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Abstract

Think about knowing how busy your favourite bar is before getting dressed and
leaving home.. Think about a smart house, which automatically controls heating
and lighting, and at the same time saves energy when nobody is at home.. Think

about a university, in which you always find a place in class because the
assignment of the classrooms is based on previous occupations data.. It could

certainly be useful.

Internet of Things (IoT) and Machine Learning (ML) are nowadays gaining more
and more importance in computer science world. The aim of this project is to use
these two disciplines in order to find a robust model able to predict occupancy sta-
tus of an indoor space. Real-time measurements on the occupancy status of a room
can be exploited in many scenarios (HVAC and lighting system control, building
energy optimization, allocation and reservation of spaces, etc.). Traditional tech-
niques involve the use of cameras combined with video analysis. To avoid problems
of privacy violation in public places it is necessary to use less invasive techniques,
such as measurement of the concentration of carbon dioxide (Co2) in the air, that
has been proved to be very related to the amount of people who are breathing
in an indoor space. An economic network of precise sensors has been designed
and developed for data collection and machine learning studies were performed,
obtaining excellent prediction results in two different scenarios. The greatest con-
tribution to these results is mainly due to the innovative technique of using more
than one Co2 sensor, positioned in strategic places and communicating in a local
network, and to a first phase of prediction regarding the opening state of windows.
If combined with other techniques, such as other environmental sensors or wireless
packets sniffers, we believe that an even more precise estimate can be reached, in
order to achieve the higher goal of a smart campus development.





Sommario

Pensa di poter conoscere quanto è affollato il tuo bar preferito prima di vestirti e
uscire di casa.. Pensa a una casa intelligente, in grado di controllare

automaticamente il riscaldamento e l’illuminazione, risparmiando energia
consumata inutilmente quando nessuno è a casa.. Pensa a un’università, nella

quale trovi sempre posto a lezione perchè l’assegnamento delle aule si basa su dati
storici di occupazione.. Sarebbe certamente utile.

Internet of Things (IoT) e Machine Learning (ML) sono due discipline che al giorno
d’oggi stanno guadagnando sempre più importanza nel mondo dell’informatica.
L’obiettivo di questo progetto è quello di unire queste due discipline con lo scopo
di creare un modello in grado di fornire predizioni robuste riguardo lo stato di
occupazione di un ambiente chiuso. Misurazioni in tempo reale riguardo lo stato
di occupazione di una stanza possono essere sfruttate in diversi scenari (sistemi
HVAC, sistemi di controllo illuminazione, ottimizzazione energetica di edifici, allo-
cazione di spazi, ecc..). Le tecniche tradizionali prevedono l’utilizzo di telecamere
e analisi dei video prodotti. Tuttavia, per evitare problemi di violazione della pri-
vacy dei presenti in luoghi pubblici, è necessario utilizzare tecniche meno invadenti,
come la misurazione della concentrazione di anidride carbonica (Co2) nell’aria, che
si è dimostrata essere molto legata alla quantità di persone che stanno respirando
nell’ambiente chiuso. Una rete economica di sensori precisi è stata progettata e
sviluppata per raccogliere dati, e sono stati fatti studi di machine learning, otte-
nendo eccellenti risultati di predizione in due diversi scenari. Il maggior contributo
a questi risultati è stato principalmente dato dalla tecnica innovativa di utilizzare
più di un singolo sensore, posizionati in posti strategici e comunicanti in una rete
locale, e da una prima fase di predizione riguardante lo stato di apertura delle
finestre. Se combinato con altre tecniche, come l’utilizzo di altri sensori ambientali
o sniffer di pacchetti wireless, crediamo che una stima ancora più precisa possa
essere raggiunta, con l’obiettivo più grande di sviluppare un campus universitario
intelligente.
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Chapter 1

Introduction

1.1 Overview

The Internet of Things (IoT) is a new paradigm that has become very popular
in the last few years. It provides the existence of smart electronic objects, which
are capable to communicate their information to other objects or central units,
through a wireless internet network. Smart objects can be sensors, computers or
embedded systems with the capability to connect and be part of the same network.
IoT application are both in everyday problems and activities (such as healthcare,
transportation, houseworks, etc.), with the aim of making our lives more com-
fortable, and in industrial contexts (such as manufacturing, agriculture, energy
management, etc.), with the aim of automating or simply monitoring some funda-
mental processes. Some studies show that the number of objects connected to a
network nowadays is growing strongly: if in 2017 they were “only” 8.4 billions, it
is expected that 30 billions will be reached by 2020 [34].
Another important area of modern computer science is Machine Learning (ML).
It is a subset of artificial intelligence which studies algorithms by which a machine
can learn and create a mathematical model simply by observing a large amount of
collected data. This is commonly used in cases in which someone wants to predict
the status of some variables or make decisions, without knowing anything about
the laws that controls a physical phenomena, or the criteria with which to make
the decisions themselves. Machine learning is becoming more popular every day
and its fields of application are becoming even larger. They range from computer
vision, to weather forecasts, to predictions of simple variables, such as the number
of people in a room. In 2019 it became almost mandatory for a large company to
have a department dedicated only to this specific practice.
The most spontaneous union of these two disciplines, Internet of Things and Ma-
chine Learning, is divided into the following steps:

- An IoT wireless sensor network is used to collect a large amount of obser-
vations about one or more interesting variables and all data are stored in a
central device.

- Data are than processed by a machine learning algorithm which crates a
model for the prediction of one or more of these variables, based on the value
of the others.

1



Chapter 1. Introduction 1.2. Project Objective

- The model is implemented in the central unit, which is reprogrammed for
predicting and displaying the interested status, based on real time values
coming from sensors.

This project shows a specific application of this process, focusing in detail on the
development of the first two points.

1.2 Project Objective

Knowing the occupation status of an indoor space can be nowadays a crucial in-
formation. It can help both a single person, for example in reducing the loss of
time per day, or a large company, for example in saving energy spent unnecessarily.
Here some examples. Let’s suppose you are a student in an exam session. During
the session the study halls are full of people and there is the risk of not finding
a place to sit down. Campus is big enough and you want to be sure to choose a
room with some free places before leaving home. It would be very useful for you to
know how many seats are available simply by consulting a web page or writing to a
chatbot. This could often save you a lot of time. Let’s now suppose that you are in
charge of scheduling heating, ventilation and air conditioning (HVAC) systems of
university buildings. You know that this systems account for approximately half of
the energy consumed in buildings in developed countries, and about 20% of total
consumption in the USA [31]. It is therefore essential to design and operate HVAC
systems in an energy-efficient manner to meet low-energy targets and save unnec-
essary consumption [9, 25, 35]. Traditional system are based on fixed scheduling
and correction through real-time temperature sensing. Suppose now that a lesson
was unexpectedly deleted from the traditional schedule. It would be very useful to
know that no one is in the classroom and automatically turn off air-conditioning
system even if it is very hot. The same applies to lighting control [23] A third area
in which people counting can be useful is the study of spaces and rooms utilization.
Collecting data about room occupancy at a given time, a building manager can
analyse which rooms are under-utilized or over-utilized, adjusting room allocation
and utilization accordingly. Other possible application are for security purposes in
big environments, like for example accelerating safe evacuation [36].
The objective of this project is therefore to find a robust method for indoor occu-
pancy detection, without using invasive methods that violate the privacy of those
present. In particular, have been used data about Co2 concentration in the air,
proved to be very related to the number of people in the room [6, 26, 10, 18, 26].
Moreover, Co2 sensors are often installed in modern Building Management System
(BMS) for other purposes, and can be exploited and integrated into a predictive
system. An IoT multisensor system has been implemented for data collection, and
machine learning techniques have been used, in order to make it possible to arrive
at this estimate without knowing the physical model of people’s Co2 emissions.
Results have been evaluated and discussed.
This study finds its place within the smart campus project, a program with the
main purpose of improve students’ experience at the university campus, providing
them with some IT facilities as, for example, information about the occupation
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state of a classroom. Smart campus project also aim to automate some fundamen-
tal processes in university buildings, such as heating or air conditioning, things that
can be facilitated by the knowledge of the exact real-time occupation of classrooms
and common areas [33, 30, 4].

1.3 Thesis Outline

This section summarizes the layout and contents of the thesis chapters.

Chapter 2 analyzes in detail Co2 people emission and analyzes the feasibility of
using it to count people in closed environments. Then it describes the state of
the art for indoor and outdoor occupancy detection methods. Related works
are classified in term of IoT technologies, used prediction features, machine
learning methods and obtained results.

Chapter 3 describe the hardware part of the project, starting from some theo-
retical considerations and ending with a detailed description of this specific
implementation of the IoT architecture. It talks specifically of: how a carbon
dioxide sensor works, how hardware platforms (such as Arduino, Raspber-
ryPi, Esp8266) can be exploited in IoT applications, communication proto-
cols such as MQTT, visual programming with Node-RED and management
of a MySQL database. Motivations regarding the choice of all technologies
used, and schemes about our specific implementation, are also reported.

Chapter 4 describe the prediction part of the project and its evaluation methods.
Also in this case the chapter describes at first some machine learning tech-
niques from a generic point of view, and than describes in detail how data
have been pre-processed and used to get a consistent model. This chapter
also talk about model validation and testing methods.

Chapter 5 is the part related to the experiments actually performed with the
methods described above. Two different experiment scenarios are described,
together with the related methodology of ground truth calculation. For each
scenario performance are evaluated, and followed by some graphs that helps
in results explanation.

Chapter 6 is the conclusive part of the project. Our initial goals and their
achievement are discussed, leaving then space for some considerations about
possible future works.
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Chapter 2

State of the art

There are a large number of methods used in literature for people counting pur-
poses, both in indoor and outdoor environment. This problem is quite complex
due to many variables that must be considered, like users privacy, level of accuracy
required and system cost. This chapter gives an overview for all these methods and
provide a wide view on the state of the art for the subject of the entire work. This
analysis is than taken as common base for the project, starting from the choice of
the method for results evaluation, also providing a good initial feasibility analysis.
Several systems have been developed and proposed in literature for this purpose,
mainly divided into two categories:

- Image-based

- Data-based

Data-based category can be further divided into these main categories:

- Detection and radio-based sensors

- Sniffing network packets

- Environmental sensors

The chapter continues with a more specific analysis regarding the use of Co2 and
ends giving an idea of what are the most commonly found problems.

2.1 Image-based detection

All methods that make use of video cameras technology belong to this category.
Cameras are used like sensors, able to capture information from frames through
image analysis techniques. The starting point of every human detection system is
the Viola-Jones one, with the Haar feature based approach [37]. This technique
involves the search for Haar-like features in the image and the subsequent process-
ing of these features in a multi-staged cascade classifier. It was one of the first
algorithms for real-time human detection and some implementations are available
in the OpenCV library like for example “Full Body Detection”, “Upper Body De-
tection” and “Lower Body Detection”. Another important early approach is based
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on Histograms of Oriented Gradients (HOG), proposed in 2005 by N.Dalal and
B.Triggs [14]. These methods, although less precise than modern ones, are highly
used in industry because they require little computing power and they are readily
available in computer vision libraries such as OpenCV [1]. Modern methods are
mainly based on deep Convolution Neural Networks (CNN). In general they con-
sist in training personal CNN able to recognize and localize people inside images.
If primitive methods included the use of already trained models, CNN needs to
be trained with a large number of samples, in order to significantly improve the
performance. They often require GPU acceleration to provide comparable frame-
rates to earlier approaches. However, these methods are far more robust and their
accuracy is close to perfection [2]. A strong point of image-based techniques is cer-
tainly the high level of precision obtained in people counting. For example Zhang
[41] utilized the depth-frame data from a Kinect camera to detect people with a
precision of 99.7%. Petersen [32] applied the same approach reaching an accuracy
of 99%. However, installing cameras, can be perceived as a privacy violation and
often represents an additional investment and running cost to a building project.
Other problems can derive from the impossibility of counting people occluded by
some objects, or standing behind other people.

2.2 Detection and radio-based sensors

A second group of techniques is the one that makes use of detection sensors and
radio-based sensors. Currently, the most commonly used sensor for occupancy
detection is Passive Infared Sensors (PIR), generally installed in buildings for an
automatic management of lighting or for security purposes. However, relying solely
on PIR sensor, is rather uncertain since sensors do not capture immobile occupants.
For this reason PIR are much more used to detect people passing through a door
and the direction of their movement, compared to the absolute count of people.
These methods are generally based on a couple of sensors [38]. A different system,
able to reach 95% of accuracy is explained in [20]. An array of 8 digital PIRs is
positioned up in the center of the door, parallel to the moving direction, in order to
detect passage and establish movement direction of people. Other works, like [22],
use a large PIRs sensor network with the aim of monitoring people movements in
a large building. Radio-based devices instead include WiFi, Bluetooth, and any
electromagnetic waves and gamma rays. Radio measurements are also very used as
data for occupancy estimation, managing to distinguish the state of wireless signal
between an empty environment and an occupied one. For example, the work in [15],
uses a couple of transmitter and receiver devices to assess the impact of a certain
number of people on the signal strength indicator at the receiver (RSS), blocking
the line of sight. Authors developed a model for the probability distribution of
the received signal amplitude as a function of the total number of occupants and
use that as estimation methods in indoor spaces with a maximum of 9 people,
having an average error below 2 for 95% of the times. A low-power pulsed radar
was utilised for people counting in [21]. The model, based on support Support
Vector Regression (SVR), was able to find a correlation coefficient of 0.97 and a
Mean Absolute Error (MSE) of 2.17 between ground truth and estimations up to
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40 occupants. Beside being very cheap, such systems have the benefit of being
able to work both in indoor and outdoor spaces. Sometimesdetection and radio-
based sensors are integrated with other different type of sensors, in a more complex
model, trying to further increase accuracy.

2.3 Sniffing network packets

If the radio-based methods previously treated were free from assumptions about
devices owned by people, there are methods based on sniffing packets sent on the
network just by personal devices. These methods are mainly for people tracking
purposes in indoor spaces, where GPS is not appropriate. In fact indoor environ-
ment requires finer granularity and precision of that offered by the GPS (5-10m).
The GPS signal is also often not present inside buildings. Considering indoor track-
ing, Di Domenico et al. [16] were the first investigating on possibilities to estimate
crowd in an indoor environment. In their work they analyzed LTE signals, with
three receivers placed in different positions, with a maximum accuracy of 92%.
Another work by Abbott-Jard et al. [3] describes an interesting method for track-
ing vehicle using Bluetooth Media access control Scanner (BMS) and Wi-Fi Media
access control Scanners (WMS), doing real surveys along an arterial corridor in
Brisbane. WLAN signal is instead used by Handte [19] in order to track people
movements on public transports, to improve their organization and transport ex-
perience. His accuracy was able to reach around 49%. Other works extend the
sniffing of signals in order to estimate number of people present in an area within a
certain radius. In particular they propose machine learning methods based on the
number and characteristics of sniffed Bluetooth and Wi-Fi probe requests [39, 30].
A common problem of all these approaches is that are all based on the assumption
that every person has one and only one device with Wi-Fi or Bluetooth turned
on, while in reality people often turn off connections devices to save battery. Also
privacy problem must be considered.

2.4 Environmental sensors

Some techniques that mix the previously treated methods have often been used.
For example Zhao et al. [42] obtained convincing occupancy detection results in
offices using a Bayesian Belief Network (BBN) together with information from
Wi-Fi, GPS location, chair sensor, and keyboard and mouse sensors. However,
some occupants may still consider these sensor data to be intrusive. The only
completely non-intrusive approach ever adopted is the use of environmental sen-
sors. They include variables such as temperature, humidity, noise and Co2. Lot of
works, summarized in table 2.1, focus their attention on this kind of data, mixing
different type of sensors and different machine learning methods. The Building
Level Energy Management Systems (BLEMS) project from University of Southern
California [40], for example, uses a combination of sensors (light, sound, motion,
CO2, temperature and humidity sensor), each of them connected to an Arduino
board which sends data to a central database. They uses Radial Basis Function
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(RBF) for the machine learning prediction. An 87.62% accuracy was achieved for
self-estimation (train and test in the same room) and when the model was imple-
mented in another room, the cross-estimation result showed a 64.83% of accuracy.
Other machine learning algorithms, such as Multi-Layer Perceptron (MLP), Gaus-
sian Processes (GP), Linear Regression (LR), Support Vector Machine (SVM) and
Ensemble Voting (EV) were implemented with an accuracy between 46% and 95%
[28]. Another work [13], using temperature sensors only, achieved 85% of accuracy
to predict a maximum of two persons in a single room. Their accuracy can be up to
95%-99% adding features such as light, Co2 and humidity data. They uses an Ar-
duino with a ZigBee radio for data communication to a remote storage system and
different machine learning algorithms. A further framework was created to pro-
duce occupancy estimates at different levels of granularity and provide confidence
measures for effective building management in [24]. By using K-Nearest Neighbor
(KNN) and SVM, their accuracy reached a maximum of 94.7%. A real-time occu-
pancy detection system by using Decision Trees (DT) with multiple types of data
such as light, sound, Co2, motion and computer power sensors was conducted by
[18]. The lowest accuracy in detecting the binary presence/absence of a person
was received from sound sensors (90.79%) and the highest one from motion sensors
(98.44%). Another model based on temperature, humidity, Co2, sound, pressure
and illumination sensors was used to carry out the binary prediction concerning
the state of the room (occupied/vacant) in [5]. By using feature engineering and
various machine learning algorithms such as MLP, GP with RBF, SVM, and Naive
Bayes (NB) the human occupancy can be detected above 95%. These are just
some of the multitude of jobs regarding occupancy prediction through environ-
mental sensors and machine learning, and are summarized in table 2.1.

Source Data Type Algorithm Max.P Evaluation

[40] Light, sound, motion,
Co2, Temperature,

Humidity

Radial Basis Function 9 87,6%

[13] Temperature, Light,
Co2, Humidity

Random Forest, Gradient
Boosting Machines,

Decision Tree

2 95%-99%

[24] PIR, Noise,
Temperature, Light,

Humidity

K-Nearest Neighbor,
Support Vector Machine

20 94.7%

[18] Co2, Computer
current, Light, PIR,

Noise

Decision Tree 1 98.4%

[5] Temperature,
Humidity, Co2, Noise,

Pressure, Light

Multi-Layer Perceptron,
Naive Bayes, Gaussian

Process with Radial Basis
Function, Support Vector

Machine

Binary
Occupacy

95%

Table 2.1: Multi-sensor occupancy detection research
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2.5 Co2-based prediction

Since Co2 sensors are often already integrated with ventilation infrastructure in
buildings, in this work we focus on utilising only Co2 sensor data. Lot of works
have identified Co2 to be one of the most correlated feature to estimate the number
of indoor human occupants and that it is sufficient to reach an acceptable level of
precision. Consequently, operational cost can be reduced by not purchasing and
installing extra sensors such as PIR or motion.
Two approaches can be used to create a reasonable model:

- Physically modeling human emissions

- Machine learning methods

2.5.1 Physically modeling human emissions

Physically modeling human emissions means exploiting knowledge about the com-
position of the air and about the human metabolic system in order to create a
correct expiration model. It is known that persons exhales Co2 as the natural
process of breathing, but unfortunately the amount varies from person to person,
depending on multiple variables such as height and weight. Equation 2.1 gives the
exhalation rate of Co2 per person based on these parameters [8].

λ =
M ×RQ×

√
H ×W

21131× (0.23×RQ+ 0.77)
(2.1)

λ = Co2 production rate
M = metabolic rates (in W/m2)
RQ = respiratory quotient
H = height (in cm)
W = weight (in kg)

In particular this relationship is non-linear in person height and weight and it
must be considered in our estimation. However having a complete model of the
exhalation flow rate of a single person is not sufficient to determine the relationship
with the absolute concentration of Co2 in the room. Other equally important
aspects in creating a good physical model are in fact the characteristic variables
of the room itself. In particular, a simplistic study [17], modeled the state of
an indoor space at time t as function of its volume and its ventilation rate (fig.
2.1). Volume is important due to the fact that, as the size of a space changes, the
emissions of a single person have a different impact in terms of absolute carbon
dioxide concentration. Ventilation instead is important due to the fact that if
indoor air is mixed with clean outdoor air the absolute internal Co2 concentration
inevitably changes.
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Figure 2.1: Simplified scheme of gas exchange in a room

Going to analyze more in-depth studies, like the one in article [11], this relationship
is better explained. In particular equation 2.2 shows the relationship between the
variation of total internal Co2 mass (proportional to the concentration through
room volume), Co2 production rate and characteristic variables of the room, valid
for values of m found in everyday reality.

dm(t)

dt
= λ+

(
c0ρ−

1

v
m(t)

)
Q (2.2)

m(t) = total Co2 mass at time t
λ = Co2 production rate
c0 = Co2 concentration in ventilation flow
Q = ventilation rate
V = room volume

When the ventilation rate is null, the variation is simply directly proportional to the
emission rate. When the ventilation rate is not null and someone is exhaling in the
room, instead, the variation will be higher for low values of m, to become completely
stationary when m is high enough. When no one is present in the room, finally, the
internal mass will decrease until reaching a steady state, in which the ventilation
flow will be balanced. Figure 2.2 shows Co2 concentration curves of a 21m3 space
during a 8 hours night, with one person sleeping, with different ventilation rates.
Analyzing all these information we can clearly understand how for creating an
accurate physical model we must discover many unknown parameters and make
strong assumptions. Furthermore we note that, due to the dependence on the
room volume and its air flow rate, the model inevitably changes from an ambient
to another. However, this analysis leads to interesting considerations that can be
exploited in the construction of a machine learning model, such as the tendency
of the concentration curve to stabilize due to the presence of external air flows,
and the possible correlation of the number of people not only with the absolute
quantity of carbon dioxide, but also with its variation.
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Figure 2.2: Theoretical Co2 concentrations during 8-hours sleeping of a person in a 21m3

room, with different flow rates

2.5.2 Machine learning methods

Due to the impossibility of knowing all physical parameters, several studies in the
literature have used machine learning techniques. Machine learning allows you to
create accurate models simply by analyzing previously collected data, even without
any physical knowledge of the subject. The main disadvantage is the need for a
data collection and model train phase, which can be dependent from the specific
prediction ambient. Table 2.2 presents a detailed analysis of related works on
indoor occupancy detection using machine learning and Co2 data. Sensors and
technologies used are also analyzed here.

Source System Sensor Algorithm Max.P. Evaluation

[6] Cloud upload +
MATLAB,WEKA,R

Netatmo Urban
Weather Station

CD-HOC (Serial
Decomposition
+ Regression)

4-300 Accuracy
94%-73%

[26] Local storage +
WEKA

K30 Sensing by
proxy

7 RMSE
0.6311

[10] Download data from
BACNet server

unknown PerCSS +
Ensemble Least

Square
Regression

42 NMSE
0.075

[18] Local storage +
KNIME

K30 Decision Tree 1 Accuracy
94.7%

[26] Co2 sensor network +
central database

unknown Hidden Markov
Models, Neural

Network,
Support Vector

Machines

4 Accuracy
65%-80%

Table 2.2: Carbon dioxide sensor-based occupancy detection research

A possible approach is the one followed in [6]. They use a Netatmo Urban Weather
Station, upload data to cloud for integration purposes, and than utilize Weka,
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Matlab and R to perform experiments. They use Seasonal-Trend Decomposition
(STD) and Seasonal-Trend decomposition based on Loess (STL) with a different
ML method for each singular component obtained from decomposition. They test
the system in two different scenarios, a room (maximum 4 people) and a cinema
(maximum 300 people), obtaining respectively 94% and 73% of accuracy. In the
cinema case the accuracy is intended considering correct an estimate with a gap of
±10 compared to ground truth. Same authors also carried out a study about how
to extend a model trained in a specific room to make predictions for other different
rooms, without the need of retrain the entire model [7]. Research in [26] argues the
validity of the sensing by proxy method, a “sensing paradigm which infers latent
factors by ‘proxy’ measurements based on constitutive models that exploit the spa-
tial and physical features in the system”. Data are collected locally with a K30 Co2
sensor, and than sent wireless to a remote database for analysis. Sensing by proxy
turned out to be better compared to other classic machine learning techniques in
3 selected scenarios, reaching a Root Mean Square Error (RMSE) of 0.6311 for
occupation up to 7 people in the same room. An interesting data pre-processing
method is proposed in [10]. They present the PerCSS method, an algorithm that
“uses task-driven Sparse Non-negative Matrix Factorization (SNMF) to learn a
non-negative low-dimensional representation of the Co2 data in the pre-processing
stage”. Then they use an Ensemble Least Square Regression (ELSR) based on this
denoised data to learn a model. Denoising data increased baseline performance. In
an experiment conducted downloading data directly from a building management
BACNet server, they reach a Normalised Mean Square Error (NMSE) of 0.075, in
a classroom of capacity 42, and an accuracy of 91% and 15% for exact occupancy
estimation, when the room was respectively unoccupied and occupied. Machine
learning algorithms such as Hidden Markov Models (HMM), Neural Network (NN)
and Support Vector Machine (SVM) were implemented in [26], learning to predict
an occupancy of maximum 4 people with an accuracy between 65% and 80%. HMM
seemed to be the most precise method. From information gain analysis, among the
possible features concerning the carbon dioxide, the most correlated to number of
people seemed to be the sample-by-sample variation of Co2. Other studies have
been performed to identify the presence of a single person in his usual work station
[18]. With Decision Tree (DT) and using only Co2 data an accuracy of 94,6% has
been achieved with, also in this case, a K30 sensor.

2.6 Considerations and common problems

After an in-depth analysis of the literature, we can deduce the following consider-
ations:

- In human detection without cameras, PIR is the most used sensor. However,
although very cheap, PIR is not suitable for counting many people.

- Each research uses different prediction methods, either machine learning
based or not, but often the evaluation metrics are different or even accu-
racy is not provided. This makes difficult a direct comparison between each
technique.
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- Co2 is one of the best ambient variable for human occupancy detection in
an indoor space. Lots of Co2 related feature can be considered for predic-
tion, such as difference between indoor and outdoor concentration or absolute
variation respect to previous instants.

- Datasets are generally not publicly available, for a complete research in this
area it is necessary to build your own system for data collection.

The goal of this work is to achieve a good occupancy estimation using only carbon
dioxide data, developing a reliable system for Co2 level measurement and samples
collection, solving the most common problems found in literature in an innovative
way and improving the performance achieved by similar studies. The main problem
and possible solutions regarding Co2 people counting are listed below.

Latency There is an intrinsic delay between human exhalation and room Co2
increasing. This delay is inevitably present in data, which therefore need a
preprocessing phase. An interesting and simple method for managing this
delay is proposed in [6].

Uncertainty Co2 level in an indoor space is not only related to human who are
breathing in the ambient, but also to the opening and closing of windows and
doors. To overcome this problem, a model is proposed that is able to detect
and adapt to the eventual windows opening.

Measurement reliability Even with the most accurate Co2 sensor it is difficult
to have an accurate measurement of the carbon dioxide concentration in the
whole environment, the measure is often affected to the nearness of a person
who is exhaling. For this reason, a solution with several sensors in the same
environment has been adopted and different methods for data aggregation
and filtering were considered and compared.

Precision Most of related works are limited to the binary prediction of the occu-
pation state of a room. Precise people counting is a difficult problem, which
is complicated in an exponential way with the increase of the capacity of the
room. For this reason we will use as evaluation metrics both Root-Mean-
Square Error (RMSE) and an accuracy with tolerance bands. The combined
analysis of these two measures allows us to better evaluate the performance
of the model.

Scalability Each environment differs from another in terms of size, but above all
due to the presence of different air recirculation systems. This does not allow
to create a universally valid model, making it necessary to create a new model
in every new ambient in which you want to make a prediction. An analysis
was made in this work about the possibility of creating a model simply by
mixing data from different scenarios. A more complete method has instead
been studied in [7].
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Chapter 3

IoT system implementation

3.1 Theoretical background

In this section are explained some important theoretical concepts about hardware
and software used for the development of the entire IoT system, starting from how
a carbon dioxide sensor works, up to the tools used for data acquisition.

3.1.1 Co2 sensor

A Co2 sensor is an instrument able to measure the carbon dioxide concentration
in the air. It is measured in percentage Parts Per Million (PPM) and is one of the
most important indicator in monitoring air quality. Fresh air, which is breathed
outdoors every day, is generally around 400ppm. The most common types of
Co2 detectors are Nondispersive Infrared Sensor (NDIR) and chemical gas sensors.
NDIR is the most often used type of sensor.

Figure 3.1: schematic of an NDIR sensor

As shown in figure 3.1, they are composed of an infrared (IR) lamp, a tube filled
with a sample of air, and an IR light detector. As the IR light passes through
the tube, the molecules of Co2 absorb a specific band of the light while letting
other wavelengths pass through. The remaining light arrives to the optical filter,
able to absorb every wavelength except to the exact wavelength absorbed by Co2.
So, the IR detector can read the amount of light that was not absorbed by the
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Co2 molecules or the optical filter. The difference between source and destination
amount of light is proportional to the concentration of Co2 in the air inside the
tube. The discovering of the relation between this variable and the exact value
in PPM is known as sensor calibration. Calibration is usually done by fixing a
conversion curve between output voltage of the sensor and the corresponding PPM
value. The best sensitivities reached by NDIR sensors are 20-50ppm [27]. The
chemical sensors, on the other hand, are based on sensitive layers made up of
polymer or heteropolysiloxane and are more energy efficient. They are generally
much smaller than NDIR but have the disadvantage of having a shorter lifetime.
They are in fact generally used in microelectronic-based systems.
From the analysis of similar studies (table 2.2), K30 carbon dioxide sensor, by
Co2Meter, turned out to be the most reliable and also the most used (fig. 3.2).
It is a low cost, infrared, and maintenance-free sensor, integrated on a specific
board dedicated to conversion and transmission via UART of a digital signal. An
important feature of this type of sensor is the ability of self-calibrating thanks to
the built-in self-correcting Automatic Baseline Correction (ABC) algorithm. This
algorithm constantly keeps track of the sensors lowest reading over a 7.5 days
interval and slowly corrects for any long-term drift detected as compared to the
expected fresh air value of 400 ppm. Some other properties relevant to this research
are summarized in table 3.1.

Figure 3.2: Co2 meter K30 sensor

3.1.2 Microcontrollers

A microcontroller (also called MCU - MicroController Unit) is an electronic device
integrated on a chip and used in embedded system. It is actually a programmable
complete system that integrates on a single chip a processor, a program, a RAM
memory and also some I/O channels (pins). In the following are summarized some
of the main features of the electronic devices used for this research.
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Power Input 5.5-14VDC, stabilized to within 10%

Current Consumption 40mA average (max 300mA peak on start-up)

Dimension 5.1x5.7x1.4cm (Length x Width x approximate Height)

UART(TxD,RxD) CMOS, ModBus communication protocol with 3.3V
powered logics, 9600 baud rate

Measurement Range 0-10000ppm

Response Rate 2 sec

Sensitivity ±20ppm ±1% of measured value

Accuracy ±30ppm ±3% of measured value

Table 3.1: K30 sensor properties

Arduino Uno

Arduino Uno is an open-source microcontroller board based on the Microchip AT-
mega328P microcontroller (fig. 3.3). It is equipped with 14 digital pins and 6
analog pins to communicate with other boards or other circuits. It can be pow-
ered by a USB cable or by an external 9 volt battery and can be programmed
via a type B USB cable through a dedicated Integrated Development Environment
(IDE) called Arduino IDE. It is probably the most used microcontroller for reading
data (both analog and digital) coming from sensors thanks to its simplicity of fast
programming. In this basic and cheap version, Arduino does not have an already
integrated wireless interface.

Figure 3.3: Arduino Uno board

ESP8266

ESP8266 is a low-cost Wi-Fi microchip with full TCP/IP stack, produced by
Espressif Systems in Shanghai (fig. 3.4). It has 8 pins that include powering
(3.3V) and communication via UART (Tx and Rx pin). Thanks to these pins it
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is able to communicate with classical microcontroller through AT commands or
dedicated libraries, extending their functionality and allowing them to communi-
cate wireless with other devices. Even if modern microcontrollers come with a
Wi-Fi chip integrated, using ESP8266 with a classical Arduino Uno remains the
most economical option. To be able to use ESP8266 correctly, however, a phase of
installation of the most updated firmware is necessary.

Figure 3.4: ESP8266 Wi-Fi module

Raspberry Pi 3

Raspberry Pi 3 is something more than a simple microcontoller, it is a small com-
puter which hold an operating system, integrated on a single board (fig. 3.5). It is
able to host operating systems based on Linux kernel, like for example Raspbian,
exclusively designed for this board. In this way it is able to execute most of the
programs that can be run on a normal computer, like a web server, a database
server or a python script. Raspberry Pi 3 comes with 40 GPIO pins, but also 4
USB 2.0 ports and network interfaces like Ethernet 10/100, WiFi 2.4 GHz and
Bluetooth 4.1. It is also equipped with an HDMI out port, which allow you to con-
trol it through a locally connected screen, but it can also be controlled remotely, via
Secure SHell (SSH) or Virtual Network Computing (VNC). This small-computer is
very used in IoT projects as a small central server for processing, saving or simply
displaying data.

Figure 3.5: Raspberry Pi 3
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3.1.3 MQTT protocol

Message Queue Telemetry Transport (MQTT) protocol is a standard ISO mes-
saging protocol. It is based on the publish-subscribe paradigm and it runs over
TCP/IP. It is designed to be light weight, simple and easy to implement. These
characteristics make it ideal for use in many situations such as for communication
in Machine to Machine (M2M) and IoT contexts, where small code footprint is re-
quired, bandwidth is reduced and low power consumption is needed. It is nowadays
widely used also by big corporations, like Facebook (with Facebook Messenger) or
Microsoft (with Azure IoT).

Figure 3.6: MQTT protocol structure

An MQTT system is composed of a server, usually called “broker”, communicating
with an indefinite number of clients (fig. 3.6). Each client connected to the broker
could be either an information publisher or a subscriber. Information is organized
in a hierarchical way in different topics. A topic is uniquely identified by a string,
which represents the hierarchy of topics themselves, in a way similar to how folders
are identified on a computer. An example of topic could be:

Polimi/ANTLab/sensor1/Co2 (3.1)

In order to communicate via MQTT a client must first be connected to the broker.
A connection phase, in which the client provides the broker with information like
his ID or his authentication credentials, is so required. Once connected to the
broker each client could either publish data on a specific topic or subscribe to
a specific topic. Every time a publisher will post a new message on a topic, the
MQTT broker forwards that message to all clients connected and subscribed to that
topic. In this way publisher and subscriber could send or receive data ignoring the
existence and the locations of other clients.
Another important MQTT feature is the possibility of setting different Quality of
Service (QoS) in client connection to the broker. A different level of QoS determines
a different security level regarding the delivery of the message to destination. Class
0 is the best effort approach, the message is sent only once without waiting for any
acknowledgment from destination. If QoS is set to 1 the publisher continues to
transmit the message until it is acknowledged by the broker. Class 2, on the other
hand, guarantees not only the delivery of the message to destination, but also that
it does not arrive twice.
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3.1.4 Node-Red

Node-Red is a development tool for visual programming launched in 2013 (fig.
3.7). In fact, users can develop programs not only by writing textual code, but also
by graphically manipulating predefined or customizable program elements (called
nodes). It is flow-based and it is designed for wiring together hardware device,
APIs and online service, providing fundamental utilities in IoT world. Node-Red
runs on Node.js platform and his flow editor is so accessible also remotely via web
browser on its predefined port (1880). Each flow is stored locally using JSON
format and automatically executed when Node-Red is launched.

Figure 3.7: Node-Red development tool

Node-Red aims to let users with poor programming background to create IoT
application, simply by wiring together function flows, using the wide range of nodes
that are present in the palette. There are nodes for every type of service, and new
nodes are developed everyday. MQTT nodes, for example, allow users to create
an MQTT connection simply by specifying the IP address of the broker. Also
Dashboard nodes are widely used, as they allow to create an advanced graphical
interface for data visualization and program control in a very simple and intuitive
way. Node-Red is very suitable for use on Raspberry Pi, so much so that in the
latest versions of Raspbian it is already pre-installed.

3.1.5 MySQL database

MySQL is a Database Management System (DBMS) for relational databases devel-
oped by Oracle Corporation from 1995. It is composed by a server and a command-
line interface, dedicated to perform data reading and writing operations in rela-
tional schemes. It is a cross-platform software and can be installed in all modern
operating systems, including Raspbian. The server manages the storage of rela-
tional data and once authenticated a user can perform all the classical operations
available on a SQL database, such as:

CREATE to add new tables to the relational schema

INSERT to insert a new row in a specific table
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SELECT to retrieve some specific data from a table or an aggregation of tables

DUMP to download database in a desired format

There are several methods for accessing a MySQL database server in addition to
the command line, both locally and remotely. For example almost all programming
languages have their own libraries for the connection to a MySQL server and query
performing. Also Node-Red has dedicated nodes for this purpose. Another access
option is the usage of PhpMyAdmin. It is an open source graphical administration
tool written in PHP and so accessible via web browser. It runs on a web server
like Apache and is able to access locally the database, creating an intuitive user
interface, accessible both from local and remote, after an authentication phase.

3.2 System implementation

In this section is presented how the IoT system for data acquisition has been
implemented, focusing on the main choices and explaining in details how the tools
presented in 3.1 have been exploited and interconnected between them.

Figure 3.8: General hardware schema

In figure 3.8 is represented the general scheme for the entire system, from sensors
to central acquisition unit. It is evident that the initial choice of Wi-Fi as com-
munication method between parts played a fundamental role in the choice of all
other utilized technologies. If a mono-sensor system was initially tested with serial
data communication, later, the creation of a multi-sensor system with four detec-
tors located in different areas of the room, necessarily entailed the use of wireless
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technologies, maintaining communication cable only for one of the four sensors,
which is located near the server itself. Another important choice was to use a local
network for data collection, in order to be completely independent from internet
connection. To better understand the physical structure of the system, this section
is divided into two main parts:

1. Sensor-side: this part is dedicated mainly to sensor power supply, circuits
implementation for information reading and sending to the server, and related
code.

2. Server-side: this part is focused on the creation of the local network and
on acquisition software, implemented on Raspberry Pi, exploiting Node-Red
and MySQL tools.

All aspects concerning the effective data collection carried out in the various sce-
narios, and related encountered problems, are then discussed in chapter 5.

3.2.1 Sensor Side

Sensor side part is based on a central Arduino Uno, programmed to periodically
read data from sensor and send them to server through the Wi-Fi connection. An
overview of the connections is presented in figure 3.9. Three identical groups of
this type have been implemented.

Figure 3.9: Sensor side wireless configuration

Power supply

An Arduino Uno works on a voltage of 5V and an amperage of maximum 800mA.
Since K30 sensor, as specified in table 3.1, needs a power input grater than 5 volts,
and perform at best at a voltage of 9V, an external power supply is required. K30
sensor current consumption is instead on average 40mV, but it reaches a peak of
300mA during the IR lamp start-up (for a duration of 50ms). Two different type
of power supplies have been taken into consideration:
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1. Socket power supply: this method is the simplest, because not affected by
problems of energy depletion, but obviously it obliges to allocate sensors near
current sockets or to pull cables at long distances. A 9 volt power pack, with
DC adapter and at least 350mA of amperage (in order to guarantee a correct
sensor start-up), can be attached to the 2.1mm Arduino Uno power plug.
This voltage will thus be available on the Vin pin, which can be connected
directly to the sensor.

2. Battery: this method can be very useful in situations in which current is
not available or socket is too distant from sensor location. A standard 9V
battery can power the sensor with a direct connection, or with a DC jack
adapter connected to the Arduino Uno, as in the case analyzed above. With
an average power consumption of 40mA, 800mAh will last about 20 hours
of continuous work. The choice regarding the use of this second method
obviously depends on the application context.

Sensor to Arduino

As specified in K30 sensor documentation, this kind of sensor is ideal for operating
an industry standard UART TXD-RXD connection with Arduino microcontrollers.
Two cables were welded to the sensor Tx and Rx pins, and connected respectively
to the selected Rx and Tx pins of the Arduino board (fig. 3.10).

Figure 3.10: Serial connection between Arduino and K30

Arduino to Esp8266

Esp8266 needs a preliminary phase of firmware updating, in order to correctly in-
terface with proper Arduino’s libraries. Updating was done through Arduino itself
and through a Windows dedicated software. This method exploits Arduino as an
adapter from classical USB serial port to UART TXD-RXD connection, needed
by Esp8266 for firmware flash. Arduino is also exploited as 3.3V power supply
and to connect GPIO-0 to ground, to bring the Esp8266 into firmware update
mode (fig. 3.11). Once the firmware is updated, it is possible to communicate to
Esp8266 through Arduino IDE serial monitor and AT commands. For example
AT+UART DEF was used to set some parameters fundamental for UART com-
munication, such as the baud rate (number of data transmitted in a second on
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the communication channel). The final connection, which brings the Esp8266 into
operating mode, is obtained by connecting its Tx and Rx pins respectively to the
selected Rx and Tx pins of the Arduino board, both its VCC and its CH EN to
the 3.3V pin, and its Ground to Arduino’s GND pin.

Figure 3.11: Esp8266 firmware update mode

Arduino software

Arduino Uno has been programmed with the dedicated environment Arduino IDE,
connecting the microcontroller directly to a windows laptop through a serial USB
port. A simplification of the software schematic is in figure 3.12.

Figure 3.12: Arduino software

When the program is launched two serial communication are initialized, one with
the sensor and one with the Esp8266. Since Arduino Uno does not support the
management of two serial channels open at the same time on standard digital pins,
the Esp8266 communication is started on Tx and Rx Arduino pins. Then a Wi-Fi
connection is established to the local network access point and, if successful, is
created an overlying MQTT connection to the broker in the network. Command
sending to Esp8266, for performing all this operations, is managed by an Arduino
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library. When all connections are established program execution jumps to the
main loop. A data request is sent periodically to the sensor, by writing a string
of bytes in the serial interface. On every request program waits to get a 7 bytes
response on the same interface and save bytes on a dedicated buffer. Buffer content
is then converted in a decimal number and published via MQTT through Esp8266
on the proper topic. The value in seconds of the loop delay, the pins for serial
communication to sensor, the sending topic, the address of the MQTT broker and
the SSID and password of the Wi-Fi connection are all configurable parameters
in program settings. A re-connection manager has also been implemented, for the
proper management of cases in which Wi-Fi or MQTT connection is accidentally
lost.

Serial alternative

This variant provides direct connection of the USB interface of Arduino Uno to
one of the USB ports of the Raspberry Pi. Data transmission in this way is simpler
and more reliable because it doesn’t suffer from any problems of lost signal (fig.
3.13). A simpler version of the Arduino software has been implemented for this
alternative, that only establish communication with sensor for data retrieval and
send them through standard serial interface to the server.

Figure 3.13: Sensor side cable configuration

SmartGate

SmartGate is the result of a project by two Politecnico di Milano students, de-
veloped in ANTLab until December 2018 (fig. 3.14). It is a complete system on
its own, able to detect people passage through a gate, and related direction [4].
This system was found to have an accuracy of 97% in indoor environments and, if
positioned at the door of the experiment room, can be very useful for ground truth
computation. SmartGate is also Wi-Fi and Arduino based, and so programmable
through an USB cable and Arduino IDE. Source code has been shared with this
project and so SmartGate has been properly configured to connect via Wi-Fi to the
local network access point. Data about people entering and leaving the room are
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so instantly sent to the MQTT broker on a dedicated topic and are so immediately
made available to the server to keep track of the number of people actually present
in the room during the data collection phase.

Figure 3.14: SmartGate used for ground truth computing

3.2.2 Server Side

Server side part consists in a single Raspberry Pi 3 acting as access point for the
local network, as MQTT broker, as database server and also implements, with
Node-Red, the MQTT client and all the features necessary for data acquisition. A
simplified block diagram about server functionalities is shown in figure 3.15.

Figure 3.15: Raspberry Pi block diagram

Raspberry Pi has been configured to have two Wi-Fi interfaces available: the first
is the standard one, integrated into Raspberry, and is used to connect the server
to an external network, making it possible to access remotely database server and
Node-Red graphic interface. The second is obtained by connecting a Netgear Wi-
Fi USB adapter (fig. 3.16) and configuring it to act as an access point interface in
a standalone network.

26



3.2. System implementation Chapter 3. IoT system implementation

Figure 3.16: Netgear WNA3100 Wi-Fi USB adapter

Access point configuration consists of the following steps, directly executable from
a local Linux terminal or remotely via SSH:

1. Setting a static IP address to the interested wlan interface in the dhcpcd.conf
file.

2. Installing and configuring a DHCP server, specifying the range of addresses
that will be assigned to devices connected to the network. For this purpose,
thanks to its ease of configuration, Dnsmasq server has been used.

3. Installing and configuring the access point host software, specifying interested
wlan interface, network SSID (the name of the network) and network wpa
password. Hostapd software was used as host software and it was set up to
run as a “daemon” process on every system launch.

A Mosquitto MQTT message broker was chosen to manage data communication.
Mosquitto is an open source project written in C which stands out for being a very
light and easy to use server, compatible with Raspbian operating system. Once
installed and configured to be accessible both locally and remotely, it automati-
cally runs in background on every system launch, and is so always available for
interested clients.
A camera was also properly configured to interface via USB port with the Rasp-
berry Pi, in order to provide the server with periodic images of the surrounding
environment useful, in some cases, for manual data labeling.
Another fundamental component of Raspberry Pi software is the database server,
implemented with MySQL. Database was configured to be accessible, after an
authentication phase, both locally and remotely. This allows both the Node-Red
software to create new tables and insert real-time data, and external users to access
the same tables and download them in the desired format. In particular, for remote
access, a classic Apache web server has been installed on Raspberry and config-
ured to run PhpMyAdmin database administration application. More information
about database and table structure are provided in the following sections.

Node-Red client

The core of the server activities is certainly made up of the Node-Red client. It is
able to interact with all other components listed above to perform data acquisition
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with automatic labelling, and also to implement an interactive Graphical User
Interface (GUI) for real-time data monitoring and control. The application is
developed in a single flow that deals with all these aspects. An overview of the
final flow is shown in figure 3.17. Each node, coming from a library, is a program
feature, that may accept an input message and activate upon its arrival. Each
node could also have one or more output messages, which can in turn activate
other nodes. Nodes usually require to be properly configured specifying some
functional parameters. The orange nodes are instead customizable ones, able to
execute any Javascript function.

Figure 3.17: Node-Red application code

Following is a list of the main components that are part of the application.

- Initializer : the flow is mainly based on concurrent update of common global
variables. An initializer function is performed on flow start, with the purpose
of creating all the necessary variables, setting them to a specified initial value.
Also some functional parameters are specified in this block.

- MQTT receivers : Each MQTT receiver connect to the local (127.0.0.1) broker
at predefined port 1883, and subscribe to a specific topic. In particular there
is a receiver for each wireless sensor and a specific receiver for the SmartGate
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topic. Co2 data arrives as simple strings and specific functions are then
charged to transform them into the appropriate numerical format, adding as
information the origin topic. SmartGate string data are instead on a single
topic and possible values are “entry” or “exit”.

- Serial receiver : A single serial receiver is configured to read Co2 data from
the directly connected Arduino. The connection is opened on the interested
Raspberry COM port. Data arrives as single bytes and when a special char-
acter, called separator (\n), is read, the corresponding string is forwarded to
the following node.

- Data processing : A big Javascript node deals with management of input data
and global variable update. It also perform some average operations. In fact
data arrives from sensor at high frequency and we want to save them in
database at a lower frequency, specified by users. Whenever the sampling
period expires all data collected in global arrays are averaged and results are
passed as outputs for visualization and saving purposes. Also a measure of
the gradient with previous sample and a total average between all sensors
are calculated, just for visualization purposes.

- Database manager : A specific node is dedicated to authenticated connection
with the local database server, on the default 3306 port, and accepts incom-
ing specific queries. More information about database tables structures and
performed queries are provided in next section.

- Dashboard : A specific GUI has been developed using Node-Red official dash-
board library. It is not only for data visualization purposes, but also to
control some basic parameters of the program. A screenshot of the dash-
board is reported in figure 3.18. A chart is responsible for representing the
time sequences of the various sensors data and at the same time represent-
ing the average between them. Some indicators represent instead last values
received and current Co2 gradient from each sensor. A numerical counter of
data received from each sensor is also available in order to monitor if sensors
are currently sending data. Another fundamental block is the acquisition
controller, through which it is possible to start and stop acquisition phase,
also specifying a name for next acquisition and monitoring the number of
acquired data. If acquisition is off, data are still received and plotted in the
chart, but not saved in the database. There is also a photo viewer, which
shows the last picture taken by the webcam, with a switch to select if we
want to save photos or not during acquisition phase. Last but not least is
the ground truth controller. It allows user to manually adjust the current
number of people present in the room and to specify whether or not to adjust
this variable based on the data received from the SmartGate. From here, it
is also possible to specify the opening status of windows.

- Mobile dashboard : A dashboard optimized for mobile devices has also been
implemented, just for ground truth setting (fig. 3.19). It provides a con-
troller for the number of people, and one for windows state, connected to the
respective controllers of the main dashboard.
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- Photo saving : The photo saving block is in charge of periodically taking
photos from the webcam and saving them in a specific folder. A folder is
created for each new acquisition, and photos are saved at the same frequency
as data saving in the database. The name of each photos is the current
timestamp.

Figure 3.18: Node-Red GUI screenshot

Figure 3.19: Node-Red mobile GUI screenshot

GUI interface is accessible also remotely via web browser, by typing in the URL
bar “raspberryIpAddress:1880/ui”. A dedicated menu let user to select the visual-
ization mode, between laptop and mobile.
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Database

Database is divided into individual tables, one for each single acquisition. Table
name is the same name of the acquisition and is composed by a string, chosen by
user, concatenated to the start time of the acquisition. Each tuple consists of the
following fields:

(timestamp, S1, S2, S3, S4, people, windows)

Timestamp is the key, to uniquely identify the tuple, and consists of the date
concatenated to the hour of its insertion in the table. Data from S1 to S4 are integer
that represent carbon dioxide concentration in PPM read by the corresponding
sensor. People is the ground truth about how many people are in the room and
windows is a boolean parameter concerning the status of windows opening. The
following query is so performed by Node-Red when a new acquisition begin:

CREATE TABLE tableName (ts varchar(256), co2s1 int(32), co2s2
int(32), co2s3 int(32), co2s4 int(32), people int(32), windows boolean)

An insertion query is instead executed whenever a new tuple is ready to be inserted
in the table. An example can be:

INSERT INTO tableName VALUES (’25/02/2019 18.41.34’, 727, 715,
785, 698, 5, 0)

Once an acquisition is terminated the corresponding table can be easily downloaded
in CSV format from PhpMyAdmin. In figure 3.20 is shown a screenshot of a table.

Figure 3.20: PhpMyAdmin database screenshot
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Chapter 4

Machine learning study

4.1 Machine learning overview

Machine Learning (ML) is an artificial intelligence branch, covering all algorithms
and statistical methods that a computer system uses to perform a specific task
without having specific sequential instructions, but having knowledge of a large
amount of data. These methods start from the last decades of the XX century in
various scientific fields, such as artificial neural network, data mining, computa-
tional statistics etc.. Machine learning methods are nowadays used in a wide vari-
ety of applications, such as computer vision, natural language processing, weather
forecasts and many others. This section is an introduction aimed at better under-
standing the methods used for the specific implementation in 4.3.
A formal and widely quoted definition about a machine learning algorithm was
provided by Tom M. Mitchell in [29]: “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P if
its performance at tasks in T, as measured by P, improves with experience E”.
Machine learning techniques are mainly divided into these categories, dependent
on the type of dataset available and the specific scope:

Supervised Learning is the technique that allows an algorithm to built a math-
ematical model from a set of data that contains both input and target infor-
mation. This model is than used to make target predictions on new input
data.

Unsupervised Learning aims to create the mathematical model from a set of
data which contains only inputs and no desired output labels. It is commonly
used to find some structures in data, like repeated pattern, or to group input
data into categories. Some semi-supervised learning methods can be used in
situation in which only a portion of data have no label information.

Reinforcement Learning is a technique based on performance. The purpose
is to place an agent in a dynamic environment, able to make decisions and
improve its performances on each new input data, not based on a specific
target value but based on a reward/penalty function. This involves finding
a balance between exploration (of uncharted territory) and exploitation (of
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current knowledge) on each new input data. Some typical application are in
autonomous vehicles or in learning to play a game against a human opponent.

Due to the form of our dataset and the scope of our study, we used supervised
learning techniques, so let’s focus on details and specific algorithms for this kind
of problems.
As specified above, supervised learning method involves the use of a labeled dataset
to obtain the best model which maps input parameters, called features, on a specific
output parameter, called target. The model will be able to make precise predic-
tions on new data, provided that they come from a sample space similar to the one
with which the model was built. Supervised learning is further divided into two
categories based on required output: regression is used for numerical continuous
targets, while classification for discrete targets divided in classes. The whole ML
process can be divided into two basic parts: data pre-processing and best model
calculation.
Pre-processing is about preparing input features in such a way as to be as appro-
priate as possible to represent the problem of model building. This phase includes
operation such as horizontal outliers filtering of noisy or redundant information,
data dimensionality reduction or new feature computation, feature normalization
and transformation. These steps are essential to the subsequent creation of a good
model and generally take a considerable amount of time in the entire process. The
product of data pre-processing is the final set used to train the model.
The search for the best model is instead characterized by the choice of the best
learning algorithm, which identifies a specific class of model, and the choice of
some model parameters, which define some characteristics concerning the particu-
lar model structure. A generic model can be represented as a function:

fA1..Ao(X1, .., Xn,W1, ..,Wm) (4.1)

where Ao are parameters about model structure, Xn are the input data features and
Wm are the weights which the model creation algorithm is able to optimize based
on available data. The output of the function is the desired target value. In order
to be able to make the above specified choices about model class and structure, and
have an effective feedback regarding their correctness, data are generally divided
into three strictly disjoint sets, which characterize also the three main phases of
this process:

Train This part of data is the one used by the learning algorithm to discover
the best model wights (Wm), which are calculated trying to reduce the gap
between the predicted and the real target value. A common problem to
be solved in this phase is the “overfitting”, which is related to a training
phase which adheres too much to the train dataset, without considering its
imprecision, and is therefore inadequate for predictions on future data.

Validation This part of data is the one used by the learning algorithm to discover
the best model parameters (Ao). This is typically obtained with a “brute
force” approach, that is cycling on the possible values of the parameters in
a set, or on possible combinations of values in case of multiple parameters,
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and repeating the training phase each time. Validation set is then used to
evaluate the various models and choose the best one.

Test This part of data is the one dedicated to the final evaluation of the model
found (fixed Wm and Ao), based on various error metrics, regarding a direct
comparison between what the model predicts on test input data, and their
real target value. In order to have a realistic evaluation it is important that
this part of data has not been used either for parameter setting (validation)
nor for weight optimization (train).

This division is just for the analysis phase. Once the algorithm and the best
parameters have been chosen, a final model will be trained with all available data,
and implemented with specific tools.

4.2 Problem definition

The aim of the ML part of this project is to define a process that, on the basis of
historic data collected with the system presented in chapter 3, is able to find the
best model M to predict future value of the number of people in the selected room,
having future information about carbon dioxide concentration (fig. 4.1, 4.2).

Figure 4.1: Real-time prediction scenario

Assume we have a set A of N disjoint acquisitions:

• A = {A1, A2, ..., An}

Each acquisition An consists of a different Q number of samples, identified by the
timestamps serie TSn = {tsn1, tsn1, ..., tsnq}. The time series associated with the
n-th acquisition are:

• Cn = {Cn1, Cn2, ..., Cnm} where each Cnm = {cnm1, cnm2, ..., cnmq}
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• On = {on1, on2, ..., onq}

C is the serie of the carbon dioxide concentrations collected from M sensors. O
are the human occupancy numbers. Also boolean values about windows situation
were considered in some parts of this work:

• Wn = {wn1, wn2, ..., wnq}

A single acquisition An can so be finally defined as:

• An = {TSn, Cn, On, Wn}

The output model of our ML process must be in the form M = f(c1,c2, ..., cm).

Figure 4.2: ML process definition

4.3 Implementation

Machine Learning process was structured as a flow of functional blocks, where each
block is configurable in its basic parameters and can be completely deactivated
and bypassed. The language chosen is Python, an interpreted scripting language,
which perfectly fits this programming style and provides many libraries for machine
learning (such as scikit-learn) and graph plots. Python nowadays is certainly the
most used language for ML purposes. A .py file was created for each functional
block and a main function has been programmed to call specific functions in the
correct order. Spyder IDE was used for programming and execution purposes. In
figure 4.3 is shown the entire flow for the machine learning process. Details on the
implementation of each block are provided in the following sections.

4.3.1 Data read

The first step of the whole ML process is the reading of the CSV files. Each
CSV file refers to a specific acquisition. Reading is performed through the library
Pandas and each acquisition is saved in a structure of the type An = {TSn, Cn, On,
Wn} as specified in section 4.2. In order to represent this type of structure, each
tuple is saved as a Pandas Series, an array with axis labels. Labels are represented
by an index of non repeated integers. It is important that all series in the same
acquisition are associated to the same index.
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Figure 4.3: ML process execution flow

Binarization

During this phase, if specified by a global parameter, a binarization process is
available. It consists of modifying the ground truth tuple On in order to represent
the binary free/occupied state of the room. The multiple classes, concerning the
number of people present, are therefore reduced to two with a simple algorithm
(alg. 1). The 0 class represent a vacant room, the 1 class represent an occupied
room.

Algorithm 1: Data binarization

for o in O do
if o < 1 then

o = 0;
else

o = 1;
end

end
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4.3.2 Sensors aggregation

This step concerns the aggregation of the sensors data Cn = {Cn1, Cn2, ..., Cnm}
in a one or more Cn series. Aggregation is performed horizontally between sensors
samples with corresponding index. Aggregation does not necessarily include all
the M sensors. A specific sensor, or even all the sensors, can be excluded from
aggregation and then considered as independent features. After this step we will
use M to indicate the number of aggregations present in the tuple Cn. Three
aggregation methods have been implemented and are discussed below.

Average

This method consists of a simple average of the corresponding samples, in which
all sensors have the same importance.

cnq =

M∑
m=1

cnmq

M
(4.2)

Median

This method consists in taking the median between the corresponding samples.
Median in a series of N ordered items is defined as the central value of the series,
which is the value occupying the position N+1

2
if N is odd, or the average between

values in positions N
2

and N
2

+1 if N is even. An advantage of the median is that is
independent from the possible error of a single sensor, which could greatly increase
the value acquired due to a person who expires momentarily in its proximity.

Penalize gap

This method consists in a weighted average between the corresponding samples,
in which are penalized samples that are far from the average itself. This method
points to solve the same problem of sensor error, in a lighter way than the median.

cnq =

M∑
m=1

cnmq × 1

1
M
×

M∑
i=1
|cniq−cnmq |

M∑
m=1

1

1
M
×

M∑
i=1
|cniq−cnmq |

(4.3)

4.3.3 Resample dataset

In this phase each dataset can be resampled at a lower desired frequency with
respect to the acquisition frequency. If fn is the sample frequency of the n-th
acquisition a tuple of integers factors R = {r1, r2, ..., rn} can be set as a program
parameter, and new frequency of each acquisition will be:

fnew
n =

f old
n

rn
(4.4)
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An aggregation method was defined specifically for each series, in such a way to
keep data consistent with the new frequency.

Timestamps TSn is aggregated by taking the first tsnq of each temporal window
as a time indicator for the entire window.

Co2 Cn is aggregated by calculating the average of all samples of each temporal
window. Result is than approximated to the nearest integer. This operation
is repeated for each aggregation of sensors data.

Occupancy On is aggregated in the same way as the carbon dioxide data. In case
of binary occupancy the most common value is considered.

Windows Wn is aggregated by taking the most common value of each temporal
window.

4.3.4 Filter series

This step regards the filtering of each Cnm temporal series aggregated in step 4.3.2.
The Butterworth filter was chosen for this purpose. It was first described in 1930
by the British engineer and physicist Stephen Butterworth in [12]. A Butterworth
filter is one of the simplest type of signal processing filter, designed to have a
frequency response as flat as possible in the passband, and to roll off towards zero
in the stopband. When viewed on a logarithmic Bode plot (fig. 4.4), the response
slopes off linearly towards negative infinity. The order of the filter defines the
magnitude of this decrease. A first-order filter’s response rolls off at -6 dB per
octave (-20 dB per decade). A second-order filter decreases at -12 dB per octave,
a third-order at -18 dB and so on. Another important parameter of this type of
filter is the cutoff frequency, which is the frequency that divides the passband from
the stopband.

Figure 4.4: Bode plot of a first-order Butterworth filter

39



Chapter 4. Machine learning study 4.3. Implementation

Series filtering has been implemented using butter function of the scipy.signal li-
brary. This function provide a classical implementation of the Butterworth filter,
settable in its order and critical frequency parameters. Filtering Co2 data, together
with the resampling and aggregation operations, can lead to innumerable advan-
tages. All these operations tend in fact to flatten sudden changes in Co2 quantity
signal, which are often due to sensor measurement errors or to people breathing
near the sensor itself. However, it is necessary to find the optimal exploitation of
these operations. If resampling frequency factor is too large, or if the Butterworth
filter is too invasive, it will result in an imprecise model. Optimal may change from
an acquisition to another. In figure 4.5 is shown an example of application of a
second order Butterworth to an imprecise short acquisition.

Figure 4.5: Example of second order Butterworth on Co2 data

4.3.5 Compute features

In this step new features are calculated from standard series and added to an input
tuple, related to the n-th acquisition, which we call In. Below is a list of selected
input features, together with an analysis of the advantages they could bring to the
model computation.

Co2 Co2 absolute values are the results of the aggregation and filtering steps.
They don’t need further operation and each aggregation can be added as an
input feature itself, based on the scenario and the aggregation context. A
selection of some Cnm in Cn tuple is so performed and results are added to
the input feature tuple In. We expect the absolute amount of carbon dioxide
to be the most related variable to the result, but that is not enough to have
a precise estimate. In fact the absolute concentration could depend also on
other phenomena occurred previously, such as windows opening, and not only
on the number of people breathing in the room.

Gradient If the absolute concentration might not be enough, its derivative, which
is the way in which it is varying in time, could be another good indicator.
For this purpose a number K of Co2 derivatives, where K is a configurable
parameter of the process, are calculated on a fixed aggregation m, resulting
in a new tuple Gnm = {Gnm1, Gnm2, ..., Gnmk}, where Gnmk = {gnmk1, gnmk2,
..., gnmk(q-k)}. Each gnmkq is the average variation of last k sample of Co2,
in aggregation m and acquisition n, and is calculated as specified in formula
4.5.
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gnmkq =

k−1∑
i=0

cnm(q−i) − cnm(q−i−1)

k
(where q > k) (4.5)

Adding Gnm to the input tuple In, forces to deprive all other input series of
the first K samples, not present in the various Gnmk, reducing dataset size.
We expect the model to improve when the gradient is added as a feature,
but only if together with carbon dioxide absolute value. In fact, even if Co2
variation should be highly related to the number of people who are breathing
and therefore emitting carbon dioxide, this correlation may differ based on
the current saturation of Co2 in the room. Let’s clarify this concept with an
example. Suppose that a man is breathing in a room, emitting a constant
quantity of Co2 called x. The air in the room is currently quite clean. Let’s
call y the actual low Co2 concentration in PPM. Therefore suppose that
each breath contributes to increasing the concentration y by x units. What
happens after a long time, if the windows are not opened and the room has no
air exchange with outside? When y become very high, air becomes saturated
with carbon dioxide, and each breath will result in a smaller and smaller
change in the total Co2 concentration. At high absolute concentrations we
therefore expect that small gradients are associated with a greater number
of people, compared to those we would have had with the same gradients in
case of low absolute Co2 concentrations.

Baseline difference Another feature which could be considered is the direct com-
parison between values of two different Cnm aggregation. It could be very
useful if a series which refers to Co2 values outside the room is taken as
baseline, and subtracted sample by sample to the correspondent indoor con-
centration. This allows to obtain a relative concentration value with respect
to a selected baseline ambient, which can be outdoor or also the corridors
of the building, making the model more scalable and adaptable to different
situations. This new series is called Dn.

Time class In order to consider a possible periodicity of Co2 values between one
day and another, it may be useful to insert a feature concerning samples
timestamp. If during the night, for example, the room has always been
empty, the model can learn to predict its vacant status especially thanks to
this parameter. Time series is created as a discretization of the TSn series
with a daily period, with respect to a configurable parameter L, regarding
the number of discretization classes with a maximum granularity in the or-
der of seconds. Let’s suppose that each tsnq is expressed in “seconds from
midnight” and that selected L is a divisor of 86400 (number of seconds in a
day). Corresponding tnq is obtained as specified in equation 4.6.

tnq =

⌊
tsnq

86400/L

⌋
(4.6)
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Final form of the input tuple for the machine learning algorithm is so, for each
acquisition n, In = {Cn1, ..., Cnm, Gnm1, ..., Gnmk, Dn, Tn}. Ground truth tuple
is instead defined as GTn = {On, Wn}.

4.3.6 Time lag

An intrinsic time delay is inevitably present in collected data. This delay is due
to the fact that when one person enters a room, it will take some time before the
Co2 level in the air increases proportionally. This effect is gradually increasing
with the size of the room. Since we will try to built a model considering singular
samples as simple tuples, and not as a temporal sequence of data, ground truth
series must be realigned to input series in the best way. To solve this problem we
used an approach similar to what proposed in [6], in which best time lag is found
by searching in the data themselves. This method involves brute-force cycling
on a possible sets of delays, expressed in number of samples, between zero and
an upper bound (UB) that has to be manually defined, based on the size of the
room and the sampling rate. Separately for each acquisition, for each possible
lag in the set, ground truth data GTn are shifted and line of best fit (LBF) is
calculated for each couple {Cnm,On} with a simple linear regression (m is fixed
on the most relevant Co2 aggregation). In figure 4.6 is shown an example of
LBF on a generic acquisition scatter plot. For each LBF is then calculated the
Normalised Root Mean Squared Error (NRMSE) on the same data used to create
it, as indicator of linear correlation. Best time lag corresponds to the best NRMSE.
Since each acquisition n can result in a different value of best time delay, an
average between all lags is finally calculated and the same time shift is applied
to all acquisitions. Same process may also be performed with more complicated
models than a simple linear regression, losing in computational time. As in the
case of gradient computation, a quantity of data equal to the value of the best time
lag is lost due to the shift.

4.3.7 Dataset fusion

In the literature, as specified in section 2.5.2, all models that are based on Co2
measurement are build with one long acquisition, which in some cases exceeds 15
days. The aim of this project is instead to reach good results with in a shorter time
period and with small fragmented acquisitions. After being processed separately
in the previous steps, the N acquisitions must be merged together in a unique
big acquisition in order to be processed by the machine learning algorithm. This
operation is made in an horizontal way, both on series of the various In and on series
of the various GTn. An operation of concatenation is performed for each type of
matching series, concatenating arrays of values and creating an index of increasing
integers starting from zero up to Q-1, called Q the total number of samples. In this
way In become a unique I = {C1, ..., Cm, Gm1, ..., Gmk, D, T} and GTn becomes
a unique GT = {O, W}. From this point on, the only big acquisition can no longer
be treated as a time series, as a union of discontinuous time lines.
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Figure 4.6: Example of LBF on a generic acquisition

4.3.8 Filter outliers

In statistics the term “outlier” is used to indicate, in a set of observations, a sample
that is distant from all other observed points. This could happen, for example, due
to measurement errors. Outliers are generally excluded from the dataset because
they can cause problems in creating the model. Different filters were designed in
order to horizontally exclude some samples in which one or more features leave
their own domain. The extremes of the domain can be manually set, but common
values are:

• 400ppm < cmq < 2000ppm ∀m,q

• -50ppm < gmkq < 50ppm ∀m,k,q

• oq ≥ 0 ∀q

This kind of filter is also used in order to exclude all samples in which wq is equal
to 1, if you want to create a model excluding data sampled with open windows.
Class adjust can also be seen as a part of the horizontal filtering process. This step
deletes some random elements from the larger occupancy ground truth classes.
This is due to the large amount of zeros values acquired during the night, which
could lead to the creation of a model that predicts zero class more than it should.
This step ends the preprocessing phase. Filtered data are passed to next functional
blocks for model creation and evaluation.

4.3.9 Two step estimate

The main problem to solve when trying to create an accurate model for indoor
people counting starting from environmental data, such as Co2, is that other vari-
ables, in addition to people presence itself, could impact on the measurement.
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Some of them, like plant respiration or daily programming of the air conditioner,
are cyclical and can easily be learned by the prediction model. Other factors, like
Co2 decrease due to clean air coming in from outside, can completely compromise
variable correlation and the creation of a suitable model. As previously specified,
during the data collection phase, the opening status of the windows was recorded
and added to ground truth information. In the following is proposed a method that
we call “Two Step Estimate” (TSE), which aims to overcome this problem making
predictions in two consecutive steps: first prediction is about windows state, sec-
ond prediction is about effective room occupancy. Figure 4.7 shows a schematic of
this ML process.

Figure 4.7: Two step estimate general schema

It involves the creation of three separate models with the same train data. The
first is for predicting windows status W from input tuple I. Train data are then
divided between those referring to a status of open windows (W =1) and those
referring to a state of closed windows (W =0). Two models are so created for
predicting people occupancy O from input tuple I in the two respective cases.
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Final model M actually used for prediction of O from I is an aggregation of these
three different models. In the following sections all the main components of this
method are explained in details.

4.3.10 Cross-validation

First choice is about external validation method, which means choosing how and
how many times divide data in the two test and train sets, in order to evaluate
the created model. The selected approach for external validation of the model is
K-folds cross-validation (fig. 4.8). This technique involves the division of data
into K disjoint folds, where K is a manually fixed parameter. In this way each
fold consists of Q/K distinct samples. Data division in corresponding folds is
completely random. All steps regarding model creation and evaluation, presented
in the following sections, are so repeated K times. At each step data coming
from a single fold are excluded from model construction and used later only for
testing purposes. All other data are instead used in the training phase. This will
lead to the creation of K distinct models and K distinct evaluation results, which
will be integrated together later, with a specific aggregation method. Evaluate a
model on data which were not used to build it, is also a good way to find any
overfitting problems, as well as being an insight on how the model will generalize
to an independent dataset. Cross-validation method is widely used in ML because
it allows to test the validity of a model independently of a particular selection of
test data.

Figure 4.8: K-fold cross-validation

Learning curve variant

In order to plot learning curves, which are other important indicators about model
performance, a variant about the external validation method was implemented
(fig. 4.9). A learning curve is a graphical representation of how an increase or
decrease in learning (performance) comes from greater experience. In ML context
performance is measured by the accuracy of the learning system (or the selected
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evaluation metric), while experience is the number of training samples. Data are
therefore divided into K folds, just like in cross-validation, but iterations start
with only a single fold for model training and add at each successive iteration a
training fold, up to the K-1 iteration which comes with only one test fold. A second
substantial difference is that the prediction phase is not carried out only on test
data, but also on train data. This allows to evaluate the performance of the model
also on data used for its creation. Two learning curves can therefore be plotted.
One is the test learning curve, whose accuracy may increase with experience. The
other is the training one, whose accuracy is expected to decrease when the number
of train samples increase. An ideal aspect for the two curves is shown in figure
4.10. As the number of train data increases it should be more difficult for the
model to adhere to all samples. If training score does not decrease with experience
model is probably overfitting. On the other hand, if test score does not increase
with experience model is not learning. It could be due to the fact that selected
algorithm is not adequate to the problem, or that maximum performance for these
data can be achieved even without using them all. The two curves should never
intersect. If test performance far exceed train performance it means that the model
is predicting approximately random values.

Figure 4.9: Learning curve computation

4.3.11 Feature evaluation and selection

The purpose of this step is to evaluate the correlation of each individual feature in
I with the target series. In fact it is advisable to discard features that have a poor
correlation with target, as it could result in a more precise model. This approach
of evaluating each feature correlation with target individually is called univariate
feature evaluation. This operation is executed separately both before windows
model training and before occupancy models training. In fact we could get very
different correlations if calculated with respect to W or O. The metrics available
in the Sklearn library for univariate evaluation of the features are basically two:

F-test Method based on F-test estimates the degree of linear dependency between
two random variables. This dependency is measured both in term of F value
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Figure 4.10: Ideal learning curve

and in term of p-value. The F value is the ratio of the mean regression sum
of squares divided by the mean error sum of squares, given by formula 4.8,
where yi are real target values, yi

p are predicted target values and y is the
mean of real target values.

F =

n∑
i=1

(ypi − y)2

n∑
i=1

(yi − ypi )2
(4.7)

Its value will range from zero to an arbitrarily large number, and high values
correspond to larger dependency. P-value is instead calculated as the proba-
bility that the hypothesis of a null model (a model with all of the regression
coefficients equal to zero) is true. It can be denoted as Prob(F). If Prob(F)
is small it means that there are small chances that regression parameters are
zero. It would imply that input variable is not purely random with respect
to the target. Since it is a probability, its value will obviously be between
zero and one.

Mutual information MI method, unlike the previous one, aims to capture any
kind of dependency between variables, not only linear dependencies. Result
is a non-negative value which measures the dependency between the two vari-
ables. It is equal to zero if and only if two random variables are independent,
and higher values mean higher dependency. A possible disadvantage of this
method is that it requires more samples than the previous one to get a precise
estimate.

Since our variables in I seem to be related to the target in a non-linear way, and
that the number Q of our samples is generally sufficiently large, MI method seems
to be the most appropriate for this problem. Both F-test and MI are available
both for a regression problem and for a classification problem.
Second step is about selection of evaluated features. This involves the transforma-
tion of the input tuple I in an equal or smaller tuple I ′. In this regard, Sklearn
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provides a wide range of feature selection methods, based on the statistical distri-
bution of the respective scores. Since for this specific problem the number of input
feature is relatively small, we decided to select the H features with best scoring
values, where H is a manually fixed parameter. The algorithm also provides a
manual selection of the specific features, in order to test the performance of the
model created with different inputs.

4.3.12 Model estimation

After horizontal data selection, in order to extract useful data for the calculation
of each different model, and vertical selection of most relevant features, the three
models are calculated. As specified in section 4.1, a generic model can be expressed
as a function fA1..Ao(X1,..,Xn,W1,..,Wm). This phase of the ML process aims to
select, once fixed a specific structure for function f, the best parameters Ao and
weights Wm for mapping input tuple (X1,..,Xn), that is our I, to a specific target
in O. Parameters Ao of each of the three models are estimated with an external
validation process. Weights Wm estimation is instead the effective model train-
ing process, and is different for windows model, which is a classical classification
problem, and occupancy models, which are instead regression problems.

Validation

For validation purposes a k-fold cross-validation procedure has been adopted, to-
gether with a brute force technique of cycling on all possible value of parameters.
Let’s suppose our model needs a certain number O of parameters to be fixed. For
each parameter we select an associated discrete finite domain Do of a certain num-
ber Lo of possible values. For each possible combination of indices (L1,...,Lo),
correspondent values tuple (v1L1,...,voLo) is fixed as model parameters (A1,...,Ao)
and cross-validation procedure is performed, dividing data into K folds and taking
them one by one as a validation set. Every iteration returns an evaluation of its
performance on data not used for model creation. These values are collected and
tuple (v1L1,...,voLo) generating best evaluation results is finally selected (fig. 4.11).

Figure 4.11: Validation procedure schema

Windows model

Windows model is called fw and aims to predict the windows opening state W
starting from the input tuple I ′. W is a binary target tuple, its domain is {0,1}. It
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is so a classical binary classification problem. Due to the simplicity of the problem,
and to the low number of features available, two rather simple algorithms were used
to build the model: logistic regression and decision trees.
Logistic Regression (LR), despite its name, is a linear model for classification. It
was born as a method to represent a binary variable, but it also adapts easily to
the multiclass case. The membership of a sample X to the specific target class y=1
is represented in terms of probability. The training of this model is in fact based on
wights (wj) estimation of a logistic probability function, regarding the probability
to belong to one class rather than another, which is in the form:

P (X) =
1

1 + e
−

P∑
j=1

wjxj

(4.8)

where P is the number of input feature. This formula is a combination between
a linear model in X and a logistic function. In case of a single input feature
it usually takes a form similar to that in figure 4.12. A threshold can then be
set, with respect to the probability that a sample must reach to be classified as
positive. This threshold is a classical validation parameter for this algorithm.
As the number of input features increase, the logistic regression model tends to
overfit training data. Some regularization is therefore necessary. Sklearn offers the
possibility of exploiting regularization of type L1 (Ridge) and L2 (Lasso). A more
detailed analysis of this type of regularization is in next section.

Figure 4.12: Logistic Regression with a single input feature

LR is also extensible to a multiclass case, for example through the One-Vs-Rest
(OVR) paradigm. It provides that a different model is created for each class, con-
sidering it as positive and the all other class as negative. In order to classify a new
input tuple X each model is so evaluated, giving a probability of belonging to each
class, and X is finally classified as the most probable class. The main advantage
of LR is that is very easy to implement and efficient to train. Moreover it returns
conditional probabilities which can be very useful for certain analysis. Anyway,
since it is a generalized linear model, its hypothesis space is limited accordingly
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and in some cases may not be appropriate.
Descision Trees (DT) are instead a supervised learning method used both for clas-
sification and for regression. In particular, in the classification case, the goal is
to create a model that predicts the value of a discrete target variable by learning
simple subsequent decision rules inferred from data features. Each rule can be
represented as split in a tree node, based on the value of a particular feature (fig.
4.13). Leaf nodes represent instead the predicted class. In the training process
it is important to set a specific critera to measure the quality of a split, in order
to let the learning algorithm to select the best split. In Sklearn library, in partic-
ular, Gini Index and Information Gain metrics are available. Another important
parameter to be set is the maximum depth of the tree. In fact, if tree built is too
deep, model is much more complex and tends to overfit training data.

Figure 4.13: Example of a generic Decision Tree

DT are simple to interpret and can be planarly visualized. As LR they do not
require data normalization. Another important advantage is that they can adapt
to that situations in which LR failed. The main disadvantage is the tendency to
create too complex models (overfitting), which can only be solved through prun-
ing operations. Moreover, finding the optimal tree is a very complex problem.
Consequently, practical decision-tree learning algorithms are based on heuristic al-
gorithms such as the greedy algorithm where locally optimal decisions are made
at each node. A second solution to avoid overfitting in decision trees is the usage
of the corresponding ensemble method, the Random Forests (RF) algorithm. RF
builds multiple deep decision trees, trained on different parts of the same training
set, with the goal of reducing prediction variance. Data for the training of each
tree are selected with a bagging technique, which involves a repeated draft of the
samples with re-entry. It means that a single sample can be used more than once
for the same tree. The final prediction is obtained as the mode of the classes pre-
dicted by the individual trees. Number of trees or maximum depth of a tree are
classical validation parameters.
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Occupancy models

Two different occupancy models must be estimated: the first regards estimating
people occupancy number in a situation of closed windows, and is called f0, the
other is called f1 and regards estimating room occupation in the most difficult case
in which windows are open and clean air is coming in. Input tuple is again I ′ and
target O has a positive integer number domains. Even if domain is not contin-
uous, this problem is better suited to the usage of a regression method, together
with an appropriate discretization phase, compared to the usage of a classification
method. This is mainly due to the fact that occupancy target is numerical, even
if numbers can be seen as classes. For example, if we collect training samples in a
room which has always been occupied by zero or two people during the acquisition
period, a classification model will never predict one occupant in the room, even if
it is an absolutely possible situation. A regression model instead may be able to
adapt to target not encountered during data collection. For this purpose Linear
Regression (LR) and Polynomial Regression (PR) models have been mainly used,
with addition of appropriate regularization techniques.
LR is a classical approach to modelling the relationship between a scalar target
variable (dependent variable) and one ore more independent variables. In particu-
lar, this relationship, is modeled using a linear predictor function, that in case of
a number P of input feature is in the form:

P (X) = w0 +
P∑

j=1

wjxj (4.9)

where W = {w0, w1, ..., wp} is the vector of weights to estimate in order to minimize
the residual sum of squares between the observed responses in the training dataset,
and the responses predicted by the linear approximation. Mathematically it solves
a problem of the form:

min
W
‖ Xw − y ‖22 (4.10)

This method, which results in a linear mapping between input and target variables,
can easily be extended to the case in which we want to look for a polynomial
relation P n(x1,...,xp) of an arbitrary degree N. A weight wi is associated with each
polynomial term. For example, for P=2 and N=2 the associated polynomial is:

P (X) = w0 + w1x1 + w2x2 + w3x
2
1 + w4x1x2 + w5x

2
2 (4.11)

Sklearn offers for this purpose a specific function called PolynomialFeatures, able
to generate for each sample a new feature tuple consisting of all polynomial com-
binations of the features with degree less than or equal to the specified one. N is
a classical parameter to be optimized through validation method. High values of
N always correspond to a more complex model, which in many cases could overfit.
If N=1 polynomial regression coincide with a linear regression. In figure 4.14 is
shown an example of a polynomial regression on generic data.
As in the logistic regression case, two regularization methods are available to pre-
vent overfitting. Polynomial to train remains the same, but changes the objective
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Figure 4.14: Example of a generic polynomial regression

function for weight estimation. Overfitting is generally associated with large esti-
mated values for wi, which results in a function with large oscillation, very adherent
to data used for its creation. Both L1 and L2 regularization methods aim therefore
to penalize functions with high weights. L1 regularization is also called Lasso and
its objective function has this form:

min
W
‖ Xw − y ‖22 +α ‖ w ‖1 (4.12)

where α is a validation parameter which refers to the amplitude of the regulariza-
tion. If α=0 Lasso is equivalent to a classical linear regression.
L2 regularization is instead called Ridge and its objective function has this form:

min
W
‖ Xw − y ‖22 +α ‖ w ‖22 (4.13)

Also in this case α refers to the regularization strength. The choice of a regular-
ization method rather than the other depends on the specific application context.
What mainly changes is the assumption that is made on the class of linear trans-
formation they infer to relate input and output data. In L2 the coefficients of
the linear transformation are normal distributed. In L1 are instead Laplace dis-
tributed. Lasso is therefore more likely to estimate zero coefficients and therefore
to automatically perform a feature selection operation. Ridge regularization in-
stead tends to reduce the variance of weight distribution.
The regression methods, presented up to this point, necessarily need a discretiza-
tion phase, since their output is in a continuous domain (section 4.3.13). Also
adaptation of the classification algorithm DT and RF to the regression case have
been used for this purpose. For the binary case instead, in which occupancy is
expressed in term of a vacant or occupied room state, the same classification algo-
rithms used to predict the status of the windows were used.

Models aggregation

Models fw, f0 and f1 are then re-aggregated in a unique model M used for final
prediction and evaluation. Aggregation takes place through equation 4.14.
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M = (1− fw)× f0 + fw × f1 (4.14)

It simply means that if model fw predicts a closed windows status, model f0 is used
for occupancy prediction. If fw predict an open windows status, f1 is instead used.
If the estimate regarding windows status is precise, this makes it possible to use a
more precise model for estimating the final occupation. The f0 and f1 models tend
in fact to be very different from each other.

4.3.13 Prediction

The step which follows the creation of the model, in order to be able to evaluate
its accuracy, is the prediction on test data. Input data I, taken from test dataset,
are given as inputs to the aggregated model M, and output data are stored in
the tuple O′. Another prediction tuple is created from training set in the case
in which learning curve mode has been selected. Since required target is in the
domain of integer numbers, and regression models output are decimal numbers,
a discretization phase is required on tuple O′. For this purpose, each sample is
simply approximated to the nearest integer.

4.3.14 Evaluation metrics

Last step of the whole ML process is the evaluation of results. Evaluation means
to establish how well the prediction tuple O′ represents the true test values present
in the tuple O. Different metrics are available for this purpose and are analyzed
below. These methods are also used for the internal validation.

Confusion matrix

Confusion Matrix (CM) is an important starting point for all evaluation metrics.
It is a specific table layout that allows visualization of the performance of an
algorithm. Each row of the matrix represents the instances of the predicted tuple
O′, while each column represents the instances of the real values tuple O. Number
at each table intersection (o′i,oj) represents the number of predicted value of type
i corresponding to real values of type j. The higher the numbers gather on the
diagonal of the matrix, the more the performance of the model were good. CM
takes on a particular meaning in the binary case, or in the case in which each class
is evaluated against all others. In this case (fig. 4.15) table has just two rows and
two columns, and reports the number of false positives (FP), false negatives (FN),
true positives (TP), and true negatives (TN).

Accuracy

Accuracy (ACC) is the simplest evaluation metric. It is defined as the percentage
of correct classifications on total number of classified elements. In the binary case
it is calculated as:
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Figure 4.15: Binary confusion matrix

ACC =
TP + TN

TP + TN + FP + FN
(4.15)

This concept can be easily extended to the multiclass case. Defined diag(M) as the
operator that selects all elements on the diagonal of the matrix M, accuracy can
be expressed as:

ACC =
sum(diag(CM))

sum(CM)
(4.16)

For the specific problem of this work, in which it is difficult, or in some cases even
not interesting, to reach a precise estimate on the effective numbers of occupants,
a different version of accuracy can be considered. ACCtol-t, where t is a positive
integer number, is defined as a classical accuracy in which a predicted value o′,
corresponding to a real value o, is considered correct if in the interval [o-i,o+i ].
This allows to calculate an accuracy value for each relevant tolerance band. If t=0,
ACCtol-t corresponds to a standard accuracy. However, accuracy is generally not a
reliable evaluation metric for a classifier, because it will yield misleading results if
dataset target is unbalanced (that is, when the numbers of observations in different
classes vary greatly).

Binary indicators

If a binary CM is calculated, some metrics such as Precision, Recall and F1 score
can be defined.
Precision is defined as:

prec =
TP

TP + FP
(4.17)

It is a measure about how many samples classified as positive are actually positive.
Recall is defined as:

rec =
TP

TP + FN
(4.18)
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It is a measure about how many positive items are actually classified as positive.
F1 score is the harmonic average of the precision and recall. In fact it is defined
as:

F1 =
2× prec× rec
prec+ rec

(4.19)

It is an alternative measure to classic accuracy, able to provide relevant informa-
tion even in the case of classification with unbalanced classes. F1 score reaches
its best value at 1 (perfect precision and recall) and worst at 0. This measure is
interesting also in the case in which CM is the confusion matrix of a class against
all other classes. In fact, if calculated for all predicted classes, it is possible to
visualize information about classes in which model M performs better.

Mean squared error

Mean Squared Error (MSE) is another important metric for evaluation, especially
for regression problems. It measures the average of the squares of the errors be-
tween real and predicted values. If vectors O′ and O are both made up of a number
Q of elements, MSE is defined as:

MSE =
1

Q
×

Q∑
i=1

(oi − o′i)2 (4.20)

In order to better understand which is the effective error that our model is expected
to predict, Root Mean Squared Error (RMSE) can be defined:

RMSE =
√
MSE (4.21)

If applied to occupancy problem, RMSE represents the amount of people that
model M will tend to underestimate or overestimate on average.
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Chapter 5

Experiments and results

This chapter is a detailed analysis about how methods described above performed
in two selected scenarios. Two dataset were created, collecting data in the two
corresponding classrooms, and different models have been built and evaluated for
both of them. First part is a description of the main features of each scenario. In
the second part obtained results are presented and discussed.

5.1 Scenarios

The two rooms have both been selected within the Politecnico di Milano, and differ
in various features such as size, number of windows, number of regulars, etc.. A
summary of the characteristics of each space is shown in table 5.1.

AntLAB small AntLAB big

Dimensions 3x8 mt 8x10 mt

Seats 8 25

Windows 1 3

Doors 1 2

Sensors (In/Out) 3/1 3/1

Ground truth SmartGate + manual
correction

Manual + image capture

Table 5.1: Scenarios properties

5.1.1 AntLAB small

From December 2018 to February 2019 AntLAB was moved due to work in building
20, and fragmented into 3 smaller classrooms at the third floor of building 21. One
of these small room has been used for experiments. In figure 5.1 is shown a map
of the interested space. It is a 10x8 meters room, that communicates with the
corridor through an entrance door and with the external through a single window.
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It is provided with 6 tables and has 8 seats. Three sensors have been positioned
inside, in order to better cover the entire room, and one sensor have been positioned
outside in the corridor. This allowed us to create a representative feature of the
Co2 difference between the corridor and the room, useful for understanding the
internal quantity with respect to an external baseline. Raspberry (and the sensor
connected to it) has been positioned so as to be as central as possible and cover
all other three sensors within its WiFi range. Ground truth has been collected
through a SmartGate, positioned at the entrance door. Even if it has shown,
in indoor situations, to have an almost maximum accuracy, people inside were
advised to periodically check and, if necessary, manually adjust the measurement.
This was possible via a mobile device connected directly to the Raspberry PI
wireless network, also useful for windows ground truth collection. Sensors were
originally battery powered, but they were subsequently wired to a power outlet
due to sudden discharge problems (fig. 5.2). The small size of this room and the
precision with which the dataset was labeled were two fundamental factors for the
results presented in the next section.

Figure 5.1: AntLAB small map

5.1.2 AntLAB big

This is the classic laboratory office, on the ground floor of building 20. A map of the
laboratory is shown in figure 5.4. It is over 3 times larger than the small AntLAB,
its dimension in meters is 8x10. It communicates through a door with the main
corridor, and through another door to a secondary hall, which will not be taken into
account for the occupancy count. This secondary room in turn communicates with
the outside through a dedicated door. It was taken as baseline, placing a sensor
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Figure 5.2: Ground truth mobile device and sensor powered from battery

inside it and calculating the difference with respect to the main room average.
The laboratory also contains 23 big tables, for a number of about 25 seats which
are rarely used all at the same time, and has 3 windows. Raspberry and sensors
were positioned with a criterion similar to that of the small laboratory, powered
by a wall socket. Due to the presence of a double door it was not possible to use
SmartGate for ground truth collection. It was collected manually through fixed
and mobile devices connected to the laboratory network. For moments when none
of those present could take care of data collection, the camera, wired to Raspberry
and placed in a corner of the room, was enabled to take photos periodically. Photos
were then checked by hand and dataset was fully labeled (fig. 5.3). This larger
room was a good example of the worst performances in the precise estimate that
model can have in the event that the environment is more spacious and the number
of people is on average greater. Some complications have been encountered due
to the fact that AntLAB people used to have launch in the secondary small room.
At a certain time it was therefore common for everyone to move together from the
main to the secondary room.

Figure 5.3: Video camera used and an example of photo taken through it
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Figure 5.4: AntLAB big map

5.2 Results

5.2.1 Datasets description and pre-process baseline

In both scenarios data are acquired at a frequency of 0.1Hz, that is, a sample is
saved in the database every 10 seconds. Among all the acquisitions, the nine most
accurate from each of the two rooms have been selected for model construction and
evaluation. In both scenarios a sensor was positioned outside the area of interest,
while the other 3 were placed inside. Therefore an aggregation of data coming from
the 3 internal sensors will always be carried out, while data from external sensor
will always be used for the calculation of an extra feature, which is the difference
between internal average and external Co2 concentration (Co2in-out). Figure 5.5 is
an example of aggregation, with a standard mean method, and computation of the
extra Co2in-out feature, applied to the first file of the AntLAB small dataset.
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Figure 5.5: Example of aggregation and in-out feature computation

In table 5.2, instead, the overall characteristics of both datasets are summarized.
For this purpose are considered only internal data, aggregated with standard mean
method, without resampling and without filtering.

AntLAB small AntLAB big

Number of file 9 9

Total duration 26h 45min 42h

Number of samples 16058 25182

Windows open samples 269 (1.7%) 945 (3.7%)

Zero samples 4925 (30.7%) 8434 (33.5%)

Min-Max Co2 values 415ppm - 1004ppm 409ppm - 1399ppm

Min-Max people values 0 - 8 0 - 20

Number of nights 1 2

Table 5.2: Datasets properties

Let us now introduce resampling and filtering of data. Baseline data resampling
factor is fixed at 12 for all acquisition. It means that frequency is reduced from
0.1Hz to 0.0083Hz, equivalent to a sample each 2 minutes. A baseline Butterworth
second order filter has also been designed, with a normalized cutoff frequency of
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0.30 (fig. 5.6). An example of resulting series for Co2 and Co2in-out features, on
the same acquisition mentioned above, are shown in figure 5.7.

Figure 5.6: Frequency response of a second order Butterworth filter with normalized cutoff
frequency 0.30

Figure 5.7: Example of Butterworth filter application

With this kind of simple data pre-process some interesting plots have been gen-
erated to better understand data distribution. Figure 5.8 and figure 5.9 show 2
histogram of Co2 and people data distribution. Figures 5.10, 5.11 and 5.12 show
respectively Co2 absolute value, Co2 first order gradient and time data in a scatter
plot, with related number of people in the vertical axis. In these type of plots
dimension and color of a point represent both its numerosity in the whole dataset:
a larger size and a warmer color represent a more frequent sample. This allows to
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highlight the type of relationship that exists between features and target variables.
For this purpose time has been divided into 24 classes.

Figure 5.8: Co2 samples distribution (on the left AntSmall, on the right AntBig)

Figure 5.9: People samples distribution (on the left AntSmall, on the right AntBig)

Figure 5.10: Co2-People scatter (on the left AntSmall, on the right AntBig)
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Figure 5.11: Gradient-People scatter (on the left AntSmall, on the right AntBig)

Figure 5.12: Time-People scatter (on the left AntSmall, on the right AntBig)

5.2.2 Baseline model

In this section calculation and evaluation of two basic models are presented, one for
each scenario. These models will be taken as a baseline for evaluating improvements
or deterioration of performances due to the change of some parameters. Building
process complies with the following conditions:

1. Data are resampled so as to have 1 sample every 2 minutes (resample factor
equal to 12).

2. Each series is filtered with a second order Butterworth with normalized cutoff
frequency set at 0.30.

3. No time-lag is considered.

4. Samples in which windows are open are deleted from dataset.

5. Only data from a single sensor (sensor 1) are used.

6. A 5-fold cross-validation is performed.
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7. Absolute value of Co2 is the only feature used for prediction.

8. A simple regression of a second degree polynomial is performed. Limiting
the degree of the polynomial is in itself sufficient to avoid overfitting.

In table 5.3 are summarized performance of this execution while in the following
figures are graphically represented some important features of these models. Figure
5.13 represents the already discretized model with a continuous line, and test data
with points, in order to underline how models will perform on new samples. Figure
5.14 highlights the relation between real and predicted test data, also in this case
indicating points numerosity with color and size. The more points are present
on the red diagonals, the more model built has good performance. Figure 5.15
represents real train data (blue), real test data (green) and predicted test data
(orange) on a temporal line. All these figures refer to the first cross-validation
iteration. It can be seen how in general the model on the small room performs
better, and how the one on the larger room tends to make wrong prediction even
for the zero class. This happens mainly in the first of the two nights.

Figure 5.13: Baseline discretized model (on the left AntSmall, on the right AntBig)

Figure 5.14: Baseline model real vs predicted on test data (on the left AntSmall, on the right
AntBig)
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Figure 5.15: Baseline model people train, people test, people test predicted temporal series
(above AntSmall, under AntBig)

AntLAB small AntLAB big

Accuracy 0-tol 41.25% 17.99%

Accuracy 1-tol 83.45% 40.68%

Accuracy 3-tol 100% 64.87%

Accuracy 5-tol 100% 84.17%

RMSE 1.10 3.69

Table 5.3: Baseline models results

5.2.3 Multi-sensor variation

First improvement is obtained by modifying condition 5 of baseline model. From
this point on the feature regarding the internal Co2 value will always be an ag-
gregate of all 3 internal sensors. All average, median and penalize gap method
have been tried, obtaining very similar results. Small difference in performance
between an execution and another seems to be caused only by randomization of
data selection in the cross-validation process. However, there is an improvement in
performance compared to the single sensor case, as summarized in table 5.4, partly
solving the problem of wrong predictions on first night in AntBIG scenario.
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AntLAB small AntLAB big

Accuracy 0-tol 44.58% 20.97%

Accuracy 1-tol 85.34% 42.07%

Accuracy 3-tol 100% 66.95%

Accuracy 5-tol 100% 86.42%

RMSE 1.05 3.53

Table 5.4: Multi-sensors regression models results

5.2.4 Multi-feature variation

This improvement is obtained by modifying condition 7 and so taking into con-
sideration also the other calculated features, such as time, first order gradient
and Co2in-out. First of all a feature evaluation analysis was done and results are
summarized in table 5.5 for AntLAB small and in table 5.6 for AntLAB big.

F-score P-value MI

Co2 2936 1e-292 0.98

Gradient 44.17 5e-11 0.21

Time 92 1e-20 0.88

Co2in-out 3398 1e-292 0.96

Table 5.5: AntLAB small occupancy feature evaluation

F-score P-value MI

Co2 2091 1e-270 0.97

Gradient 289.64 1e-58 0.44

Time 203.29 7e-43 1.11

Co2in-out 3.92 0.047 0.85

Table 5.6: AntLAB big occupancy feature evaluation

Whereas F-score and P-value are linear correlation indices, while MI include also
other kind of dependence, these tables lead to the following considerations:

- In small AntLAB Co2 and Co2in-out have a linear correlation much higher
than the other two features.

- In small AntLAB time become a relevant feature when considering also non
linear dependencies.
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- In big AntLAB, gradient is more relevant from a linear point of view.

- In big AntLAB Co2in-out is not so relevant, probably due to the approach of
people at lunch time to the external sensor.

- Also in big AntLAB time becomes relevant when considering non-linear de-
pendencies. In this case it becomes even the most important feature.

Best performances were however obtained with the use of all features. In both
scenarios the exclusion of the less relevant features, ie the gradient, has always led
to slightly worse results. Performances are summarized in table 5.7. In this case
improvements with respect to the single feature multi-sensor model are remarkable.

AntLAB small AntLAB big

Accuracy 0-tol 54.87% 34.81%

Accuracy 1-tol 89.87% 63.38%

Accuracy 3-tol 100% 92.30%

Accuracy 5-tol 100% 98.94%

RMSE 0.87 1.88

Table 5.7: Multi-feature regression models results

Improvements are visible also looking at figure 5.16 and 5.17. In particular, thanks
to the time feature, AntLAB big problem of wrong predictions in the first night is
almost solved. Moreover, in the real vs predicted plot, points get very close to the
diagonal, significantly lowering the average error.

Figure 5.16: Multi-feature model real vs predicted on test data (on the left AntSmall, on the
right AntBig)

Due to the impossibility of plotting 4-dimensional models, in order to visualize
the actual contribution of gradient to the prediction, a model with only Co2 and
gradient features was built and plotted in its discretized version in figure 5.18.
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Figure 5.17: Multi-feature model people train, people test, people test predicted temporal
series (above AntSmall, under AntBig)

From this plot it is evident how different Co2 variation, at the same Co2 abosulte
internal value, affects prediction differently. In particular, at a fixed Co2 value,
a higher gradient is often sufficient to predict more people. Moreover, gradient is
more influential in cases of low absolute Co2 concentration, since it tends to be zero
when air tends to Co2 saturation. The model built with just these two features
got anyway good evaluations, far better than the single feature one.

Figure 5.18: Co2-Gradient regression discretized model (on the left AntSmall, on the right
AntBig)
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5.2.5 Model variation

Different kind of models are evaluated in this section, modifying assumption num-
ber 7 of the baseline model. Here models are built with all sensors and all features,
comparison is therefore with what presented in section 5.2.3.
A first consideration is about changing polynomial degree, which until now had
been set to 2. A polynomial of first degree results in both cases in a decrease of
performances, due to the fact that relationships between input and target vari-
ables, as expected, are not linear. An increasing in the polynomial degree, instead,
in some cases leads to a slight improvement in performance. However, even if eval-
uated on data not used in weights estimation phase, using high degrees seems to
create overfitting models. This is due to the fact that the creation of a complex
model is excessive for this kind of problem, and models tend to fit too much to the
specific situation in which data were collected.
In order to better understand overfitting problems, L1 regularization has been
applied, with validation on its alpha parameter and with different polynomial de-
grees. Alpha was forced to assume strictly positive values. Figure 5.19 show a
typical trend for MSE with alpha variation, in an iteration of the external cross-
validation, generally chosen around 0.15 for both scenarios. In table 5.8 are instead
summarized results for a polynomial degree equal to 2, highlighting, looking at
RMSE, a slight decrease of performance with respect to the not regularized model.

Figure 5.19: Lasso validation on alpha (on the left AntSmall, on the right AntBig)

AntLAB small AntLAB big

Accuracy 0-tol 57.62% 36.42%

Accuracy 1-tol 89.72% 64.91%

Accuracy 3-tol 99.92% 91.52%

Accuracy 5-tol 100% 98.14%

RMSE 0.88 1.91

Table 5.8: Lasso models results
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As the degree of the polynomial increases, performances do not seem to improve.
Degrees of 2,3,4,5 generate roughly the same results. What change seems to be
mainly an increase in the value assumed by alpha in the validation phase, corre-
sponding to a greater regularization. Looking at the coefficients we note instead
a clear approach to zero of the weights corresponding to the terms of first degree,
except for Co2 absolute value, which remains the least regularized feature. This
leads to the conclusion that regularization it’s not necessary for low polynomial
degrees, and that increasing the degree of complexity of the model does not lead
to an increase of performance, but only to a greater need of regularization in order
to not overfit training data. With the regularization of type L2 very similar results
have been obtained.
Other interesting consideration are about DT and RF regressors, when validating
on the maximum depth parameter. In both cases and in both scenarios behavior
is similar. In figure 5.20 are shown validation performances.

Figure 5.20: Random Forest Regressor validation on max-depth (on the left AntSmall, on
the right AntBig)

Results for the case in which max-depth is 3 (table 5.9) are slightly worse than
those obtained with standard regression method. When increasing the depth of
the trees, MSE seems to be improving a little, to then start to get worse again due
to overfitting problems when max-depth is increased too much. For depths equal
to 5 in both scenarios performance seems to be slightly better than those presented
in table 5.7. However this kind of models seems to be too complex to represent
the problem in question, and as in the case of the polynomial regression tend to
overfit situations in which data were collected. In order to visualize graphically this
phenomenon, in figure 5.21 are plotted RF regression models, for the small scenario,
in the case of only Co2 absolute value and gradient taken as input features and
max-depth is set respectively to 3 and 5. These models can be compared directly
with the left one in figure 5.18. Here appears clear as the division of the space
typically generated by trees is not very suitable to represent this kind of problem,
and also how deeper trees tend to generate too complex models.
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AntLAB small AntLAB big

Accuracy 0-tol 53.91% 43.97%

Accuracy 1-tol 85.45% 64.29%

Accuracy 3-tol 100% 87.67%

Accuracy 5-tol 100% 96.68%

RMSE 0.93 2.19

Table 5.9: Random Forest Regressor models results

Figure 5.21: Co2-Gradient Random Forest Regressor model for AntSmall (on the left max-
depth = 3, on the right max-depth = 5)

5.2.6 Windows

For evaluating the complete model, also making predictions about windows state,
in this section condition 4 of the baseline model is modified and windows open
data are re-added to the dataset. For people estimation is always considered a
multi-feature second degree polynomial. An operation of feature evaluation was
performed on windows binary target, resulting for both scenarios in a clear preva-
lence of the gradient feature, followed by absolute Co2 value. In any case, all
features were used to build the model. For example, time is useful to distinguish
the nocturnal samples, from those in which the windows have been open for a long
time, as both cases involve an approximately zero gradient and an absolute low
amount of Co2. Performance on people prediction are summarized in table 5.10 for
AntLAB small and in table 5.11 for AntLAB big. Baseline model suffers of a consid-
erable performance decrease, due to the introduction of open windows data, which
alter the model considerably. Both for predicting windows model with a second
degree polynomial logistic regression, validating on probability threshold, and for
predicting windows model with a regression tree, validating on max-depth (limited
to a maximum of 3 to avoid overfitting), performance seems to improve. Although
the performance improvement is not so considerable in an absolute sense, consid-
ering the small percentage of data with open windows present in both datasets,
this improvement is sufficient to prove the validity of this method. Moreover, in
both scenarios, regression performs better than decision trees.
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Baseline W LogReg W RegTree

Accuracy 0-tol 50.17% 51.80% 51.56%

Accuracy 1-tol 87.68% 88.72% 88.38%

Accuracy 3-tol 99.88% 99.96% 99.92%

Accuracy 5-tol 100.00% 99.97% 100%

RMSE 0.99 0.95 0.96

Table 5.10: Models results in AntLAB small considering different methods for windows pre-
diction

Baseline W LogReg W RegTree

Accuracy 0-tol 28.08% 30.65% 30.13%

Accuracy 1-tol 51.99% 55.54% 55.06%

Accuracy 3-tol 80.42% 82.56% 81.63%

Accuracy 5-tol 94.31% 95.14% 94.56%

RMSE 2.72 2.60 2.68

Table 5.11: Models results in AntLAB big considering different methods for windows predic-
tion

Figure 5.22 and 5.23 show respectively the models built with the two respective
methods, applied to both scenarios with only gradient and Co2 features, in order
to allow a planar view. These models are all taken from the first cross-validation
iteration and highlight how regression is more suitable for this application, since
input variables are continuous and trees tend to divide the space in a discrete way.
Optimal threshold parameter were 0.22 for AntLAB small and 0.34 for AntLAB
big, while trees has always chosen a max-depth of 3. Looking at performances
of the binary windows prediction only, evaluated on test data with a model built
with a polynomial logistic regression, you can see how predictions are better in the
small scenario, compared to the big one (table 5.12).

AntLAB small AntLAB big

Accuracy 99.6% 95%

F-score 0.93 0.79

Table 5.12: Windows prediction evaluation on test data

Finally, note that the model which predict occupancy in the case of open windows,
has always had very bad performance, comparable to a random prediction. This is
because the effect of the incoming carbon dioxide is much more relevant than that
of human expiration in determining the amount of internal carbon dioxide.
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Figure 5.22: Windows logistic regression model (on the left AntSmall, on the right AntBig)

Figure 5.23: Windows classificator tree model (on the left AntSmall, on the right AntBig)

5.2.7 Time lag

This section contains an analysis regarding the search for the delay intrinsically
present in data, modifying condition number 3 of the baseline model. Time-lag,
expressed in number of samples, is closely related to the re-sample frequency. Con-
sidering the frequency used up to now, of a sample every 2 minutes, and an upper
bound set to 5 samples of delay, equivalent to a maximum delay of 10 minutes, in
both scenario optimal time-lag is null. Figure 5.24 is a plot of NRMSE progress
with respect to the number of data shifts, respectively in the small and in the big
rooms, taken from one of the 9 files as example. A second analysis was carried
out by raising the sampling frequency to a sample every 30 seconds, and appropri-
ately moving the upper bound to 20 samples, in order to discover delays under 2
minutes. In both scenarios best delay took on average a value of 4-5 sample (fig.
5.25), confirming an average delay just over 2 minutes, regardless of the size of the
room.
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Figure 5.24: Nrmse vs time-lag with a sample every 2 minutes (on the left AntSmall, on the
right AntBig)

Figure 5.25: Nrmse vs time-lag with a sample every 30 seconds (on the left AntSmall, on
the right AntBig)

5.2.8 Resample and filter

Last parameters that can be changed to analyze the performance of the model
are the resample factor (condition 1 of the baseline model) and the filter normal-
ized cutoff frequency, which determines the amount of filtering (condition 2 of the
baseline model). RMSE results are summarized in tables 5.13 and 5.14, always re-
ferring to a second degree, multi-sensor, multi-feature polynomial regression, which
is the optimal baseline. In the case of the AntLAB small this analysis shows that
changing the frequency of the data or changing filter features only leads to worse
predictions. This is not true for AntLAB big scenario, in which decrease the fre-
quency of the samples up to 1 every 3 and a half minutes leads to a considerable
improvement, and this is true also with a lower normalized cutoff frequency, up
to 0.05. This is probably due to a greater amount of noise present in the data
collected in the second scenario, which reflects in a greater need of filtering and
averaging data.
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Cutoff freq AntLAB small AntLAB big

3 0.93 2.36

6 0.90 2.18

12 (opt baseline) 0.87 1.88

20 0.88 1.75

30 0.91 1.83

Table 5.13: RMSE evaluation with change of resample frequency

Resample factor AntLAB small AntLAB big

No filter 0.92 2.25

0.8 0.89 2.19

0.3 (opt baseline) 0.87 1.88

0.2 0.90 1.85

0.05 0.93 1.84

0.005 0.95 2.46

Table 5.14: RMSE evaluation with change of filter normalized cutoff frequency

5.2.9 Learning curves

Figure 5.26 shows train and test RMSE learning curves for both scenarios, when
the optimal model is applied.

Figure 5.26: RMSE train and test learning curve for optimal models (on the left AntSmall,
on the right AntBig)

In both cases the test curves show a good tendency of the model to improve pre-
diction performances as the number of data with which it is created increases, with
a slight deterioration when the data with which it is tested becomes less than 10%.
Also a clear deterioration in the performance on train data is visible, demonstrating
a tendency of the model to not overfit data with which it is built.
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5.2.10 Binary case

In this section are analyzed performance improvements when target class is not the
number of occupants, but is a binary variable regarding the vacant/occupied state
of the room. A first analysis regards data distribution. Looking at each individual
feature, data seems to be very related to the binary target variable. Most related
features are Co2 (fig. 5.27) and Co2in-out, followed by time (fig. 5.28). Also in this
case the gradient seems to be the least correlated feature (fig. 5.29).

Figure 5.27: Co2-BinaryState scatter (on the left AntSmall, on the right AntBig)

Figure 5.28: Time-BinaryState scatter (on the left AntSmall, on the right AntBig)

The high correlation between features and target leads to good prediction perfor-
mance. As for the windows case have been applied logistic regression and prediction
trees models, getting very good similar results. Also in this case regression models
seem to be more suited to the problem, since the input variables are continuous.
In figure 5.30 are showed confusion matrices referred to the application of a second
degree logistic regression on all available features, with validation on the proba-
bility threshold. Results in term of accuracy and f-score are instead in table 5.15.
Again, better results were obtained in the smaller room.
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Figure 5.29: Gradient-BinaryState scatter (on the left AntSmall, on the right AntBig)

Figure 5.30: Confusion matrix for binary prediction (on the left AntSmall, on the right
AntBig)

AntLAB small AntLAB big

Accuracy 98% 97.5%

F-score 0.989 0.981

Table 5.15: Binary prediction evaluation on test data

5.2.11 Mixing scenarios

As last case of analysis, the two datasets concerning the two respective scenarios
have been mixed, in order to test the possibility of creating a universal model
as independent as possible from the context of application. For this purpose all
18 acquisition files were concatenated, making a unique big dataset. Optimal
model was applied, obtaining the results shown in table 5.16. In figure 5.31 is also
shown the disposition of predictions in a real/predicted scatter plot. From this
plot is visible how the new model tends to underestimate the occupation of the
largest room. Looking at RMSE, however, worsening is of an acceptable order of
magnitude.
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Mixed

Accuracy 0-tol 33.49%

Accuracy 1-tol 61.97%

Accuracy 3-tol 87.87%

Accuracy 5-tol 97.73%

RMSE 2.193

Table 5.16: Models results in a mixed scenario

Figure 5.31: Mixed scenario real vs predicted on test data (on the left AntSmall, on the right
AntBig)
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Chapter 6

Conclusions and future works

This project started with a unique main goal: to make a detailed study about
the possibility of estimating the number of occupants in a room, starting from a
non-intrusive environment variable, ie the concentration of carbon dioxide. This
theme was then developed in two steps, trying to satisfy two secondary objectives:

- Develop a multi-sensor distributed IoT system, able to collect Co2 concen-
tration data related to different areas of the same room, containing as much
as possible the total cost of used devices.

- Study the performance of different machine learning methods, pre-processing
collected data and training different models with different parameters.

Both objectives have been pursued trying to improve what already exists in the
literature. In the following are some considerations about advantages and limita-
tions of used methods.
As regards the hardware part, the designed system proved to be reliable and ac-
curate over the long term. Moreover, the independence of the system from other
networks allows it to adapt to different situations. The proposed ground truth
collection methods have proven to be quite effective, with a simple and intuitive
graphical interface. The main limitation of a system of this type is the accuracy
of the sensor. In order to obtain good results it is essential to use sensors that
guarantee data quality, which are generally quite expensive. The main cost of the
project was therefore in the purchase of the 4 carbon dioxide sensors. However, in
real applications, Co2 sensors are generally already integrated into ventilation or
air conditioning system of the room in question.
Compared with methods already used in literature, the complex pipeline of our
machine learning study has been shown to create more precise models. The main
contributions to this improvement are mainly due to the aggregation of data com-
ing from various sensors, to a careful pre-processing phase and to the insertion of
new features such as time, gradient and the difference of internal concentration
compared to that external one. An added value of this project is given by the fact
that the proposed method is independent from the assumption of closed windows,
giving a precise prediction of the moments in which the windows are opened, and
by the fact that the model can also be trained through many small separate acqui-
sitions, achieving equally good performance. This study has also shown that even
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with simple models good performances can be achieved, since the dependence be-
tween the variables does not go beyond the second degree and too complex models
always lead to an overfitting situation. The main limitations for achieving higher
accuracy are essentially due to the poor correlation between variables and the un-
predictability of some events, like the stationary presence of a person near a sensor
or sudden infiltrations of clean air in the room.
Based on these considerations and on obtained results, the following works are
proposed to carry out this study:

- Development of a system able to acquire data from other environmental sen-
sors (such as light, noise, etc..), as well as carbon dioxide data, also integrated
with a wireless packet sniffing system. Adding these new features to a process
similar to the one proposed in this work would certainly lead to an improve-
ment in predictive performance, solving the main problems related to the
usage of Co2 concentration only.

- Implementation of an efficient prediction model, able to real-time predict the
occupancy state of the room. In particular, in the smart campus project,
this estimate could be uploaded to the university website or could be made
available via a chatbot, so that both students and managers can have a
complete knowledge of the state of occupation of the entire campus.

- Carry out the analysis regarding the possibility of creating a universally valid
model, which can adapt to rooms of different sizes and with different charac-
teristics. In this regard a generic basic model could be created, configurable
in some basic parameters used as prediction features (such as the size of the
room), or able to adapt to different situations through a second short training
phase with a small labeled dataset from the new room.
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