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Environmental Sustainability Issues
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Life Cycle Analysis (LCA) – “Cradle to Grave”
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Life Cycle Analysis (LCA) 
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• Quantifying environmental impacts of complex systems
• Modeling the entire product/process life cycle
• Holistic view of the system 

Life Cycle Analysis



Life Cycle Optimization (LCO)

Integrating life cycle analysis approach with 
multi-objective optimization techniques

Life Cycle Analysis
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Life Cycle Optimization: Theory and Methods
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• Life Cycle Optimization
▪ Life Cycle Analysis + Techno-economic Analysis + Design Optimization

Process 
Analysis

Process 
Design

Process 
Optimization

Life Cycle 
Analysis

Sustainable 
Design

Life Cycle 
Optimization

• Research Challenges
▪ How to seamlessly integrate LCA into process systems optimization?
▪ How to define the “optimal” systems boundary and functional unit?
▪ How to incorporate state-of-the-art inventory analysis methods in LCO?
▪ How to deal with uncertainty and solve large-scale LCO problems?



Process-based Life Cycle Optimization (LCO)

• Systems boundary must be defined in Phase I of LCA
• Functional unit serves as the basis for calculation and comparison

Life Cycle Analysis
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• Algae
• Microalgae, cyanobacteria, & macroalgae
• Non-food; high yield; rich in oil

• Algae-based biorefinery
• Consume and utilize CO2; recycle nutrients & water
• Produce fuels and value-added products
• Process economics? Environmental sustainability?

Motivation

Chlorella Vulgaris

Biofuels

Bioproducts
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• Optimal design and synthesis of algal biorefinery
• Selection of technology, pathway, and processing methods
• Determination of product portfolio under the given feed
• Recycling nutrients, water and carbon dioxide
• Mass balance, capacity, and equipment sizing
• Energy and utility consumption
• Process economics ?  Techno-econmic analysis
• Environmental sustainability ?  Life cycle analysis
• Cost-effective & sustainable design

Algal Biorefinery Process Design and Optimization
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LCO for Sustainable Design of Energy Systems

10Gong & You (2015). Current Opinion in Chemical Engineering, 10, 77-86.



Superstructure of Algae Process

Harvesting

Lipid extraction

Biofuel production Bioproduct manufacturing

Remnant 
treatment

Cultivation

Hydrogen
Propylene glycol

Glycerol-tert-butyl ether
Poly-3-hydroxybutyrate

Biodiesel
Diesel

Biogas utilization
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Superstructure of Algae Process

<1,2> Flat plate 
photobioreator

<1,3> Bubble column 
photobioreator

<1,4> Tubular 
photobioreator

7,800+ processing pathways
12



Optimization Model: Constraints for ONE Unit
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• Technology selection • Mass balance and unit sizing

• Electricity

• Heating utility

• Cooling utility
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• Equipment capital cost

• Annualized investment cost

• Annual operating cost

= + +rma tran maghg ghg ghg ghg

• Greenhouse gas emissions

Mass and material balance
Process network design specifications

Technology and pathway selection
Equipment sizing and capacity

Energy balance
Utility consumption

Techno-economic 
analysis

Life cycle environmental 
impact analysis
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• Objectives:
• Minimize: Unit cost of fuel product (techno-economic analysis)

• CAPEX + OPEX
• Credit from selling by-products (glycerol, fertilizer, biogas, …)

• Minimize: Unit life cycle GHG emission (life cycle analysis)
• Direct emissions: Cultivation, remnant treatment, & utility generation
• Indirect emissions: External utility, e.g. electricity and steam, …

Optimization Model: Objectives

Systems boundary and 
life cycle stages of LCA
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Pareto Optimal Curve

Minimum unit GWP 

Minimum unit 
annualized cost 

)
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Pareto Optimal Curve

Minimum unit GWP 

Minimum unit 
annualized cost 

)
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Superstructure of Algae Process

Harvesting

Lipid extraction Biofuel production Bioproduct manufacturing

Remnant 
treatment

Cultivation

Biogas utilization
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2.71 – 3.78 14.43 Petroleum-derived 
diesel

Optimal Design of Minimum Unit Biofuel Cost

Unit cost of biofuel 
($/GEG)

Unit GHG emissions 
(kg CO2-eq/GEG)

Biodiesel 
Throughput 

(million GGE)
Bioproduct

2.79 7.21 47 Propylene glycol
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GWP of Algae-based H2, PHB, Propylene Glycol

Alternative bio-based propylene glycol is derived from soybean by ADM(R).

63%

51% 6%
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ACS Sustainable Chem. Eng. 2015, 3, pp 82−96
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Alternative approaches for Life Cycle Inventory (LCI) analysis
• Process-based LCA
• Economic Input-Output (EIO)-based  LCA
• Hybrid LCA

Hybrid Life Cycle Optimization (h-LCO)
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(most widely used)
(for macroscopic analysis)
(state of the art)



Process-based LCA
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Process-based

Resolution Process Sector Process (foreground)
Sector (background)

Construction Bottom Up Top Down Hybrid

Scope Selected Processes Entire Economy Entire Economy

Process system boundary

Detailed process inventories



EIO-based LCA
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Process-based EIO-based

Resolution Process Sector Process (foreground)
Sector (background)

Construction Bottom Up Top Down Hybrid

Scope Selected Processes Entire Economy Entire Economy

Entire macroeconomy

Transactions among sectors

Sectors:
Agriculture, mining, 
construction, manufacturing, 
wholesale trade, retail trade, 
transportation, etc.



Integrated Hybrid LCA
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Process-based EIO-based Integrated Hybrid

Resolution Process Sector Process (foreground)
Sector (background)

Construction Bottom Up Top Down Hybrid

Scope Selected Processes Entire Economy Entire Economy



Insights into Different LCA Approaches
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Process-based LCA
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Drawbacks:
• System boundary truncation
• Underestimation of the true impact

Advantage:
• Specificity of process analysis



EIO-based LCA
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Drawbacks:
• Loss of precision at process level

Advantage:
• Completeness of life cycle boundary



Integrated Hybrid LCA
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Integrates process- and IO-based LCA

Advantages:
• Completeness of life cycle boundary
• Specificity of foreground processes



Toaster Example
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(Functional unit: produce 1,000 pieces of bread)
Comparing two toasters



Toaster Example
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Toaster Example
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18.7 17.7
Direct emission 

(process system)



Toaster Example
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18.7 17.7

27.2 27.3

Direct emission 
(process system)

Full emission
(process + IO systems)

Neglected
indirect emission

(IO system)
34% 35%



Integrated Hybrid LCA
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I1

I2

IM

…

Inputs
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…
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…

…

…
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Processes Systems

S1

S2

S3

Sn

S1

S2

S3

Sn

Economic Input-output SystemsUpstream 
cutoffs

Downstream 
cutoffs

Sectors Sectors
Integrated Hybrid LCA:
• Explicit process analysis – foreground process systems (precision of analysis)
• EIO analysis – background macroeconomic systems (complement the truncated 

system boundary)



Mathematical Foundation
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• Unconventional natural gas from shale rocks

• Large-scale production due to hydraulic 
fracturing and horizontal drilling 

• Half of the NG production in the U.S.

• Over 63,000 shale wells in the U.S.

Application to Shale Gas

35
U.S. natural gas production

Hydraulic fracturing Horizontal drilling



Hybrid LCA of Shale Gas
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• Climate change

• Water consumption

• Energy consumption



Goal and scope
• UK shale gas
• System boundary: well-to-wire
• Functional unit: 1 MWh electricity generation from shale gas

Life cycle inventory
• 40 basic processes in the process systems
• Two-region IO model (UK-ROW) with 224 industrial sectors
• Three cases from literature: best, balance, and worst cases 

corresponding to the lowest, the medium, and the highest 
environmental impacts

Impact assessment
• GHG emissions (100-year GWP factors;

CO2, CH4, N2O, HFCs, PFCs, and SF6)
• Water consumption 
• Energy consumption

LCA of Shale Gas

37



Process Systems – 40 Basic Processes
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Process ID Description Process ID Description

m1 Steel production, converter, chromium steel 18/8 m21
Soda ash, dense, to generic market for neutralizing 
agent

m2
Concrete production, for civil engineering, with 
cement CEM I m22 Sodium persulfate production

m3 Tap water production, direct filtration treatment m23 Sodium borates production

m4 Diesel production, low-sulfur m24 Citric acid production

m5 Diesel, burned in building machine m25 Pesticide production, unspecified

m6
Diesel, burned in diesel-electric generating set, 
18.5kW m26 N, N-dimethylformamide production

m7 Barite production m27 UK electricity generation, with mixed energy inputs

m8 Bentonite quarry operation m28
Transport, freight, lorry, all sizes, EURO3 to generic 
market for transport, freight, lorry, unspecified

m9 Chemical production, inorganic m29 Injection in disposal well

m10 Chemical production, organic m30 Wastewater treatment by CWT
m11 Lignite mine operation m31 Onsite treatment with MSF
m12 Treatment of inert waste, inert material landfill m32 Onsite treatment with MED
m13 Treatment of drilling waste, landfarming m33 Onsite treatment- with RO
m14 Silica sand production m34 Steam production, in chemical industry
m15 Petroleum refinery operation m35 Tap water production, direct filtration treatment
m16 Isopropanol production m36 Transporting gas through pipelines

m17 Hydrochloric acid production, from the reaction of 
hydrogen with chlorine m37 Ethanolamine production

m18 Ethylene glycol production m38 Ethylene glycol production
m19 Potassium chloride production m39 Fugitive emissions of CO2

m20 Carboxymethyl cellulose production, powder m40 Fugitive emissions of CH4



Hybrid LCI Data Structure
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IO System (896 × 896 matrix)

Agriculture

Mining

Energy

Transportation

Finance

Law

Communication

Real estate

Education

Recreation etc.

Sector groups:

• Multi-region: UK and ROW (rest of world)
• Supply-Use Table (SUT): each containing 224 industrial sectors/products



LCA Results
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• Electricity generation 
• Transportation

• Electricity generation 
• Processing

• Drilling 
• EIO system



Comparison with Existing Hybrid LCA Studies
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• GHG emissions of shale gas are comparable to those of natural gas 
• Less GHG emissions than Coal and Oil



Activity – Linking SC Decisions with h-LCO
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Definition: Activity is a flexible process that involves decision making.

Truck Rail Ship

Operation

Lorry

maintenance, lorry

disposal, lorry

Road

operation, maintenance, road

disposal, road

Operation, freight train

Locomotive

Goods wagon

Maintenance, goods wagon

Maintenance, locomotive

Disposal, locomotive

Railway track

Operation, maintenance, railway track

Disposal, railway track

Operation, transoceanic freight ship

Transoceanic freight ship

Maintenance, transoceanic freight ship

Port facilities

Operation, maintenance, port

?

Agriculture Mining Manufacturing Finance Law Energy

Unit price
Unit price

Unit price

Yue, Pandya, & You (2016). Environmental Science & Technology, 50, 1501–1509.



Hybrid LCO Model for Shale Gas
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Case Study of UK Shale Gas Supply Chain
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• 15 Shale sites 
(7 existing, 8 potential ones)

• 4 processing plants 
(2 existing, 2 potential)

• 6 CCGT power plants

• 10-year planning horizon 
(40 time periods)

MINLP problem: 
• 414 integer variables
• 11,797 continuous variables 
• 15,370 constraints



Pareto-optimal Curve
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Drilling Schedules and Production Profiles
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Drilling Schedules Production Profiles



Supply Chain Design and Flow Information 
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ACS Sustainable Chem. Eng. 2016, 4, pp 3160-3173
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LCO: Attributional v.s. Consequential
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Multiobjective 
Optimization

Goal and Scope 
Definition

Life Cycle Inventory 
Analysis

Life Cycle Impact 
Assessment

Interpretation

Life Cycle Assessment

Automatic generation of 
system design decisions

• Attributional LCA

• Consequential LCA



Motivating Example
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Environmental Impacts 
of producing A

Environmental Impacts 
of the conversion

Environmental Impacts 
of end of life of B+ +

(2)
Environmental Impacts 

of the new system -
(1)

Environmental Impacts 
of the original system

Environmental 
Impacts of 

conversion (2)

Environmental 
Impacts of 

conversion (1)
-Environmental 

Impacts of 
end of life of B

Environmental 
Impacts of 

end of life of C
-+

Or

Attributional LCA: static and fact-based

Consequential LCA: dynamic and change-driven



Consequential Life Cycle Optimization
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Consequential 
LCA

Techno-economic 
Analysis

• What upstream and downstream processes are influenced 
by the target process?

• How does the target process influence the upstream and 
downstream processes?

Consequential Life Cycle Optimization
Multiobjective Optimization

Process Models

How does it work?



An Analogy – Spot the Difference
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Before After



Attributional LCA for Process Design Problems
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Environmental 
impacts in the 

use and end-of-
life phases

Environmental impacts 
in the feedstock 

production phase Environmental impacts 
from the process

Environmental impacts from 
transportation

• Not suitable for new systems
• Overlook the power of markets and influences in other processes

• Applicable to existing systems



System Boundary of the Consequential LCO
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Partial Equilibrium Model
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Consequential LCO framework
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Economic Objective
e.g. maximize net present value

Environmental Objective
e.g. minimizing ReCiPe points

Process Model
Integer variables for technology selection; 
Mass and energy balance

Market Model
Partial equilibrium models

s.t.
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Application to Algae-based Biofuel Production
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Scenedesmus sp. 
with 27.4 wt % lipid

Renewable dieselFunctional Unit:
1 GJ of renewable diesel 



Detailed superstructure
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6 markets in the U.S.

Fertilizer

Natural 
Gas

Electricity

Hexane

Hexane

Diesel

Diesel

Fertilizer

Natural 
Gas



Optimization Results for ReCiPe
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Production Rate:
3.5 MMGal/year 



Environmental Impact Breakdown
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Primary Markets Attributional Consequential

-7,000 -6,000 -5,000 -4,000 -3,000 -2,000 -1,000 0 1,000 2,000 3,000 4,000

Consequential

Attributional

Annual ReCiPe endpoint score (kPt./year)

Urea production DAP production Hexane production Electricity production
Diesel production Fertilizer consumption Fertilizer adjustiment Diesel consumption
Direct emissions Transportation

Diesel Combustion in end of life
(1) Displace fossil diesel; 
(2) Transportation market 

(diesel ↑; gasoline ↓)

Fertilizers Increase fertilizer production
(1) Increase but not as much;

(2) Crops market 
(foreign ↑; domestic ↓)

Hexane Positive 
characterization factors*

Negative 
characterization factors*

*Data for “rest of the world” from Ecoinvent 3.3



Consequential Environmental Profile
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ACS Sustainable Chem. Eng. 2017, 5, pp 5887-5911

62



• Life cycle analysis and life cycle optimization
• Process-level LCA and life cycle design/optimization

• Systems boundary
• Functional unit

• Integrated hybrid LCA and LCO 
• Process systems to supply chain, and to macroeconomics scales

• Consequential LCA and LCO
• Dynamic and change-driven
• Suitable for new product systems to account for influences of other 

processes through the market

• Applications to energy systems
• Algal biorefinery
• Shale gas 
• ……

Conclusion
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http://you.cbe.cornell.edu
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