Supplementary Material

Diversity of ammonia sources in Tianjin: nitrogen isotope analyses and simulations of aerosol ammonium

Libin Wu^A, Yiwen Zhang^B, Yunting Xiao^A, Jialei Zhu^A, Zongbo Shi^C, Yuantao Wang^A, Hong Xu^D, Wei Hu^A, Junjun Deng^A, Miao Tang^{D,*} and Pingqing Fu^{A,*}

^AInstitute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China

^BSchool of Biological and Environmental Engineering, Tianjin Vocational Institute, Tianjin, 300410, PR China

^cSchool of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK

^DTianjin Eco-Environmental Monitoring Center, Tianjin, 300191, PR China

*Correspondence to: Email: tangmiao32@163.com, fupingqing@tju.edu.cn

Table S1. Statistics (average \pm standard deviation) of the concentrations of daytime and nighttime gaseous NH₃, aerosol NH₄⁺ and other major ions, water-soluble organic carbon (WSOC), total dissolved nitrogen (TDN) and δ^{15} N in NH₄⁺ in PM_{2.5}, as well as MixSIAR source apportionment results, when assuming there were six NH₃ sources (livestock breeding, N-fertiliser application, human waste, fossil fuel sources, NH₃ slip and biomass burning) or two classifications of NH₃ sources (volatilisation-related source and combustion-related source) of initial NH₃ to form NH₄⁺ in PM_{2.5} collected at Nankai and Jinghai, Tianjin respectively during the whole sampling period.

Location	Nankai		Jinghai	
Time	Daytime	Nighttime	Daytime	Nighttime
$NH_{4}^{+}(\mu g \ m^{-3})$	4.99±2.89	7.65±4.26	3.80±3.63	7.75±3.98
$NH_3 (\mu g m^{-3})$	7.92±5.14	5.86±3.25	-	-
$NH_3-N + NH_4^+-N \ (\mu g \ m^{-3})$	10.18±6.08	10.74±5.46	-	-
$NH_{4}^{+}-N/(NH_{3}-N+NH_{4}^{+}-N)$	0.40±0.12	0.56±0.17	-	-
δ^{15} N-NH4 ⁺ (‰)	10.9±4.3	9.6±4.0	9.4±6.8	9.8±7.8
δ^{15} N-initial NH ₃ (‰)	-9.7±6.3	-5.6±4.8	-10.6±6.6	-6.8±7.6
$SO_4^{2-}(\mu g \ m^{-3})$	7.92±4.94	8.73±5.30	13.26±4.84	14.88±6.26
$NO_{3}^{-}(\mu g m^{-3})$	6.09±4.48	11.52±8.65	8.12±7.14	14.35±7.35
$PO_4^{3-}(\mu g m^{-3})$	$0.79{\pm}0.04$	$0.78{\pm}0.02$	1.04 ± 0.02	$1.04{\pm}0.04$
WSOC ($\mu g m^{-3}$)	2.88±1.46	3.19±1.45	3.33±1.70	3.71±1.99
TDN ($\mu g m^{-3}$)	4.66±2.65	$7.93{\pm}5.07$	4.62±4.11	8.50±4.67
Livestock breeding (%)	15.0±3.1	14.6±3.3	15.5±3.9	14.9±4.0
N-fertiliser application (%)	10.3±1.9	7.1±1.5	11.0±2.5	10.0±2.4
Human waste (%)	11.8±2.4	9.5±2.1	12.7±3.2	10.6±2.8
Fossil fuel sources (%)	27.2±4.1	32.1±4.7	24.9±4.7	30.3±5.5
NH ₃ slip (%)	14.5±2.8	12.9±2.6	15.6±3.7	11.9±2.8
Biomass burning (%)	21.3±3.9	23.8±4.4	20.3±4.6	22.5±5.1
Volatilisation-related source (%)	35.3±4.5	26.4±5.0	37.8±5.5	29.7±4.1
Combustion-related source (%)	64.7±4.5	73.6±5.0	62.2±5.5	70.3±4.1

Note: "-" means no data.