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Abstract 

Recent evidence of gadolinium deposition in the brain has raised safety concerns. Iron oxide 
nanoparticles are re-emerging as promising alternative MR contrast agents, because the iron core 
can be metabolized. However, long-term follow up studies of the brain after intravenous iron oxide 
administration have not been reported thus far. In this study, we investigated, if intravenously 
administered ferumoxytol nanoparticles are deposited in porcine brains. 
Methods: In an animal care and use committee-approved prospective case-control study, ten 
Göttingen minipigs received either intravenous ferumoxytol injections at a dose of 5 mg Fe/kg (n=4) 
or remained untreated (n=6). Nine to twelve months later, pigs were sacrificed and the brains of all 
pigs underwent ex vivo MRI at 7T with T2 and T2*-weighted sequences. MRI scans were evaluated by 
measuring R2* values (R2*=1000/T2*) of the bilateral caudate nucleus, lentiform nucleus, thalamus, 
dentate nucleus, and choroid plexus. Pig brains were sectioned and stained with Prussian blue and 
evaluated for iron deposition using a semiquantitative scoring system. Data of ferumoxytol exposed 
and unexposed groups were compared with an unpaired t-test and a Mann-Whitney U test. 
Results: T2 and T2* signal of the different brain regions was not visually different between 
ferumoxytol exposed and unexposed controls. There were no significant differences in R2* values 
of the different brain regions in the ferumoxytol exposed group compared to controls (p>0.05). 
Prussian blue stains of the same brain regions, scored according to a semiquantitative score, were 
not significantly different either between the ferumoxytol exposed group and unexposed controls 
(p>0.05). 
Conclusions: Our study shows that intravenous ferumoxytol doses of 5-10 mg Fe/kg do not lead 
to iron deposition in the brain of pigs. We suggest iron oxide nanoparticles as a promising 
alternative for gadolinium-enhanced MRI. 
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Introduction 
Gadolinium-based contrast agents (GBCAs) are 

widely used for clinical magnetic resonance imaging 
(MRI). However, classical GBCAs have raised safety 
concerns due to a risk of gadolinium deposition in the 
brain [1]. Iron oxide nanoparticles are re-emerging as 
a promising alternative to GBCAs. Ferumoxytol, a 

food and drug administration (FDA)-approved iron 
supplement, is immediately available as an MRI 
contrast agent through “off-label” use. The large size 
of ferumoxytol nanoparticles leads to limited 
extravasation in normal tissues, including the brain 
[2]. Various authors used ferumoxytol for clinical MRI 
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of the cardiovascular system, brain pathologies and 
body imaging, among others [2]. While previous 
investigators reported absent ferumoxytol 
enhancement in the normal brain of patients on MRI 
[2], long-term follow up studies have not been 
performed. Our team conducts ferumoxytol-MRI of 
large animals, which provided a unique opportunity 
to obtain imaging-histopathological correlations. The 
purpose of our study was to evaluate, if intravenous 
ferumoxytol administration leads to long-term iron 
deposition in brain tissue. 

Methods 
Studies have been approved by the animal care 

and use committee of our institution. We 
prospectively investigated the brains of 10 Göttingen 
minipigs: Four pigs received one (n=3) or two (n=1) 
intravenous injection(s) of ferumoxytol at a dose of 5 
mg Fe/kg and were sacrificed 9-12 months later for ex 
vivo brain MRI. Six pigs were not injected with 
ferumoxytol and served as untreated controls. 
Board-certified veterinarians placed an intravenous 
line into the ear vein and checked the venous access 
through a saline flush before ferumoxytol injection. 
The same venous access was used to anesthetize the 
pig. To validate that ferumoxytol nanoparticles had 
been successfully injected intravenously, MRI scans of 
the knee joint for ferumoxytol treated pigs showed 
negative (hypointense) contrast enhancement within 
the bone marrow and no contrast enhancement in the 
bone marrow of control pigs (Figure S1). 

The brains of all pigs underwent ex vivo MRI on a 
7T MRI scanner (Bruker Biospin, Billerica, MA) using 
T2 weighted fast spin echo sequences (TR/TE/α 
=4952 ms/75 ms/90º, SL=1 mm) and T2* weighted 
gradient echo sequences (1366 ms/3.5-48.5 ms/70º, 
SL=1 mm) for creation of T2* maps. One investigator 
(AJT) measured R2* values (R2*=1000/T2*) of the 
bilateral caudate nucleus, lentiform nucleus, 
thalamus, dentate nucleus, and choroid plexus by 
carefully placing operator-defined regions of interest 
(ROIs) in the specific brain areas on T2* maps. R2* is 
proportional to tissue iron concentration [3]. We 
focused on brain areas where extravasation was 
previously described for other contrast agents [4]. 
Brain specimens were cut, stained with Prussian blue 
and evaluated for iron deposition by a 
neuropathology fellow (JL) and one radiology 
resident (AJT), using a semiquantitative scoring 
system (1= no iron, 2= focal iron, 3= patchy iron, 4= 
diffuse iron). To validate our histopathological 
staining method, we added a positive control of a 
ferumoxytol exposed liver parenchyma. Analysis of 
T2* maps and pathology was performed with 
blinding to the experimental groups. R2* data and 

histology score were compared between ferumoxytol 
exposed brains and controls, using an unpaired t-test 
and a Mann-Whitney U test, respectively (p<0.05). 

Results 
We did not note any visual difference in T2 or 

T2* signal of any brain area between ferumoxytol 
exposed animals and controls (Figure 1A-F). 
Accordingly, there were no significant differences in 
R2* values of different brain regions in the 
ferumoxytol exposed group compared to controls, 
respectively (Figure 1G): right caudate nucleus 
(29.97±0.27 vs. 31.98±1.56; p=0.34) left caudate nucleus 
(31.54±1.24 vs. 32.49±1.64; p=0.69), right lentiform 
nucleus (33.18±0.81 vs. 33.32±1.45; p=0.94), left 
lentiform nucleus (33.21±1.83 vs. 34.49±1.71; p=0.63), 
right thalamus (34.03±2.48 vs. 37.62±1.36; p=0.20), left 
thalamus (34.14±1.84 vs. 36.63±1.01; p=0.23), right 
dentate nucleus (46.82±0.84 vs. 46.59±1.46; p=0.91), 
left dentate nucleus (44.68±1.57 vs. 45.64±1.94; 
p=0.73), right choroid plexus (38.68±1.96 vs. 
44.91±2.88; p=0.15) and left choroid plexus (39.40±1.50 
vs. 42.78±2.50; p=0.34). In addition, we did not find 
any difference in Prussian blue staining between the 
two groups (Figure 2A-C). The histology score in 
different brain regions was not significantly different 
in the ferumoxytol exposed group compared to 
controls (p>0.05; Figure 2D). 

Discussion 
Our imaging-histopathological correlation 

suggests that ferumoxytol is not retained in brain 
tissue after intravenous administration at doses of 
5-10 mg Fe/kg. Long-term follow up studies showed 
no significant differences in brain iron content 
between ferumoxytol exposed porcine brains and 
unexposed controls. This is in accordance with 
previous reports that described absence of iron 
enhancement of the normal brain within hours or 
days after ferumoxytol administration [2, 5]. 

Studies with GBCA demonstrated a correlation 
between cumulative GBCA dose and GBCA retention 
in the brain [1]. Preclinical studies have highlighted 
the importance of the choroid plexus in the regulation 
of iron metabolism in the brain [6]. Clinical studies 
have shown hypointense enhancement of the choroid 
plexus on MRI after multiple blood or iron 
transfusions [5, 7]. Therefore, it is likely, that iron 
brain deposition is dose dependent. 

Several studies determined the minimum 
quantity of iron oxide nanoparticles that can be 
detected. In a study using Molday iron oxide 
nanoparticles (diameter: 30 nm, similar size to 
ferumoxytol) the minimum detectable concentration 
in horse serum on a 7T MRI scanner was 38 pmol/l 
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[8]. Several clinical trials determined threshold iron 
concentrations that can be detected in tissues: In 
postmortem brain tissues from Alzheimer’s disease 
patients, a threshold iron concentration of 50 µg Fe/g 
wet tissue was determined, above which iron could be 
detected in the brain on MR images at 4.7 Tesla [9]. In 
another study of human postmortem brains specimen, 
iron concentration as low as 30 ± 12 µg Fe/g and up to 
205 ± 32 µg Fe/g wet tissue correlated significantly 

with R2* values on a 3T MRI scanner [10]. Studies 
comparing Prussian blue stains with MRI have 
reported an overlap of positive Prussian blue stains 
and T2* hypointensities on MRI scans obtained on a 
7T MRI scanner for patients with Parkinson’s disease 
[11]. In another study, hypointensities in the 
subthalamic nucleus on a 9.4T MRI corresponded 
with regions of high Prussian blue staining [12]. 

 

 
Figure 1. Ex vivo Brain MRI with R2* Quantification of Specific Brain Areas. (A) T2-weighted (TR/TE/α=4952/75/90) and (B) T2*-weighted (TR/TE/α=1366/3.5/70) 
image with (C) corresponding color encoded T2* map of a ferumoxytol exposed pig brain with regions of interest (blue line) in the caudate nucleus, lentiform 
nucleus, thalamus and dentate nucleus. (D) T2-weighted and (E) T2*-weighted image with (F) corresponding color encoded T2* map of a control pig brain. No visual 
difference between the two groups is demonstrated. (G) Scatterplot with bar shows corresponding R2* values with no significant differences for any of the quantified 
brain regions between ferumoxytol exposed and control pig brains (p>0.05). Data are means and standard errors of the mean of four ferumoxytol-exposed pigs and 
six controls. 
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Figure 2. Prussian blue staining of specific brain areas. (A) Prussian blue staining of ferumoxytol exposed caudate nucleus and (B) unexposed caudate nucleus shows 
no sign of iron oxide nanoparticle retention. (C) Positive control with Prussian blue staining of ferumoxytol exposed liver parenchyma. (D) Scatterplots with bars 
show no significant differences in histological scoring for iron deposition in different brain areas (p>0.05; 1= no iron, 2= focal iron, 3= patchy iron, 4= diffuse iron). 
Data are means and standard errors of the mean of four ferumoxytol-exposed pigs and six controls. 

 
Our study used a 7T MRI scanner and 

iron-sensitive T2* sequences which can detect very 
low iron concentrations, as described in the literature. 
Therefore, differences in brain iron deposition 
between the groups in our study should have been 
detected with Prussian blue staining and MRI. 

Previous clinical trials for MR imaging 
applications used doses of ferumoxytol from 1 to 8 mg 
Fe/kg [13-16]. Our team uses a dose of 5 mg Fe/kg for 
clinical applications. This dose is comparable with 
previous studies and is lower than FDA-approved 
doses for treatment of anemia (2× 510mg per patient) 
[2, 17-20]. In general, ferumoxytol nanoparticles are 
well tolerated and rare anaphylactic reactions have 

been reported in the adult patient population [21-24]. 
This is in accordance with our experience in pediatric 
patients who received ferumoxytol for MRI and 
showed few and minor side effects [25]. As 
recommended by the FDA, we diluted ferumoxytol 
1:3 with saline and slowly infused it over 15 minutes 
to avoid complement activation-related 
pseudoallergies (CARPA) and hypotensive reactions, 
which are observed with rapid injections, and which 
can mimic true anaphylaxis [5]. 

Several investigators including our own group 
started to use ferumoxytol nanoparticles for MR 
imaging of vascular malformations [26, 27], 
cardiovascular abnormalities [28] and tumors in 
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children [19]. The sensitivity and specificity of 
ferumoxytol for imaging brain pathologies in patients 
has been extensively studied [29-32]. Since 
ferumoxytol is FDA-approved for the treatment of 
anemia, results from this project can be directly 
translated to clinical applications via an off-label use. 
Therefore, ferumoxytol-enhanced MRI could address 
an important need for clinicians as a new alternative 
to Gd-enhanced MRI scans, which can pose a risk of 
long-term Gd-deposition in the brain of patients. The 
advantage of iron oxides compared to GBCA is that 
iron products can be metabolized. Of course, the 
capacity of the human body to metabolize iron 
products can be saturated with repetitive injections 
and the iron clearance can be impaired in case of 
metabolic diseases. Future studies will have to show, 
which iron doses and/or physiological conditions 
might lead to significant brain iron deposition or 
limited iron clearance. 

Abbreviations 
GBCA: Gadolinium-based contrast agent; MRI: 

magnetic resonance imaging; FDA: food and drug 
administration; TR: time of repetition; TE: time of 
echo; SL: slice thickness. 
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