OFFSET
1,2
COMMENTS
Length of n-th row = sum of n-th row = n!; number of zeros in n-th row = A000166(n); number of positive terms in n-th row = A002467(n). [Reinhard Zumkeller, Mar 29 2012]
LINKS
Reinhard Zumkeller, Rows n=1..7 of triangle, flattened
FindStat - Combinatorial Statistic Finder, The number of fixed points of a permutation
EXAMPLE
123,132,213,231,312,321 (corresponding to 3rd row of triangle A030298) have respectively 3,1,1,0,0,1 fixed points.
PROG
(Haskell)
import Data.List (permutations, sort)
a170942 n k = a170942_tabf !! (n-1) (k-1)
a170942_row n = map fps $ sort $ permutations [1..n] where
fps perm = sum $ map fromEnum $ zipWith (==) perm [1..n]
a170942_tabf = map a170942_row [1..]
-- Reinhard Zumkeller, Mar 29 2012
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Neven Juric (neven.juric(AT)apis-it.hr) and N. J. A. Sloane, Feb 23 2010
EXTENSIONS
a(36)-a(105) from John W. Layman, Feb 23 2010
Keyword tabf added by Reinhard Zumkeller, Mar 29 2012
STATUS
approved