^{A}	42.5^{Aa}	20.5^{Aa}	0.0^{B}	16.5^{B}	64.5^{Aa}	81.5^{Aab}	79.5 ^A	0.0^{B}
RP200	7.2^{Aa}	6.3^{Aa}	35.0^{Ba}	5.0^{B}	3.4^{A}	40.0^{Aab}	19.0^{Aa}	0.0^{A}	18.5^{B}	62.5^{Aab}	81.0^{Aab}	77.0^{A}	0.0^{A}
RP400	7.1 ^{Aab}	6.4^{Aa}	29.5^{Bab}	3.0^{B}	2.0^{A}	47.5^{Aa}	20.0^{Aa}	0.0^{A}	16.0^{B}	69.5^{Aa}	85.5^{Aa}	81.0^{A}	0.0^{A}
IP600	6.3 ^{Abc}	5.7 ^{Aab}	24.0^{Bbc}	7.0^{A}	3.5^{A}	40.5^{Aab}	17.5 ^{Aab}	0.0^{A}	20.5^{B}	61.5 ^{Aab}	82.0^{Aab}	75.0^{A}	0.0^{A}
'							2021						
DP0	5.7^{B}	5.2^{Bbc}	29.5 ^A	2.5 ^{Ac}	1.8 ^{Ac}	18.5^{Bb}	8.5^{ABc}	0.0^{B}	32.0^{A}	28.5 ^{ABb}	60.5^{Ab}	47.5^{Bc}	0.0^{B}
SP200	5.9^{B}	5.3^{Bbc}	27.0^{A}	6.5 ^{ABbc}	2.6^{Abc}	23.0^{Bb}	10.5^{Bc}	0.0^{B}	24.5 ^A	36.0^{Bb}	60.5^{Bb}	59.5^{Bbc}	0.0^{B}
RP200	7.0^{B}	6.2^{Ba}	42.5^{A}	9.5^{Ab}	3.5^{Ab}	40.0^{Aa}	16.5 ^{Aab}	0.0^{A}	21.5 ^A	60.0^{Aa}	81.0^{Aa}	74.0^{Bab}	0.0^{A}
RP400	6.7^{B}	5.9^{Bab}	38.5^{A}	15.5 ^{Aa}	4.6^{Aa}	44.5^{Aa}	19.0^{Aa}	0.0^{A}	20.5^{A}	68.0^{Aa}	88.5^{Aa}	77.0^{Ba}	0.0^{A}
IP600	5.8^{B}	5.1 ^{Bc}	30.5^{A}	9.5 ^{Ab}	2.8 ^{Abc}	24.0^{Bb}	11.0^{Bbc}	0.0^{A}	25.0^{A}	37.5^{Bb}	62.5^{Bb}	66.6^{Babc}	0.0^{A}

Table S5. Chemical soil characteristics at different levels of intensification of pasture-based beef cattle production systems (DP0, SP200, RP200, RP400 and IP600), in the 20-40 cm layer in 2019, 2020 and 2021.

	$S.SO_4$	В	Cu	Fe	Mn	Zn
Treatments			(mg	dm ⁻³)		
<u>_</u>			2019			
DP0	16.0^{AB}	0.20^{Cb}	1.3 ^{Ac}	22.5 ^{Aab}	1.1 ^{Cc}	0.4
SP200	14.8^{AB}	0.21^{Bb}	1.0^{Ac}	27.4^{Aa}	0.8^{Bc}	0.4
RP200	22.0^{AB}	0.29^{Bab}	12.6 ^{Aa}	18.5^{ABbc}	28.4^{Aa}	0.9
RP400	14.5^{AB}	0.36^{Aa}	5.5 ^{Ab}	11.0^{Bd}	15.4 ^{Ab}	2.1
IP600	19.0^{AB}	0.21^{Ab}	$2.9^{ m Abc}$	16.5^{Bcd}	0.7^{Bc}	1.2
			2020			
DP0	9.5 ^B	0.55^{Aa}	1.3 ^A	19.0^{Aab}	5.0^{B}	1.3
SP200	17.5^{B}	0.37^{Abc}	1.2^{A}	16.0^{Bb}	3.8^{A}	1.2
RP200	13.0^{B}	0.43^{Ab}	1.3^{B}	16.5 ^{Bb}	4.1^{B}	1.0
RP400	14.5^{B}	0.32^{Ac}	1.2^{B}	16.5^{Bb}	3.3^{B}	1.0
IP600	15.5^{B}	0.30^{Ac}	1.4 ^A	23.0^{Aa}	4.0^{A}	1.0
			2021			
DP0	15.0 ^A	0.31 ^B	1.4 ^A	19.5 ^{Ab}	7.9 ^{Aa}	0.7
SP200	18.0^{A}	0.30^{AB}	1.8^{A}	24.5^{Aab}	2.9^{ABb}	1.5
RP200	26.0^{A}	0.23^{B}	2.9^{B}	24.0^{Aab}	2.4^{Bb}	1.1
RP400	18.0^{A}	0.28^{A}	2.5^{AB}	27.0^{Aa}	3.1^{Bb}	1.5
IP600	19.5 ^A	0.28^{A}	1.2^{A}	19.0^{ABb}	3.8^{Ab}	0.7

Table S6. Leaf area traits and morphologic characteristics of C₄ grasses pastures at different levels of intensification of pasture-based systems (DP0, SP200, RP200, RP400

and IP600) during the experimental period.

Effects	-	-		Variables		
Treatments	Seasons	LAI	SLA	Leaf	Stem	Dead Material
		(m ² m ⁻²)	(cm ² g ⁻¹)	(%)	(%)	(%)
		C ₄ Gra	asses			
DP0		0.61	138.6	27.9	16.7	55.4
SP200		1.16	223.5	23.2	23.5	53.3
RP200		2.13	175.0	27.1	32.2	40.7
RP400		3.92	115.0	47.5	28.5	24.0
IP600		6.57	138.9	54.1	26.2	19.7
	Spring	2.68	149.9	52.8	14.7	32.5
	Summer	4.92	189.3	48.5	38	13.5
	Autumn	2.55	162.4	27.3	31.9	40.8
	Winter	1.35	132.0	16.1	16.9	67
Means		2.67	156.8	36.1	25.4	38.5
Standard Error		0.21	4.06	1.26	1.23	1.46
	Statist	ical Probab	ilities (P Va	alue)		
Treatments		<.0001	<.0001	<.0001	<.0001	<.0001
Seasons		<.0001	<.0001	<.0001	<.0001	<.0001
Treatments × Seasons	S	<.0001	0.0002	<.0001	<.0001	<.0001

LAI: Leaf area index; SLA: Specific leaf area.

Table S7. Treatments × seasons interaction on the leaf area and morphologic characteristics of C4 grasses pastures at different levels of intensification of pastoral systems for beef cattle production (DP0, SP200, RP200, RP400 and IP600).

Tuestuseuts		Se	easons	
Treatments	Spring	Summer	Autumn	Winter
	I	eaf Area Index (m	² m ⁻²)	
DP0	0.60^{Dbc}	1.06 ^{Da}	0.61 ^{Db}	0.15 ^{Cc}
SP200	1.38^{CDab}	2.17^{Da}	0.82^{Db}	0.25^{Cc}
RP200	1.75 ^{Cb}	3.49^{Ca}	2.44 ^{Cb}	$0.85^{ m Bc}$
RP400	3.49^{Bb}	7.64^{Ba}	3.53^{Bb}	1.01^{Bc}
IP600	6.20^{Ab}	10.21^{Aa}	5.35^{Ab}	4.52^{Ac}
	Sp	ecific Leaf Area (c	$m^2 g^{-1}$	
DP0	135.84 ^{BCab}	150.99 ^{Ca}	148.51 ^{Ca}	119.12 ^{Cb}
SP200	197.18^{Abc}	299.35 ^{Aa}	218.39^{Ab}	179.25 ^{Ac}
RP200	157.40^{Bb}	211.24^{Ba}	186.65 ^{Ba}	144.85^{Bb}
RP400	126.20^{Ca}	136.28^{Ca}	111.28^{Da}	89.98^{Db}
IP600	132.91 ^{Cab}	148.84 ^{Ca}	147.09 ^{Ca}	126.78^{Cb}
		Leaf (%)		
DP0	43.3 ^{Ca}	39.1 ^{Ca}	20.6^{BCb}	8.8^{Cc}
SP200	36.6^{CDa}	34.8^{Ca}	17.2^{Cb}	5.3 ^{Cc}
RP200	29.7^{Dab}	35.9 ^{Ca}	26.2^{Bb}	16.9^{Bc}
RP400	69.7^{Ba}	70.2^{Aa}	36.8^{Ab}	12.2 ^{BCc}
IP600	82.7^{Aa}	60.3^{Bb}	35.8^{Ac}	37.6^{Ac}
		Stem (%)		
DP0	12.5 ^{ABb}	38.9 ^{BCa}	12.2 ^{Db}	3.0^{Cc}
SP200	20.0^{Ab}	44.7^{ABa}	23.8^{Cb}	5.2^{Cc}
RP200	20.7^{Ac}	49.0^{Aa}	37.7^{Bb}	21.2^{Bc}
RP400	9.8^{Bc}	26.6^{Db}	40.8^{ABa}	36.5^{Aa}
IP600	9.7^{Bd}	31.8^{CDb}	45.0^{Aa}	18.3^{Bc}
<u> </u>		Dead Material (%		
DP0	44.2 ^{Ac}	22.0^{Ad}	67.2 ^{Ab}	88.2 ^{Aa}
SP200	43.4 ^{Ac}	20.5^{Ad}	59.0^{Bb}	89.5^{Aa}
RP200	49.6^{Ab}	15.1 ^{ABd}	36.1^{Cc}	61.9^{Ba}
RP400	20.5^{Bb}	3.2^{Cc}	22.4^{Db}	51.3 ^{Ca}
IP600	7.6 ^{Cc}	7.9^{BCc}	19.2 ^{Db}	44.1 ^{Ca}

Means followed by the same capital letter in the column and lower case in the row do not differ by Fisher's test (P < 0.05).

Table S8. Treatments \times seasons interaction on the productive characteristics of C_4 grasses pastures at different levels of intensification of pastoral systems for beef cattle production (DP0, SP200, RP200, RP400 and IP600).

Treatments		Seas	sons	
	Spring	Summer	Autumn	Winter
Seaso	ons Accumulatio	n of Forage Mass (kg DM ha ⁻¹ season	ns ⁻¹)
DP0	1996.3	3002.4	1915.3	1151.4
SP200	3143.9	4168.5	1610.8	1275.5
RP200	3386.6	6853.9	3243.6	1326.6
RP400	7321.1	11548.0	5749.2	3704.9
IP600	8820.9	11672.0	5871.1	4568.2
D	aily Accumulation	on of Forage Mass	(kg DM ha ⁻¹ day ⁻¹)
DP0	21.9	33.0	21.0	12.7
SP200	34.5	45.7	17.7	14.0
RP200	37.2	75.3	35.6	14.6
RP400	80.5	127.7	63.2	40.7
IP600	96.9	128.3	64.5	50.2

Means followed by the same capital letter in the column and lower case in the row do not differ by Fisher's test (P < 0.05).

Table S9. Nutritional characteristics of C₄ grasses pastures at different levels of intensification of pasture-based systems (DP0, SP200, RP200, RP400 and IP600) during

the experimental period.

Effects		Variables				
Tuestuesuta	Cassans	СР	NDF	<i>IV</i> DMD		
Treatments	Seasons	(%)	(%)	(%)		
	C	4 Grasses				
DP0		5.8	73.4	45.5		
SP200		7.3	72.2	52.1		
RP200		7.9	70.9	55.5		
RP400		6.4	70.0	54.8		
IP600		9.7	68.6	56.8		
	Spring	8.9	69.6	55.4		
	Summer	9.2	69.5	58.5		
	Autumn	6.9	71.2	51.0		
	Winter	4.7	73.7	46.8		
Means		7.4	71.0	52.9		
Standard Error		0.32	0.39	0.88		
	Statistical Pr	obabilities (P Va	ılue)			
Treatments		0.0013	<.0001	0.0013		
Seasons		<.0001	<.0001	<.0001		
Treatments × Seasons		0.0003	0.0389	0.0002		

CP: Crude protein; NDF: Neuter detergent in fiber; *IV*DMD: *In vitro* dry matter digestibility.

Table S10. Treatments × seasons interaction on the nutritional characteristics of C₄ grasses pastures at different levels of intensification of pastoral systems for beef cattle production (DP0, SP200, RP200, RP400 and IP600).

Treatments	Seasons					
•	Spring	Summer	Autumn	Winter		
		Crude Protein (%)				
DP0	7.9^{Ba}	6.0^{Bb}	5.0^{Cbc}	4.4 ^{Bc}		
SP200	$8.4^{ m Bb}$	10.8^{Aa}	6.8^{Bc}	3.3^{Bd}		
RP200	7.2^{Bbc}	9.7^{Aa}	8.2^{Aab}	6.4^{Ac}		
RP400	8.0^{Ba}	9.3^{Aa}	5.7^{BCb}	2.5^{Bc}		
IP600	12.9 ^{Aa}	10.1 ^{Ab}	8.8 ^{Ab}	6.9^{Ac}		
	Neut	ral Detergent Fibe	r (%)			
DP0	69.5 ^{ABb}	75.5 ^{Aa}	74.0 ^{Aa}	74.6 ^{ABa}		
SP200	70.3^{Abc}	68.7^{Bc}	72.7^{Ab}	77.0^{Aa}		
RP200	71.6 ^{Aab}	70.0^{Bab}	69.8^{Bb}	72.2^{Ba}		
RP400	70.0^{ABbc}	66.6^{Bc}	70.3^{Bb}	73.0^{Ba}		
IP600	66.6^{Bb}	66.9^{Bb}	69.9^{Bb}	71.5^{Ba}		
		Lignin (%)				
DP0	5.1	5.3	6.3	7.4		
SP200	5.1	4.7	6.5	7.1		
RP200	4.7	3.8	4.5	4.8		
RP400	4.3	4.5	4.6	4.9		
IP600	3.8	4.2	4.1	4.5		
		Ory Matter Digesti	bility (%)			
DP0	50.3 ^{Ba}	52.8 ^{Ba}	42.2 ^{Cb}	36.8^{Dc}		
SP200	58.2^{ABa}	62.4 ^{Aa}	47.8^{Bb}	40.1^{Cc}		
RP200	52.8^{ABbc}	63.6^{Aa}	55.6 ^{Ab}	49.8^{Bc}		
RP400	56.7^{ABa}	56.8^{ABa}	54.2 ^{Aa}	51.6 ^{Ba}		
IP600	59.3 ^{Aa}	57.0 ^{ABa}	55.2 ^{Aa}	55.6 ^{Aa}		

Means followed by the same capital letter in the column and lower case in the row do not differ by Fisher's test (P < 0.05).

Fig. S1. Representative sketch of the shadow projection of the tree crowns of SP200 system with rainfed *U. decumbens* cv. Basilisk pasture and Brazilian native trees.