ELECTRIC VEHICLES: CLEAN SOLUTION OR CREATION OF NEW PROBLEMS ?

UN-SUTP module3a (200

Environmental assessment

Electric vehicles reduce local pollution!

Electricity mix (2016)

→ From mix to margin!

Environmental assessment

The problems of the battery

Where do the materials come from?

- New dependancies ? From south America ...
- Children work in Congo to mine scarce materials ...

SOME CONCLUSIONS

- EVs can provide important contribution but we will not solve the transport problems just by changing the technology;
- It is important to conduct a comprehensive assessment from graddle to grave;
- Currently electricity mainly from fossile plants → marginal generation → need for certified green electricity!
- Fair trade for Electric vehicles' batteries?

Sustainable energy systems with focus on personal transport electrification

Multi-criteria analysis of sustainability criteria Aleksandar Janjić

SDEWES 2018, Novi Sad Serbia

What is the Smart Grid?

EC Smart Grid Task Force

- Increased sustainability;
- Adequate capacity of transmission and distribution grids for 'collecting' and bringing electricity to the consumers;
- Adequate grid connection and access for all kinds of grid users;
- Satisfactory levels of security and quality of supply;
- Enhanced efficiency and better service in electricity supply and grid operation;
- Effective support of transnational electricity markets by load flow control to alleviate loop flows and increased interconnection capacities;
- Coordinated grid development through common European, regional and local grid planning to optimise transmission grid infrastructure;
- Enhanced consumer awareness and participation in the market by new players;
- Enable consumers to make informed decisions related to their energy to meet the EU Energy Efficiency targets;
- Create a market mechanism for new energy services such as energy efficiency or energy consulting for customers;
- Consumer bills are either reduced or upward pressure on them is mitigated.

Existing parking system

Процењено време задржавања на паркиралишту

Amount of space required to transport the same number of passengers by car, bus or bicycle. (Poster in city of Muenster Planning Office, August 2001)

Multi Criteria Decision Making

SDEWES 2018, Novi Sad Serbia

Charger location methodologies

Criteria: construction cost and running cost, traffic status, impact on power grid, impacts on ecology and urban development, user's comfort

- Multiple Objective Decision Making
- Multiple Criteria Decision Making

Existing studies, which are based on the application of MODM methodology, for the selection of optimal locations use models such as:

- Linear/ nonlinear programming
- Mixed integer programming
- Stochastic programming
- Genetic algorithm (GA)
- Particle Swarm optimization (PSO)

V2G scheduling

City of Niš Case Study

SDEWES 2018, Novi Sad Serbia

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

"Impacts of transport sector digitalization and electrification on medium and long term energy planning"

doc. dr. sc. Goran Krajačić, dipl. ing.

Sustainable energy systems with focus on personal

transport electrification 3rd SEE SDEWES Conference Novi Sad, Serbia 01/07/2018

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

ENERGY TRANSITION

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE

DEPARTMENT OF ENERGY, **POWER AND ENVIRONMENTAL** ENGINEERING

eurelectric

eurelectric

Other

Coal

Power⁴

Decarbonization pathways

European economy

EU electrification and decarbonization scenario modelling Synthesis of key findings May 2018

OVERALL ELECTRIFICATION SCENARIOS

The 3 scenarios deliver unprecedented but necessary reductions in CO2 emissions

			-x /o p.a.	reduction rate between 2015 2050 to achieve target
Total GHG emissions, EU ¹		2050 scenarios		
GtCO2eq.	Scenario 1	Scenario 2	S	cenario 3

1. Organic, Ammonia, Other; 2. Oil & Gas, Own use, Other 3. Construction, Food & Agriculture, Manufacturing, Materials, Mining, Non-Energy, Other; 4. Separate global granular model SOURCE: Energy Insights, a McKinsey Solution - Global Energy Perspective

Liquids

Gas

Sub-sectors [>50]

Energy sources [55]

Direct electrification results by scenario

For each sub-sector, example of inputs include TCOs,

customer behavior and technology changes, etc

UN	IVERSITY
OF	ZAGREB

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

source: eurelectric

Key drivers of BEVs sales

- Current fleet
- Macro-economic drivers: GDP, population growth
- Scrap rates, especially of internal-combustionengine (ICE) vehicles
- TCO of BEVs relative to other competing technologies, driven by decreasing battery cost
- Demand for shared mobility and autonomous driving
- Infrastructure deployment and innovation (i.e. wireless charging)
- Non-economic drivers for BEV acquisition (*i.e. regulation*, *environmental awareness*)

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE

DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

Source: Robert Sansom (Imperial College), Winter Peak Heat Demand

	Contents lists available at ScienceDirect	ENERGY	
	Energy	All Market and All	
LSEVIER	journal homepage: www.elsevier.com/locate/energy	V Receiver	

Agent based modelling and energy planning – Utilization of MATSim for transport energy demand modelling

T. Novosel ^{a, *}, L. Perković ^a, M. Ban ^a, H. Keko ^b, T. Pukšec ^a, G. Krajačić ^a, N. Duić ^a

* University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Department of Energy, Power Engineering and Environment, Ivana Esicia 5, 10002 Zagreb, Croatia
* Birrey Institute Hrwije Paira, Department for Energy Generation and Transformation, Savska 163, 10001 Zagreb, Croatia

UN	IVERSITY
OF	ZAGREB

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

100% RES electricity supply ?

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

Digitalization – market capitalization

Key message: Digital technology companies have become global leaders by market capitalisation, though energy companies still lead in revenues.

Notes: Rankings are for publicly traded companies; market capitalisations calculated at the end of Q2; circle sizes are relative to market capitalisation.

Key message: Technology cost reduction is a key driver enhancing connectivity throughout the electricity sector.

Sources: IEA analysis based on Bloomberg New Energy Finance (2017); Holdowsky et al. (2015); IEA (2017a; 2017b; 2017c); Navigant Research (2017).

Key message: Digitalization is set to greatly enhance demand flexibility, the integration of variable renewables, smart changing for EVs and distributed generation.

Sources: Analysis based IEA (2016; 2017d).

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

10

Market response to solarization

Source: U.S. Energy Information Administration, based on ABB Energy Velocity Note: Prices are simple averages of CAISO trading hubs ZP26, NP15, and SP15 from January 1 through June 30 of each year.

Source: Energy Storage and Smart Energy Systems Henrik Lund, Poul Alberg Østergaard, David Connolly, Iva Ridjan, Brian Vad Mathiesen, Frede Hvelplund, Jakob Zinck Thellufsen, Peter Sorknæs

Energy storage?

OF ZAGREB

UNIVERSITY

FACULTY OF MECHANICAL ENGINEERING

DEPARTMENT OF ENERGY, **POWER AND ENVIRONMENTAL** ENGINEERING

100

90

80

70

60

50

40

30

20

10

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

						Capacity			1 KWN	
						Cost			209\$/kW	
						Lifetime			10year	
	41			I	_	Capital cos	t		5%	
RNFL FA II	thium-io	n patt	ery pac	K pric	e	Yearly cost			27.07\$	
SURVEV RESI	ults					Daily 1 kW	h		365kWh	
our vey reek	anto					LCOE for 1	kWh		0.07\$/kWh	
Battery pack price (\$	/kWh)	year	2018	2019	2020	2021	2022	2023	2024	2025
20%	7	\$/kWh	167	134	107	86	68	55	44	35
1,000		\$/kWh	0.06	0.05	0.04	0.03	0.02	0.02	0.02	0.01
	800	642	− 10% 599	-359 540	⁶] 3:	-22% - 50	273	209		
2010	2011	2012	2013	2014	20	015	2016	2017		

Source: Bloomberg New Energy Finance. Pack level pricing. Weighted average of BEV and PHEV packs

Bloomberg New Energy Finance

13 #EnergyUnion

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

THANK YOU FOR YOUR ATTENTION!

goran.krajacic@fsb.hr

- Energy Technology Perspectives 2012,2014,2015,2016, 2017 IEA
- Digitalization and Energy 2017, IEA, 2017
- Harnessing Variable Renewables, IEA, 2011
- Lund, H. Renewable Energy Systems, The Choice and Modeling of 100% Renewable Solutions, Elsevier, 2010
- D. F. Dominković, I. Bačeković, A. S. Pedersen, and G. Krajačić, "The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition," *Renewable and Sustainable Energy Reviews*, vol. 82. pp. 1823–1838, 2018.

The development of the power transmission system of electric vehicles.

SDEWES 2018

NOVI SAD

Huseyin Ayhan Yavasoglu, Ph.D.

Electric Vehicles

Why EV?

- To reduce petroleum dependency.
- Environmental concerns.

PEV Market Share

• To have more efficient and quiet transportation.

PEV Market share in EU is : 0.8% PEV and 0.64%BEV with total 1.44%

http://www.eafo.eu/eu

http://www.anl.gov/

-	Engine	Motor	"Battery"
Conventional	100kW	Starter motor	12V
	Full transient	Stop/start	3kW, 1kWh
Mild Hybrid	90-100kW	3-13kW	12-48V
	Full transient	Torque boost / re-gen	5-15kW, 1kWh
Full Hybrid	60-80kW	20-40kW	100-300V
	Less transient	Limited EV mode	20-40kW, 2kWh
PHEV	40-60kW	40-60kW	300-600V
	Less transient	Stronger EV mode	40-60kW, 5-20kWh
REEV	30-50kW	100kW	300-600V
	No transient	Full EV mode	100kW, 10-30kWh
EV	No Engine	100kW Full EV mode	300-600V 100kW, 20-60kWh

www.warwick.ac.uk

Powertrain Road Map

www.warwick.ac.uk

Announcements from major auto makers

• 400 models and estimated global sales of 25 million by 2025.

- Porsche aims at making 50% of its cars electric by 2023.
- JLR has announced it will shift entirely towards electric and hybrid vehicles by 2020.

• General Motors, Toyota and Volvo have all declared a target of 1 million in EV sales by 2025.

• By 2030, Aston Martin expects that EVs will account for 25% of its sales, with the rest of its line up comprising hybrids.

• By 2025, BMW has stated it will offer 25 electrified vehicles, of which 12 will be fully electric.

The Renault Nissan & Mitsubishi alliance intends to offer 12 new EVs by 2022.

https://www.forbes.com/sites/sarwantsingh/2018/04/03/global-electric-vehicle-market-looks-to-fire-on-all-motors-in-2018/# 2ece8f 62927 fire-on-all-motors-in-2018/# 2ece8f 62927 fire-on-all-motors-

BEV Range Comparison

2018 US BEV Models

Rated Ranges \$23.800 135km 143km **93km** 140km Smart Electric Drive Honda Clarity Electric Fiat 500e Mercedes B Class ED **79km** 184km 185km 200km × **Kia Soul EV** BMW i3 Ford Focus Electric Hyundai Ionic Electric 381km 243km **201km** 354km **Tesla Model 3** Tesla Model X Nissan Leaf Volkswagen e-Golf \$135.000 383km 507km

Tesla Model S

Chevrolet Bolt

6

Energy Storage System

Fuel Cell Vehicles (FCV)

By year-end 2017, a total of **6,475** hydrogen fuel cell vehicles have been sold globally since 2013 when the vehicles first became available commercially.

"Global Market for Hydrogen Fuel Cell Vehicles, 2018."

Production FCV

- 2007 Honda FCX Clarity
- 2010 Mercedes-Benz F-Cell
- 2014 Hyundai Tucson FCEV[2]
- 2015 Toyota Mirai
- 2016 Riversimple Rasa
- 2016 Honda Clarity Fuel Cell
- 2018 Hyundai Nexo

Firms tie up to drive demand for hydrogen vehicles

March 2017

Battery Electric Vehicles

Tesla Model S Weight Proportion.

Almost %40 of the Cost is battery!

http://teslararti.com

Battery Electric Vehicles

Current BEVs

	Current EV in the Market								
	Brand	Model	Region	Price	Range [km]	Battery [kWh]	Powertrain	Year	Motor Type
1	BMW	i3	EU & US	\$44,450	183	33	RWD	2018	AC induction
2	Chevrolet	Bolt	US	\$36,620	383	60	FWD	2017	AC PMSM
3	Fiat	500e	US	\$32,995	135	24	FWD	2017	AC induction
4	Ford	Focus E	EU & US	\$29,120	185	33.5	FWD	2018	AC PMSM
5	Honda	Clarity E	US	\$37,510	143	25.5	FWD	2018	AC PMSM
6	Hyundai	loniq E	EU & US	\$29,500	200	28	FWD	2018	AC PMSM
7	Jaguar	I-Pace	EU & US	\$76,500	386	90	FRWD	2018	AC PMSM
8	Kia	Soul EV	EU & US	\$33,950	179	30	FWD	2018	AC PMSM
9	Mitsubishi	MiEV	US	\$22,995	160	16	FWD	2017	AC PMSM
10	Nissan	Leaf (2nd Gen)	EU & US	\$29,990	243	40	FWD	2018	AC PMSM
11	Renault	Zoe	EU	\$31,000	299	41	FWD	2017	AC PMSM
12	Smart	ED	EU & US	\$23,800	161	17.6	FWD	2017	AC SM
13	Tesla	Model 3 (Long Range)	EU & US	\$50,000	499	75	RWD	2018	AC PMSM
14	Tesla	Model S 100D	EU & US	\$94,000	539	100	FRWD	2017	AC induction
15	Tesla	Model S 75D	EU & US	\$74,500	417	75	FRWD	2017	AC induction
16	Tesla	Model S P100D	EU & US	\$135,000	507	100	FRWD	2017	AC induction
17	Tesla	Model X 100D	EU & US	\$96,000	475	100	FRWD	2017	AC induction
18	Tesla	Model X 75D	EU & US	\$79,500	381	75	FRWD	2017	AC induction
19	Tesla	Model X P100D	EU & US	\$140,000	465	100	FRWD	2017	AC induction
20	Wolkswagen	e-Golf	EU & US	\$30,495	192	35.8	FWD	2017	AC PMSM
21	Wolkswagen	e-Up!	EU	\$30,495	159	35.8	FWD	2017	AC PMSM

On target production BEVs

	Upcoming EV									
	Brand	Model	Region	Range [km]	Battery [kWh]	Powertrair	Year			
1	Audi	e-tron Quattro	SUV	426	95	FRWD	2018			
2	Hyundai	Kona E	crossover	402	64	FWD	2018			
3	Kia	Niro EV	crossover	380	64	FWD	2018			
4	Mercedes- Benz	EQC	SUV	410	70	FRWD	2019			
5	Nissan	Leaf (Long Range)	hatchback	362	64	FWD	2019			
6	Porsche	Taycan		418	90	FRWD	2019			
7	WV	ID	hatchback	370	60	RWD	2019			

Tesla.com

Only one propulsion machine

Simple

Limited high efficient operation map

Tesla.com

Two propulsion machines

Powertrain efficiency could be improvedMore complicated

The load power could be effectively split between the two propulsion machines to obtain the highest powertrain efficiency

The powertrain efficiency could be improved up to 10% .

IDENTICAL MOTORS

The World's First Street Legal Electric Car to Exceed 350km/h

330 km/h (205.6 mph)

https://genovationcars.com /

Remy Electric Motor Efficiency Map

Torque [Nm]

IDENTICAL MOTORS

 η Two < η Single

Efficiency map of Complementary motor couple

Upcoming high capacity BEVs

- Audi e-tron Quattro SUV (95kWh)
- Mercedes- Benz EQC SUV (70kWh)
- Porsche Taycan (90kWh)

The properties of this two permanent magnet propulsion machines are provided by Argonne National Laboratory (ANL)'s Autonomie software library and detailed specifications are given in. Potential of having better powertrain efficiency

Conclusion

- Currently PEV are the goal for CO₂ regulations, Zero-emission vehicles would be mandatory wish upcoming regulations.
- Powertrain of the EVs is still improving.
- Li-ion batteries are major ESS unit currently, Technological improvement and cost reduction are required.
- What kind of new propulsion technologies are likely to make sense ?
 * PMSM is the major propulsion machine for the BEVs. Tesla is also going to use PMSM in 4WD Model 3
 - * Current and upcoming almost all EVs with +65kWh battery capacity utilizes two propulsion machines.
 - * Using two complementary propulsion machines instead of double identical or single large one make more sense in terms of placing and efficiency.

IEEE International Transportation Electrification Conference

TEC2017

CHICAGO

Thank You!

