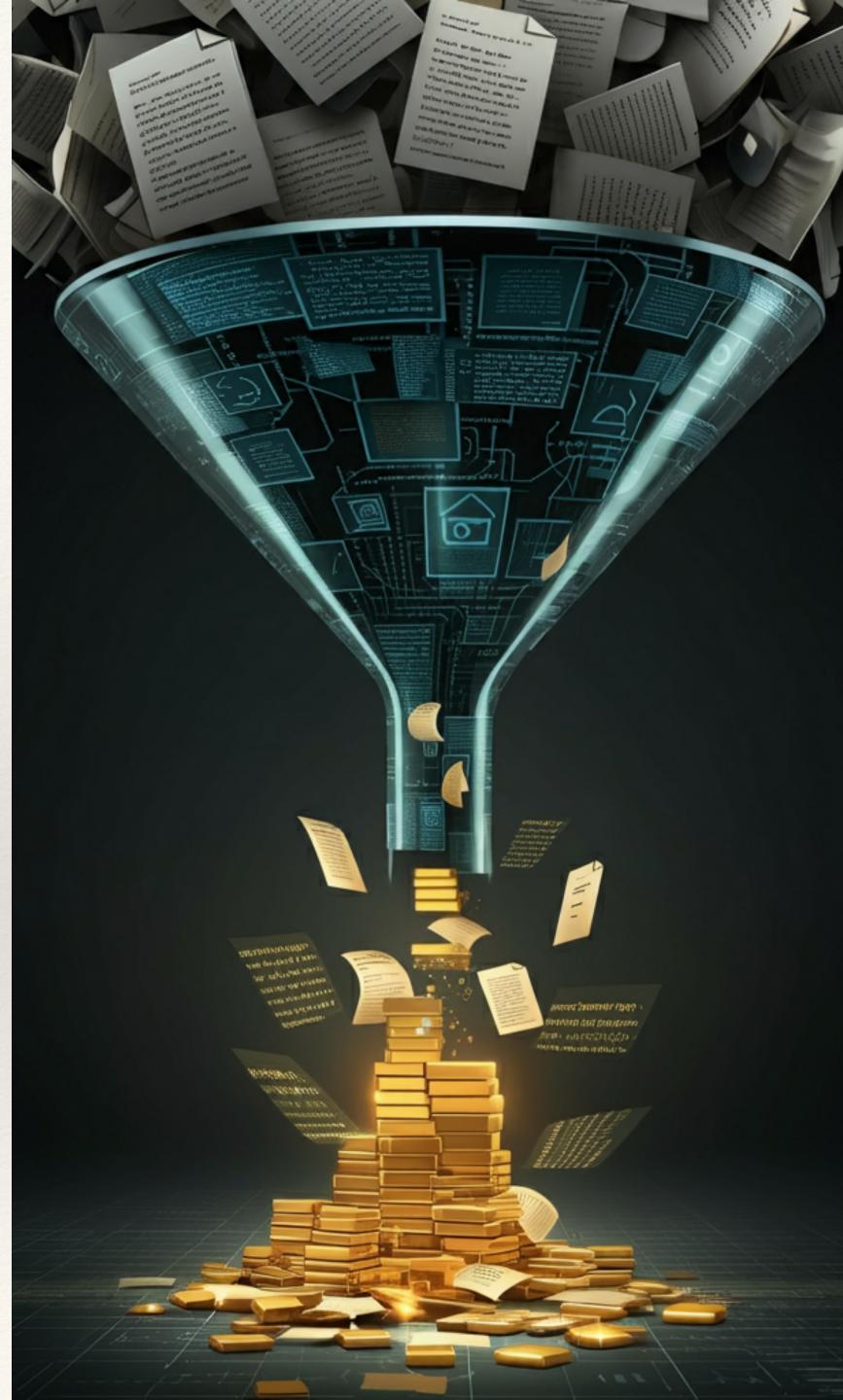
Towards *"Data-efficient"* Machine Learning Systems

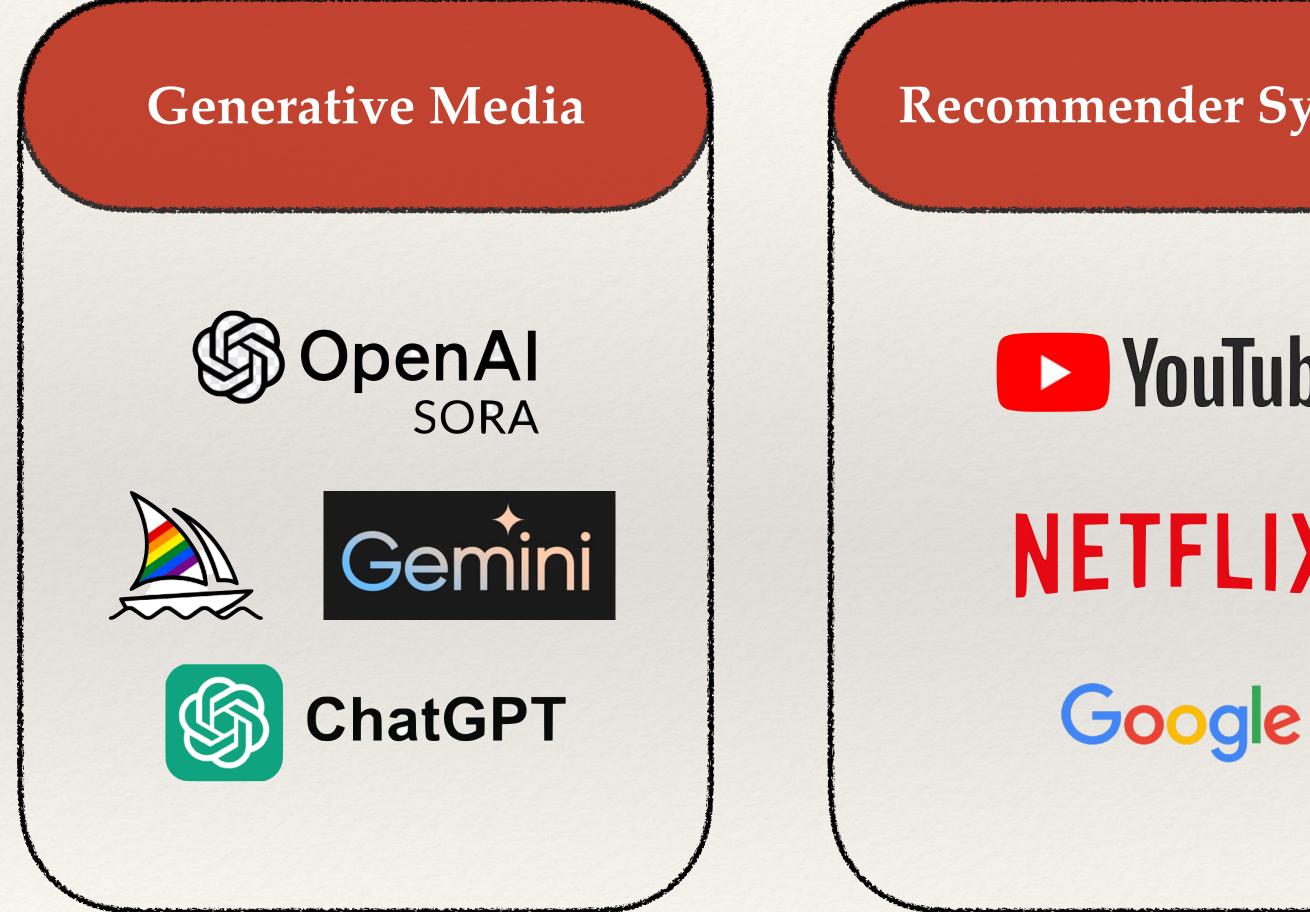
Noveen Sachdeva

UC San Diego

Final Defense | UC San Diego | May '24



A Few Examples of Successful ML Systems



Recommender Systems

YouTube NETFLIX

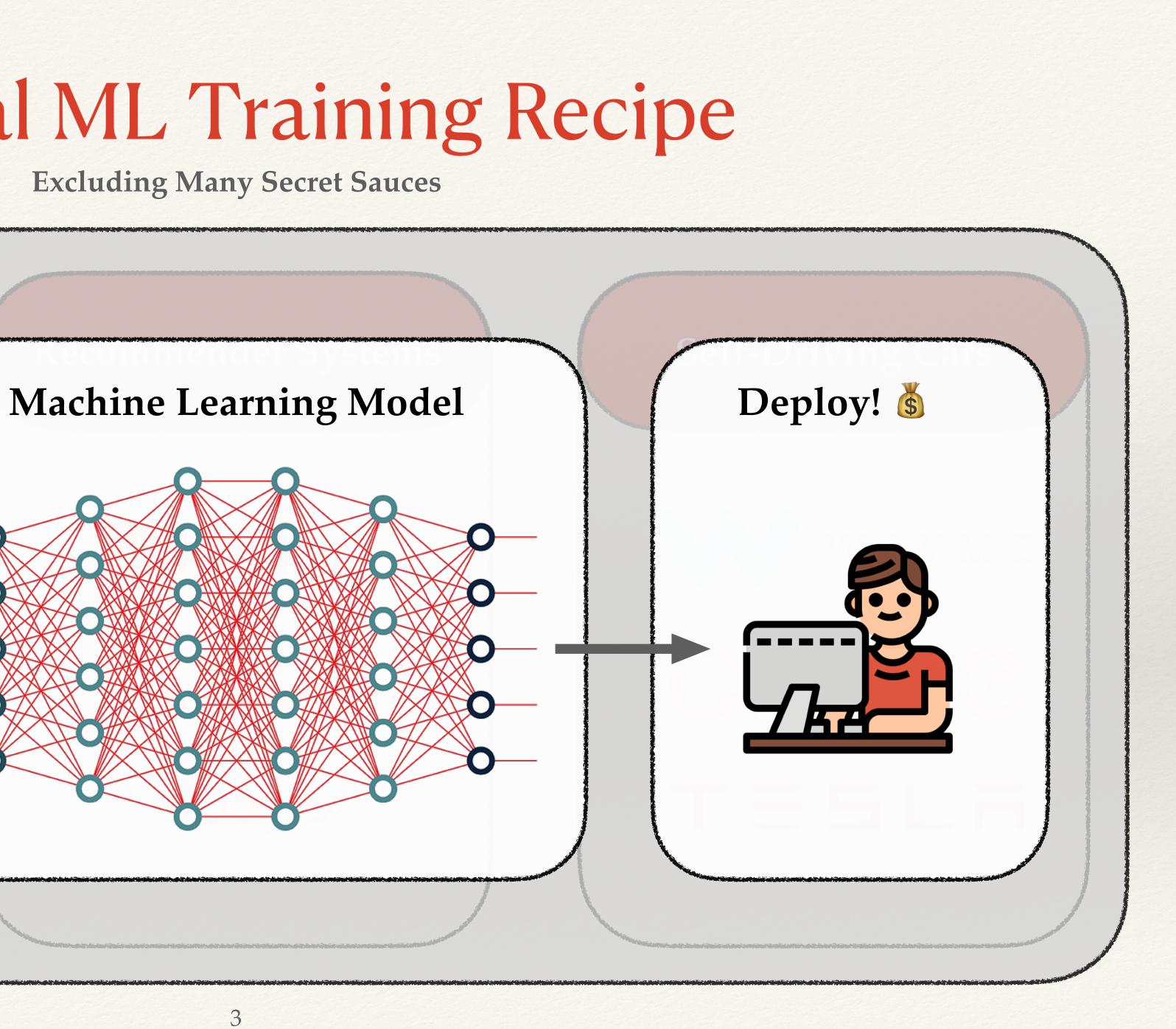
Self-Driving Cars

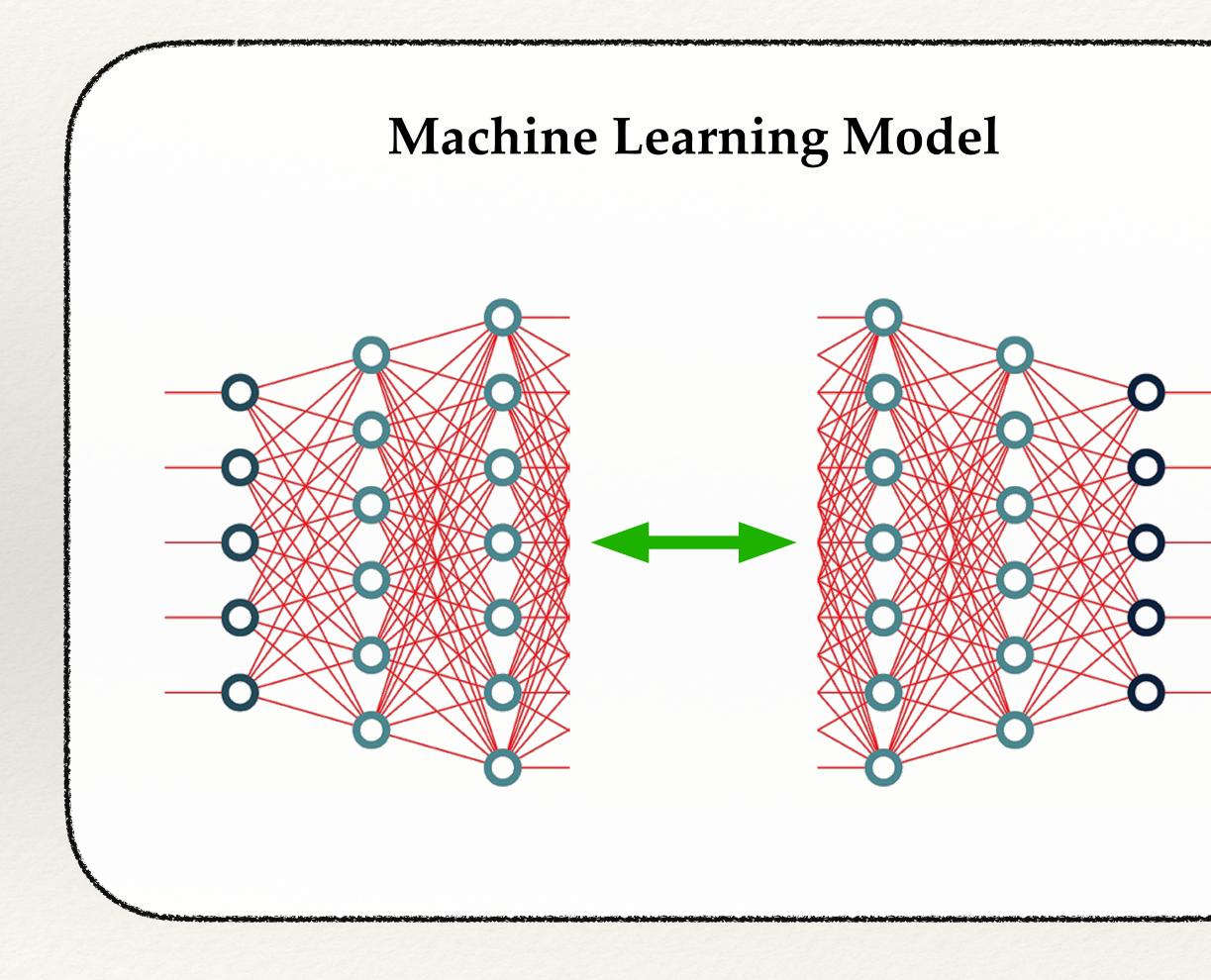
WAYMO

CIUISC TESLA

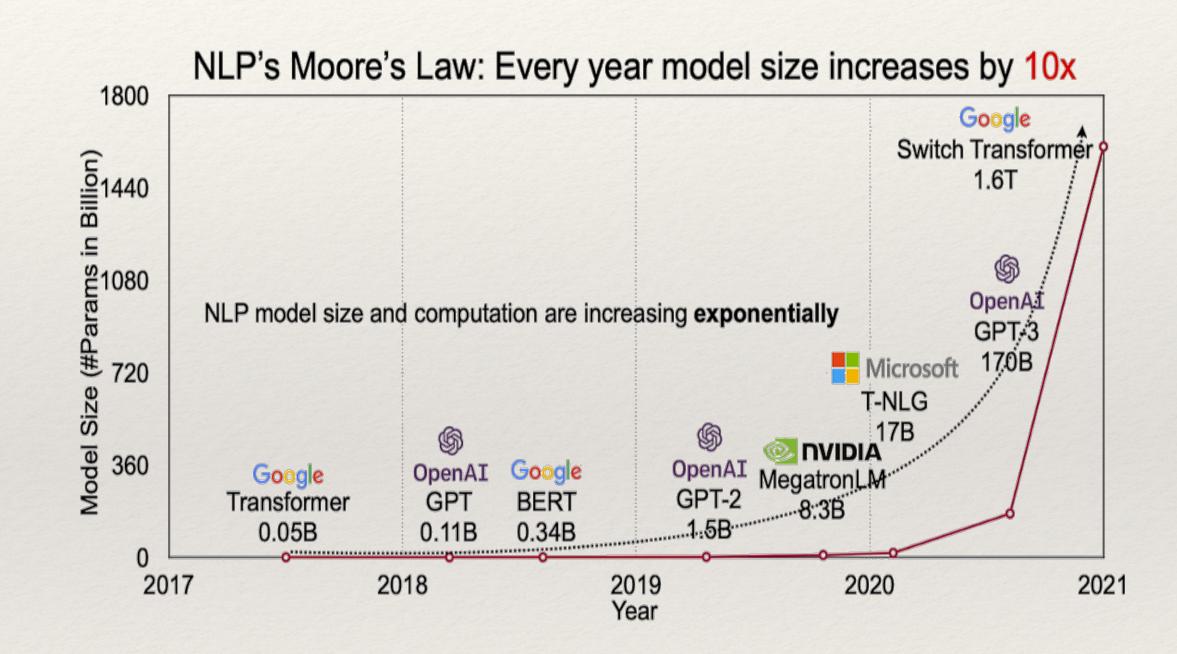
Typical ML Training Recipe

Training Data

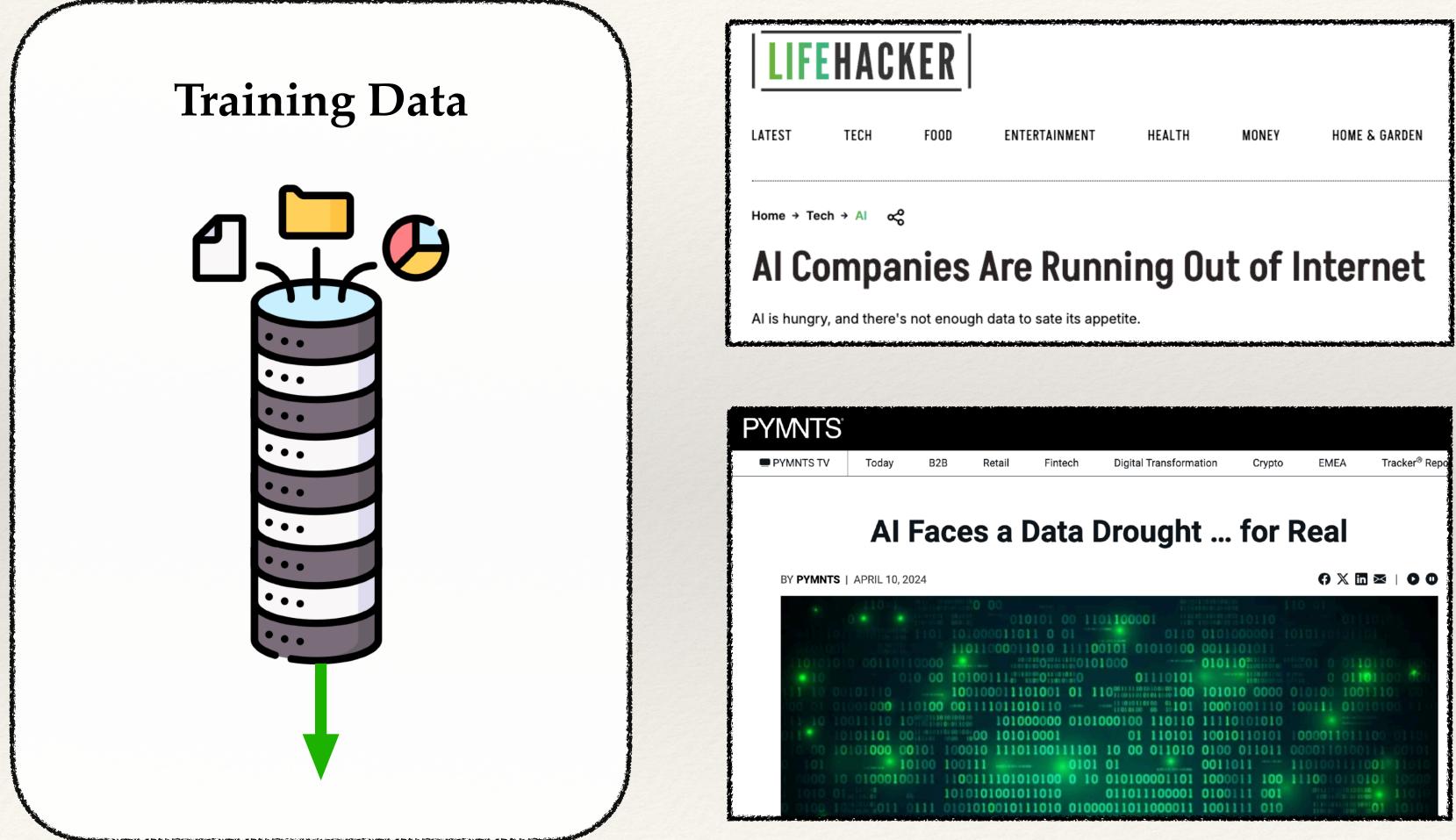




Typical Recipes for Success



Typical Recipes for Success



	49 <i>4444</i> 344 <u>8</u> -546 3 4	, an an fair an			
Retail	Fintech	Digital Transformation	Crypto	EMEA	Tracker [®] Repo
					1

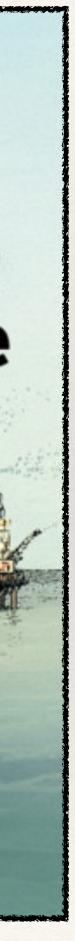
010101 00110100001 0101000001 0101000001 0101000001 0101000001 0101000001 0101000001 0101000001 0101000001 0101000001 0101000001 001000001 0010000001 00000001 00000001 00000001 00000001 000000001 000000001 000000001 0000000000 00000000000 000000000000000000000000000000000000	4
000011010 111100101 01010100 0011101011	
101000000 0101000100 110110 11110101010	
0 101010001 01 110101 10010110101 1000011011	
0 11101100111101 10 00 011010 0100 011011	
0011011 01 0011011 01 1101001111001 11010	
1101010100 0 10 010100001101 1000011 100 11100101101	
01001011010 011011100001 0100111 001	

MAY 6TH-12TH 2017

Theresa May v Brussels Ten years on: banking after the crisis South Korea's unfinished revolution Biology, but without the cells

The world's most valuable resource

Data and the new rules of competition

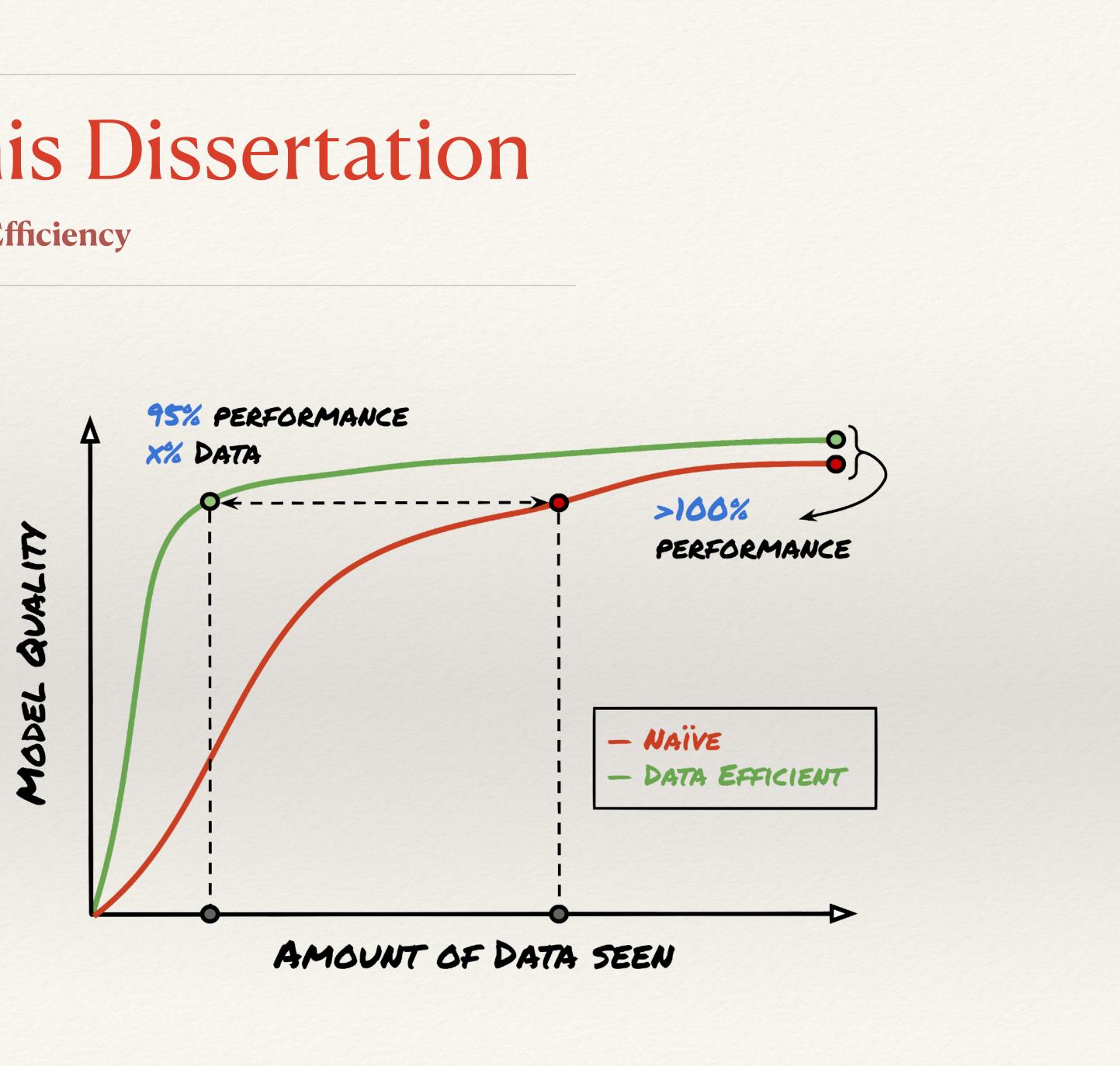


<u>Question</u>: Is more data really needed for training better models?

Routinely over-heard at big-tech:



Data Efficiency



Why Data Efficiency?

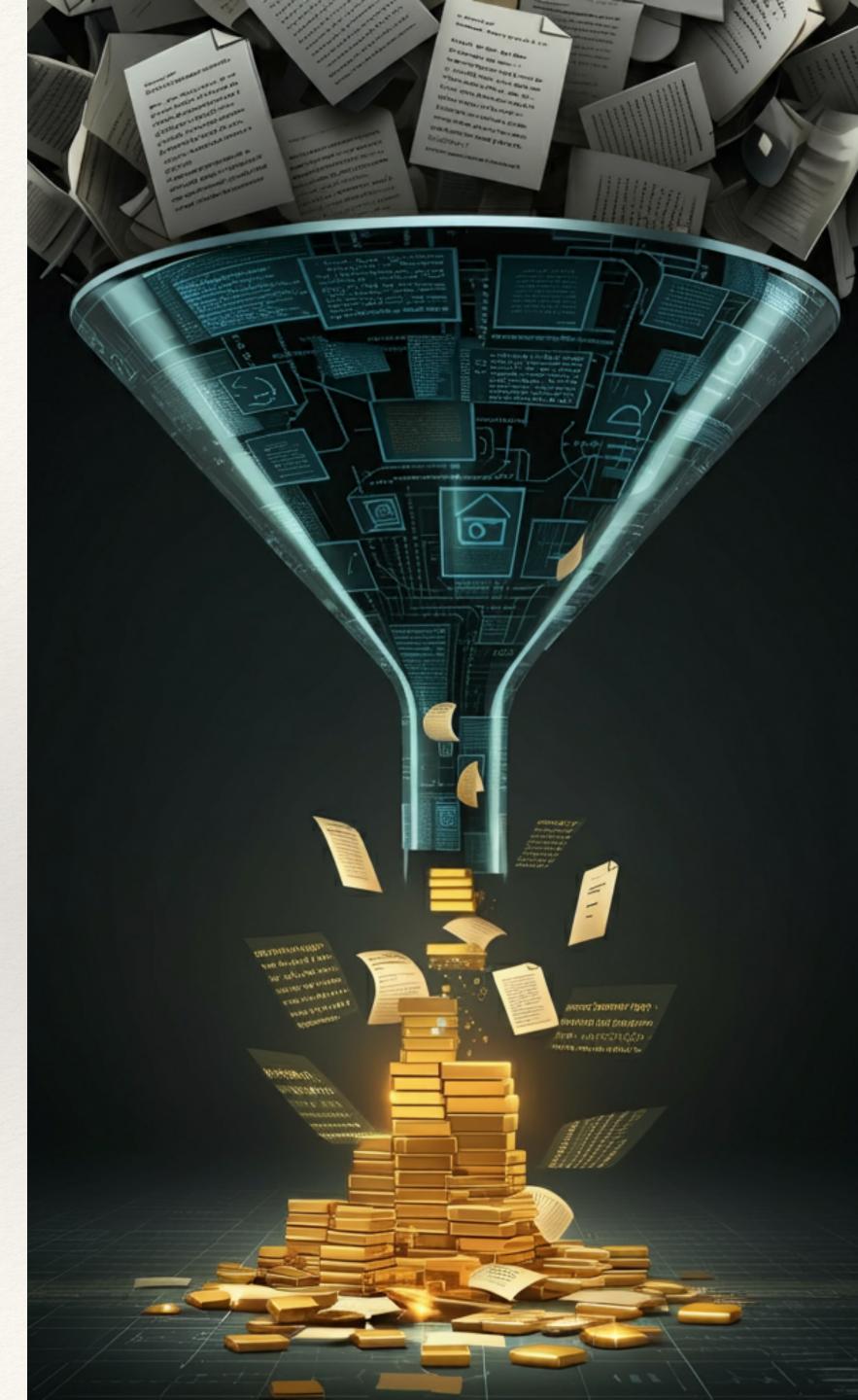


More accurate models

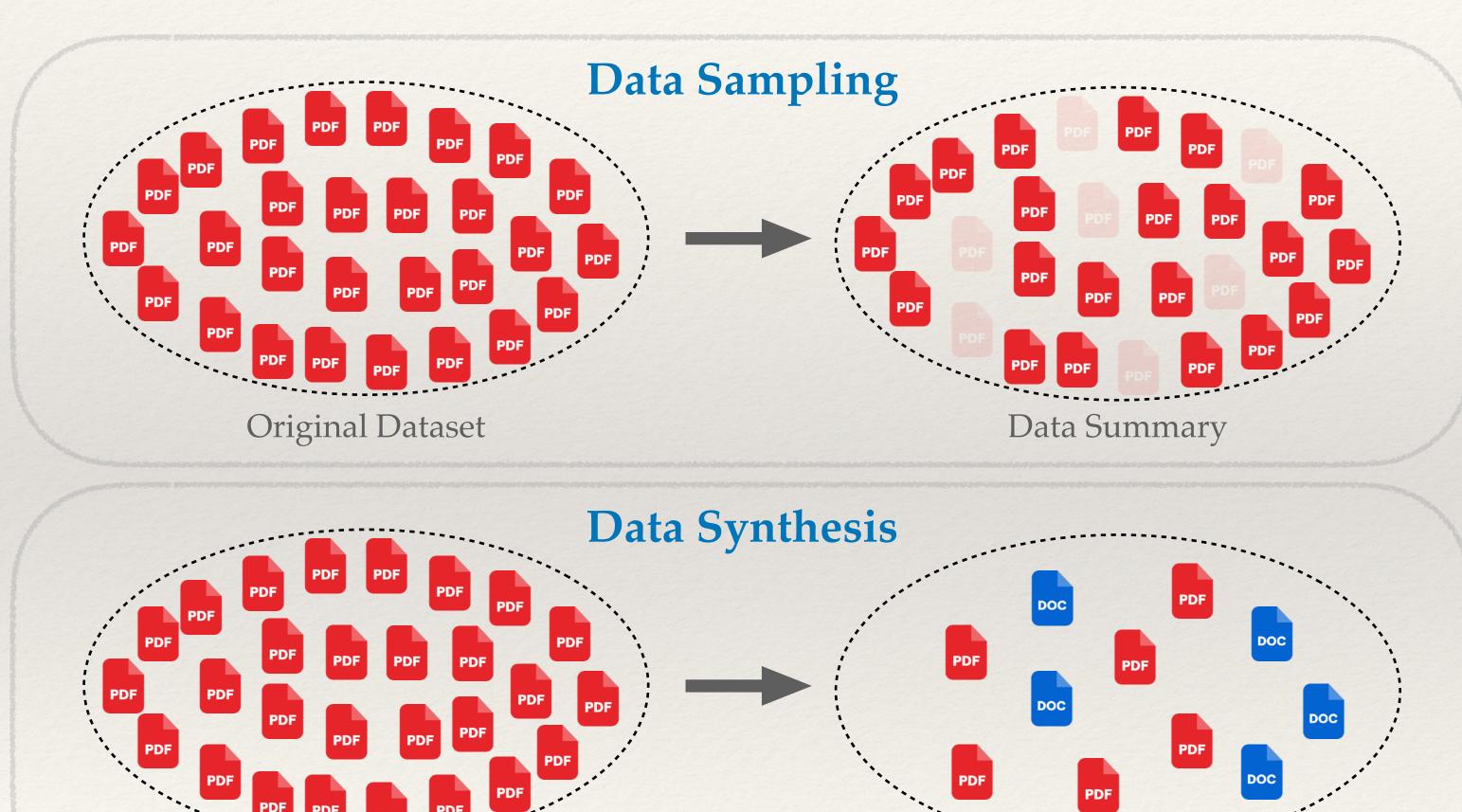
Save money to train

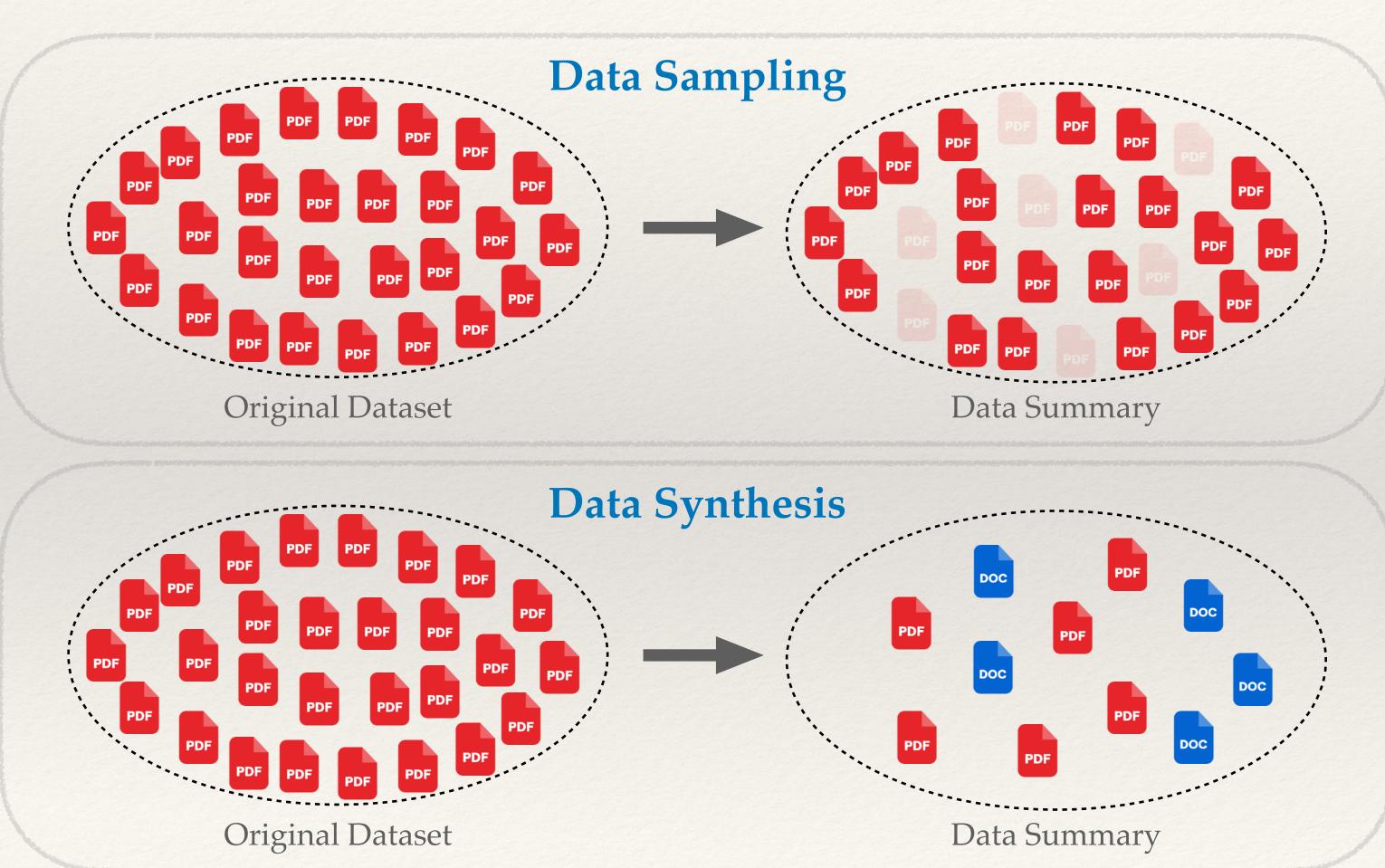
Save time to train

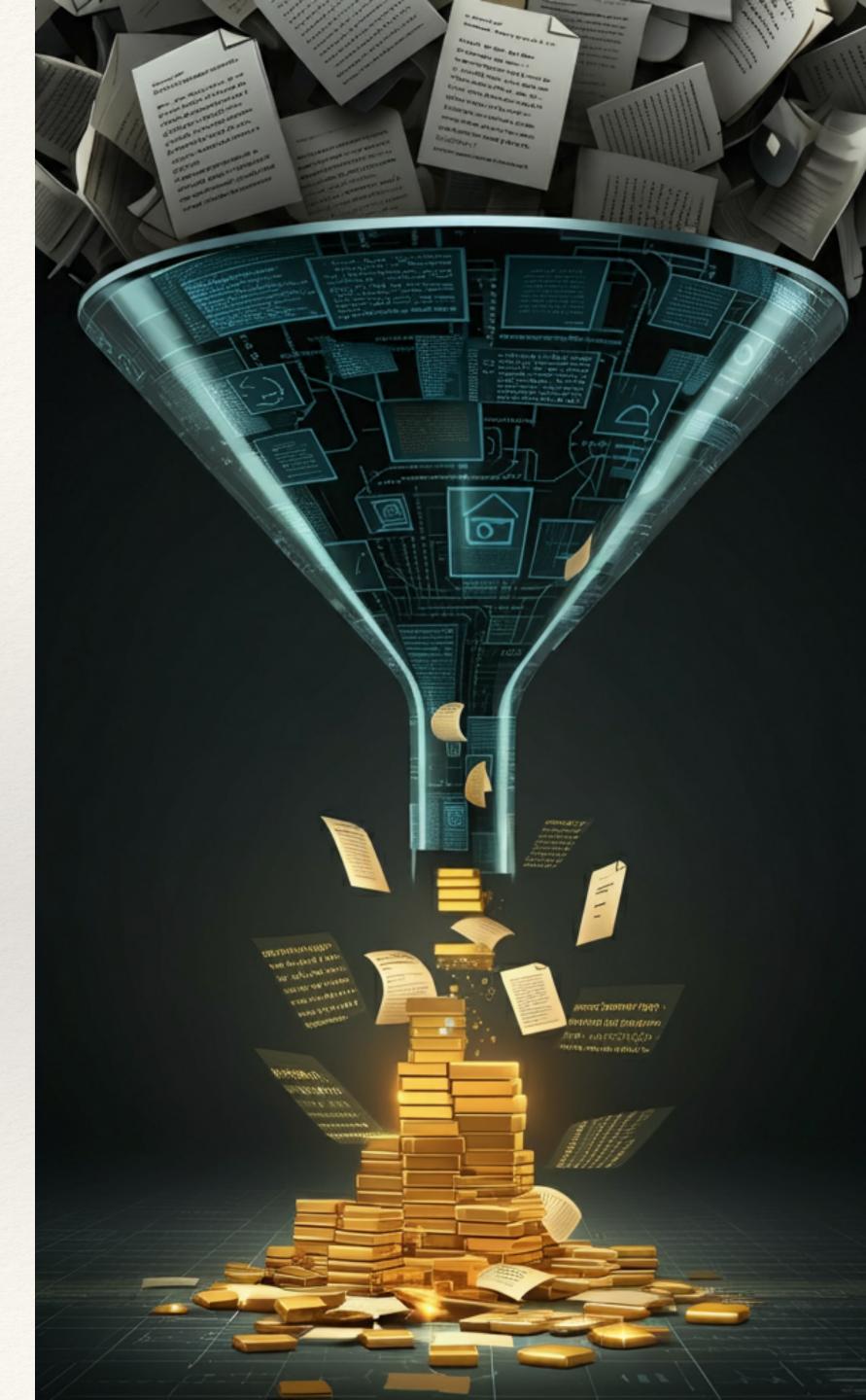
Less CO₂ emissions due to training



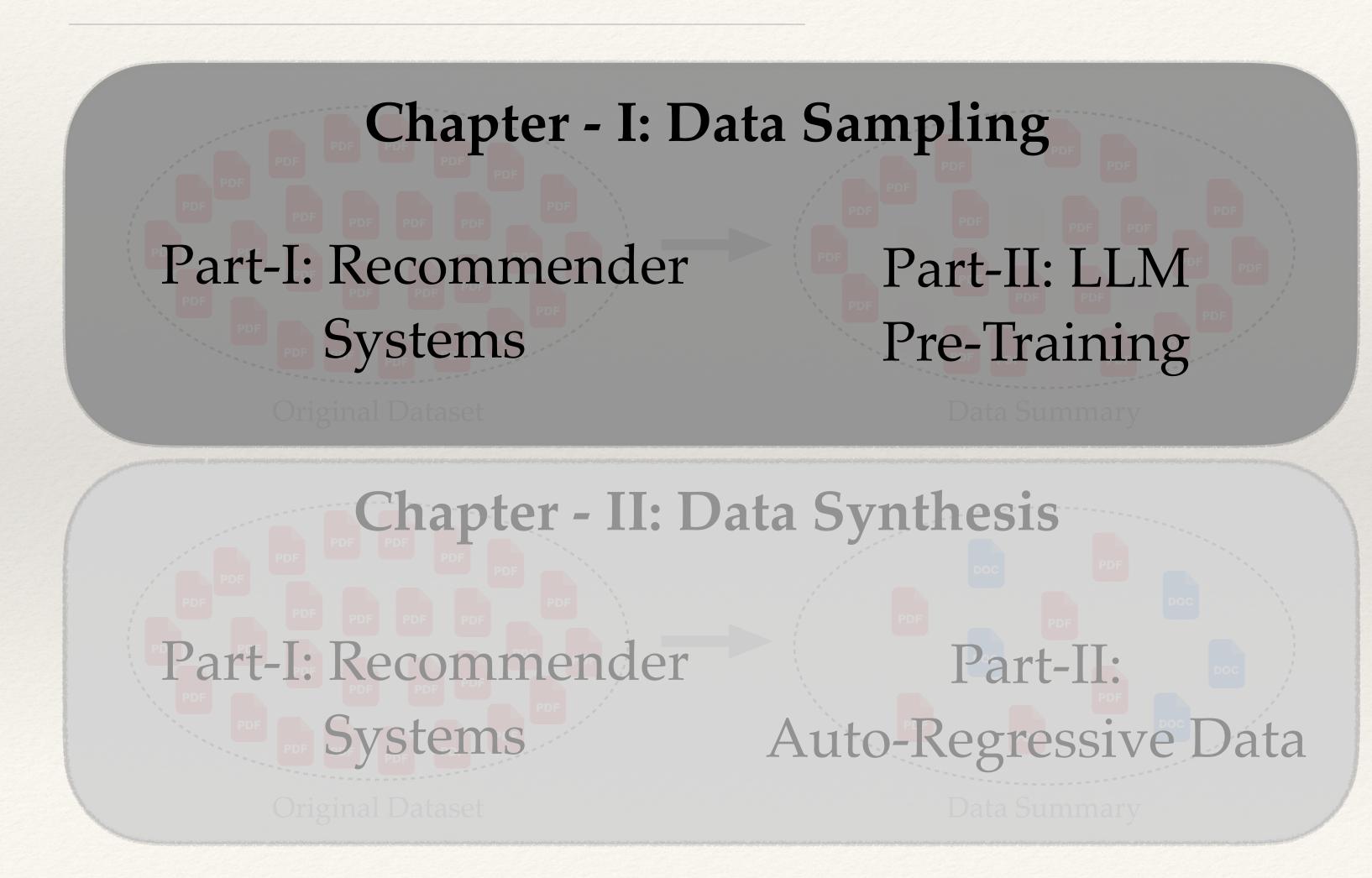
How to be Data-Efficient?

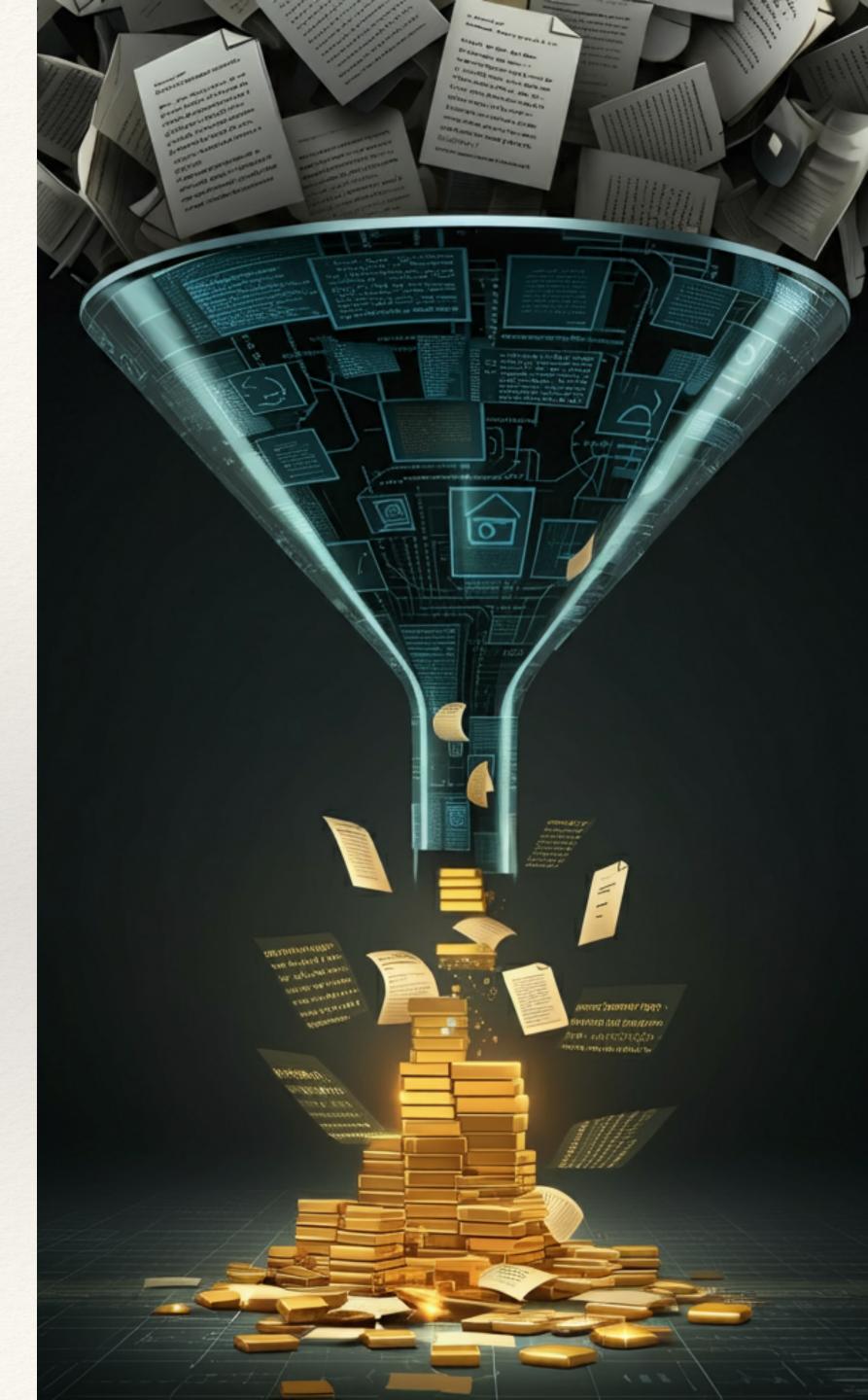






Outline



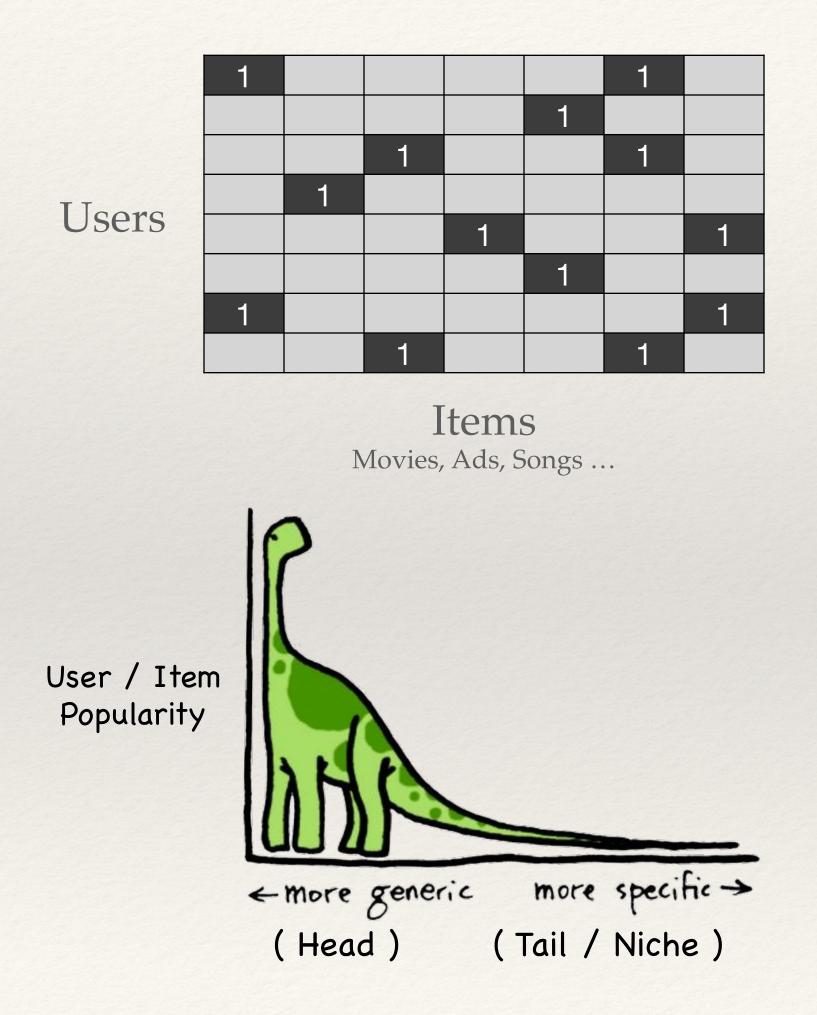


On Sampling Collaborative Filtering Datasets

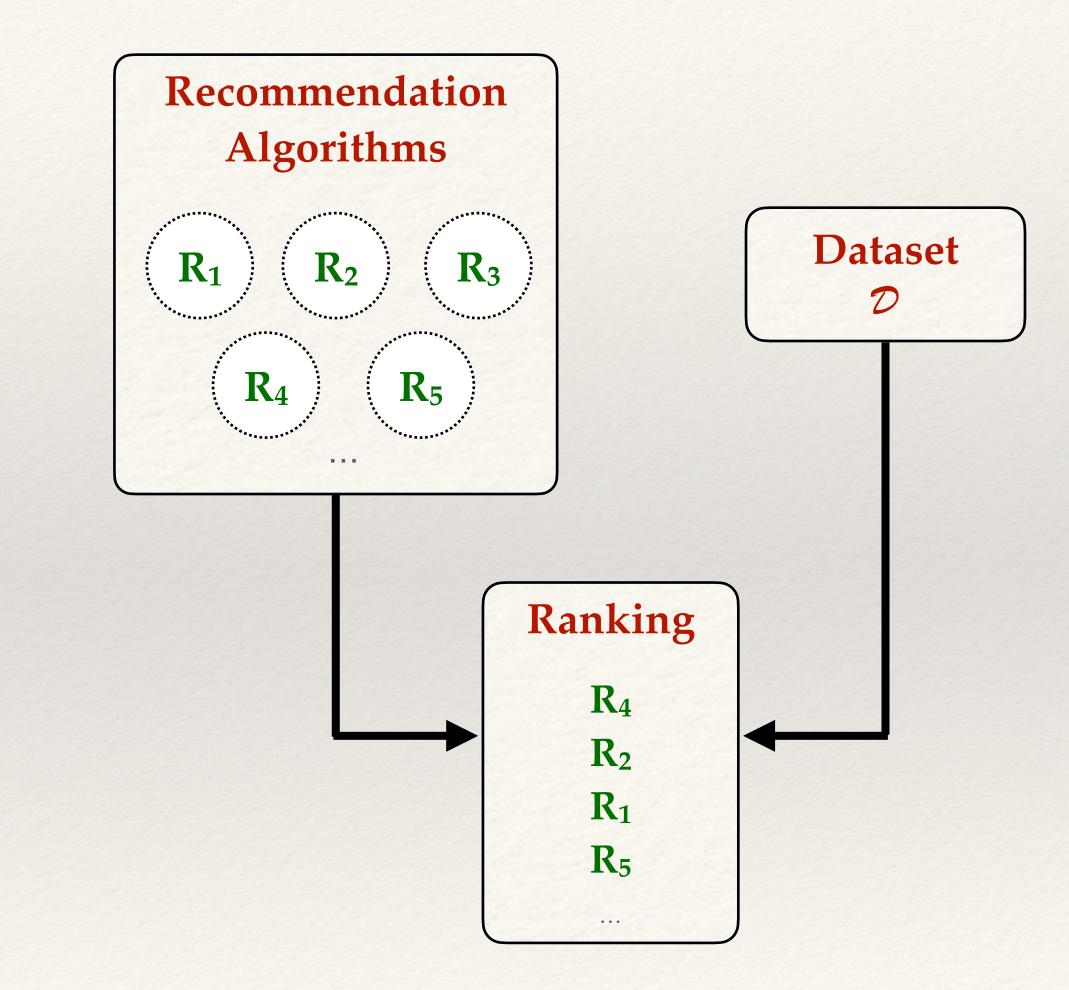
Noveen Sachdeva¹ Carole-Jean Wu² Julian McAuley¹

University of California, San Diego¹ Meta AI²

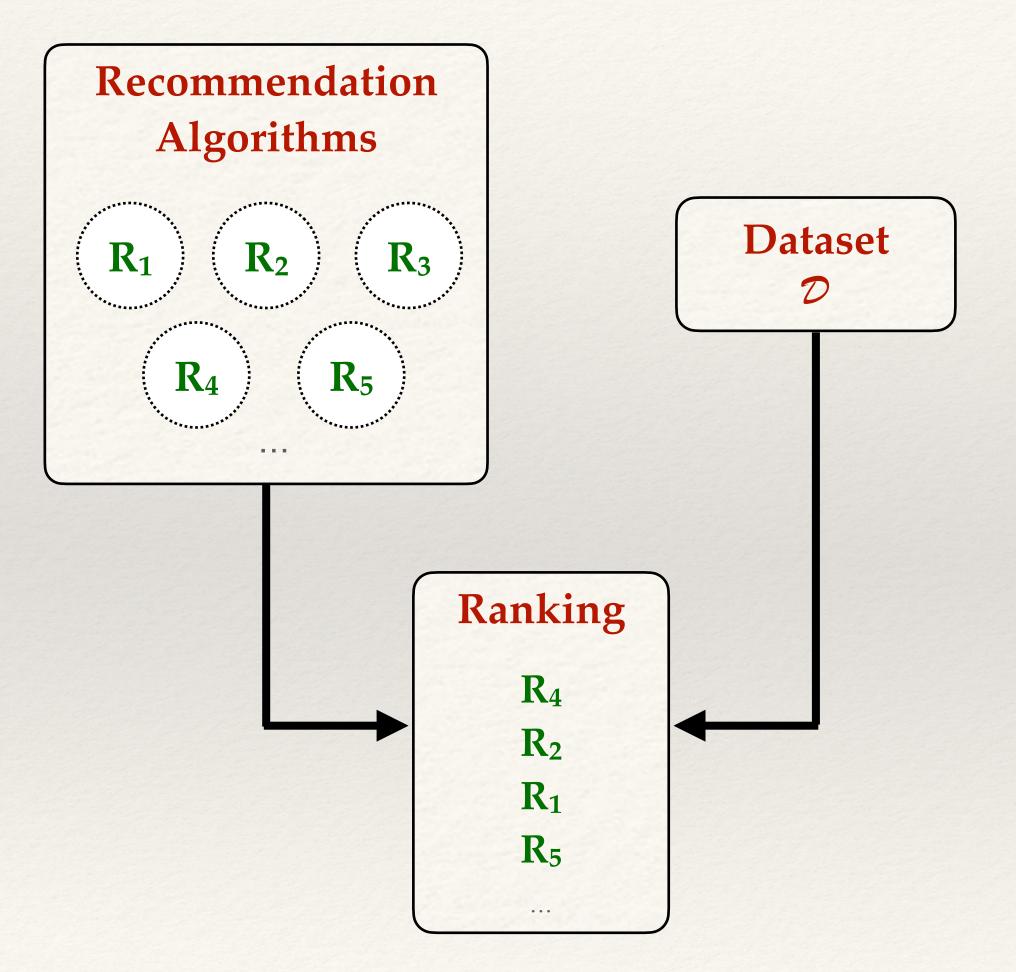
Recommender Systems



Infer the Ranking of N-different Recommendation Models



Objective



Naive vs. Data-Efficient

- **1.** Train all candidate algorithms on the entire dataset
- 2. Evaluate all algorithms
- 3. Measure the ranking of all algorithms

Data-Efficient:

- **1.** Train all candidate algorithms on a smaller sample of the dataset
- 2. Evaluate all algorithms
- 3. Measure the ranking of all algorithms

SVP-CF Down-sampling Recommendation Data

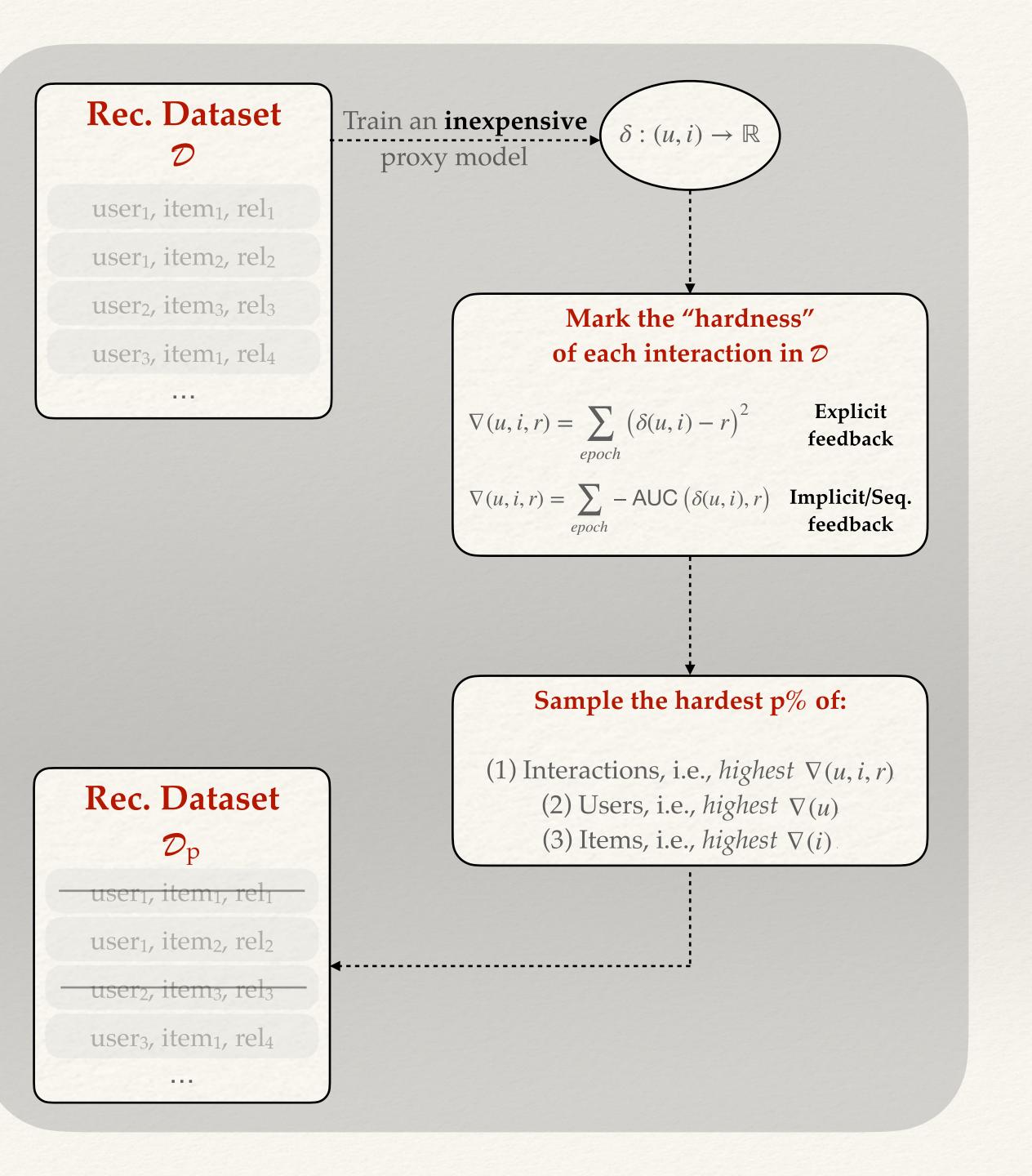
<u>Premise</u>: **Easy** parts of a dataset are most likely **easy** for all recommendation algorithms. Hence, removing such easy segments of data is unlikely to affect the relative ordering of algorithms.

SVP-CF

Down-sampling Recommendation Data

Robust framework:

- Uses a proxy model to tag the overall hardness of each user-item interaction
- Can efficiently handle various recommendation scenarios, *e.g.*, explicit, implicit, sequential, etc.
- Can sample across a variety of data axes: interactions, users, items, or even combinations of them

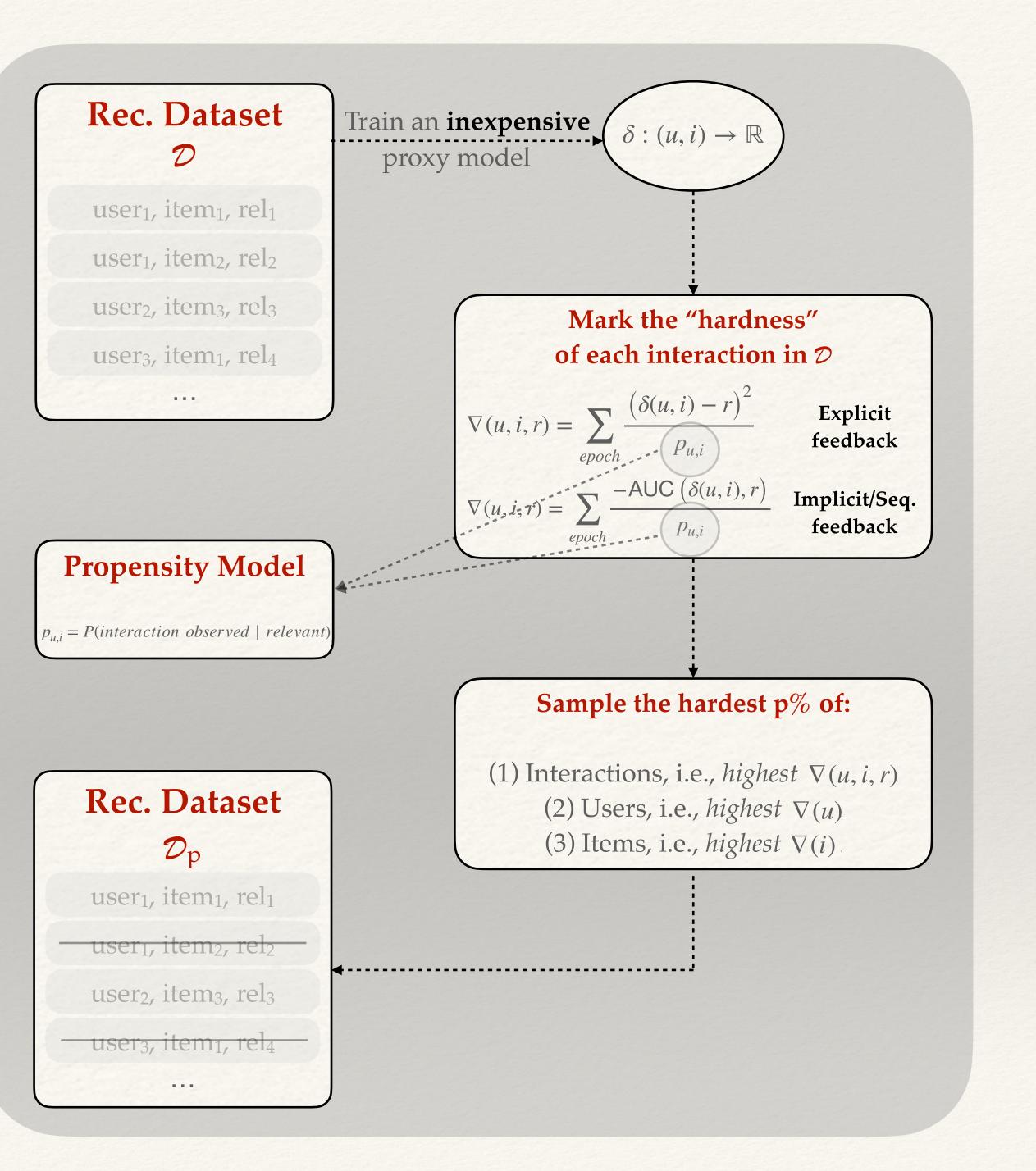


SVP-CF-Prop

Propensity Correction

Due to the large catalog of items, account for potentially missing data, especially for long-tail items

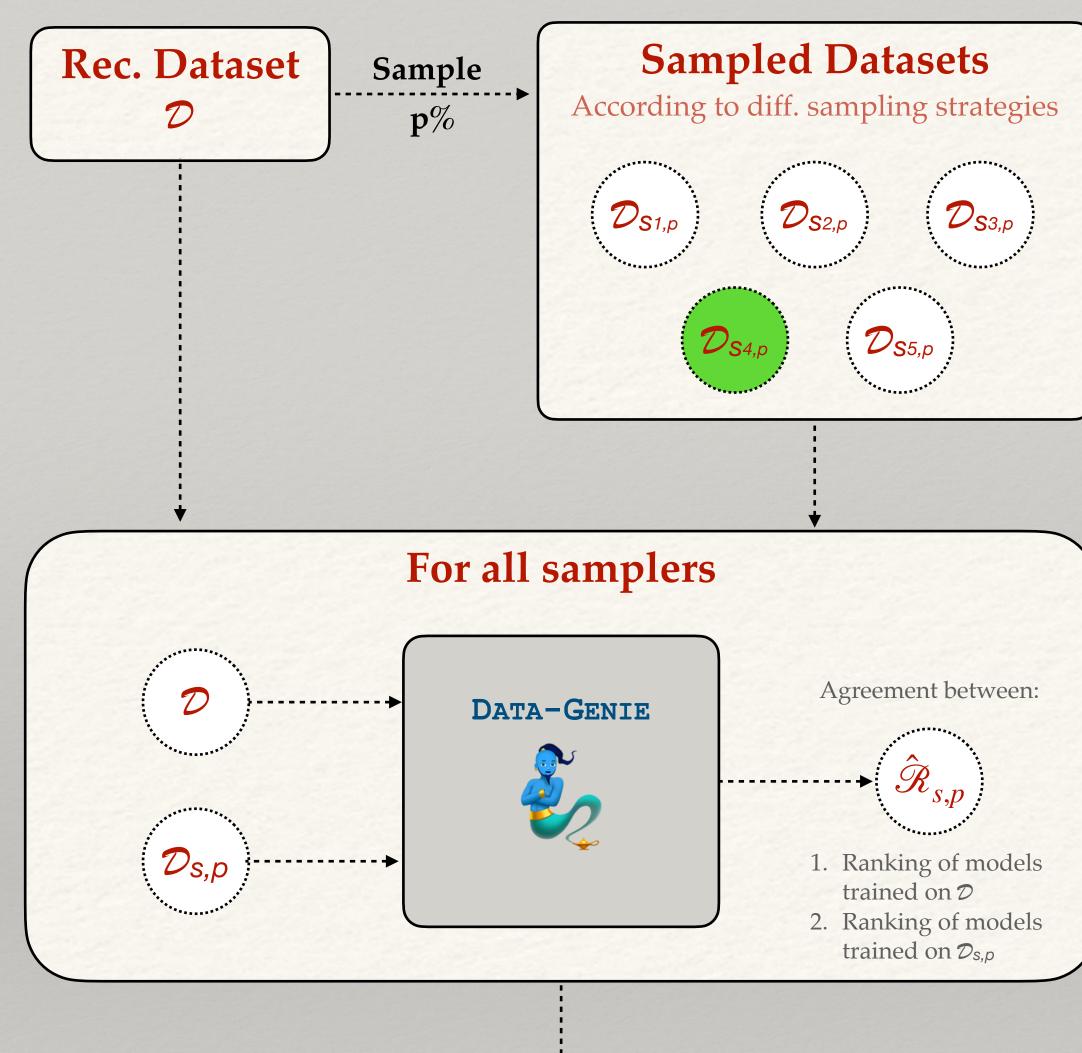
- **Re-weigh the hardness scores** using the probability of a user-item interaction going missing (propensity)
- Implicitly handles the long-tail and data sparsity issues in user-item interaction data



<u>Premise</u>: Can we build an oracle-model which given (1) a dataset, (2) list of sampling strategies, and (3) a sampling budget, can **automatically predict** which sampling scheme would be the best?

Which sampler is best for my dataset?

- Dynamically predict the performance of a sampling strategy for any given dataset
- Circumvents the time-consuming process of training and benchmarking various recommendation algorithms
- A trained DATA-GENIE model can transfer to any dataset, and can predict the utility of any sampling strategy



Ranking of different sampling strategies

Sorted according to predicted $\hat{\mathscr{R}}_{s,p}$

 $S_4, S_3, S_1, S_5 \dots$

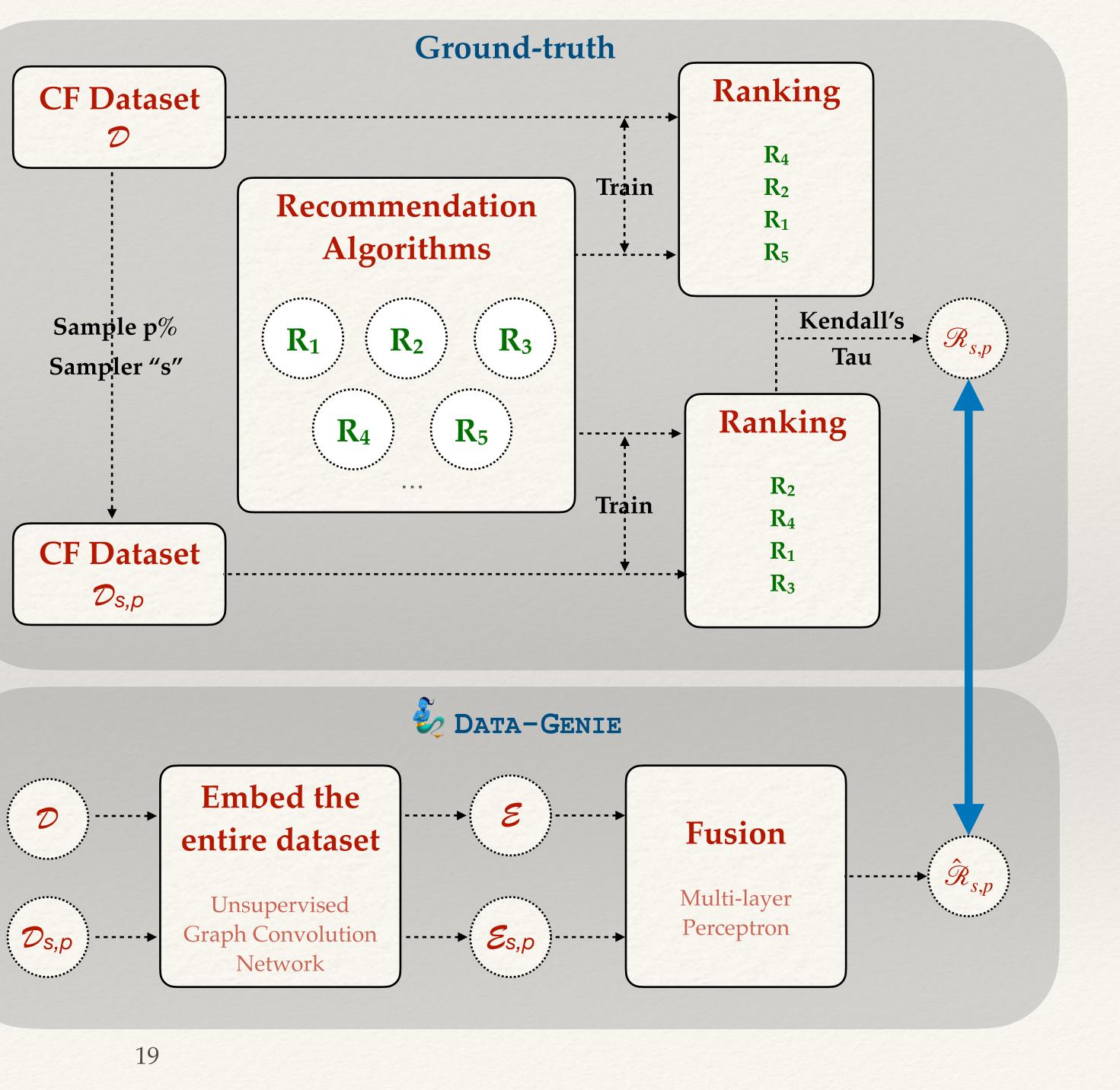
Training Objective

• DATA-GENIE-regression:

$$\arg\min\sum_{\mathcal{D}, s, p} \left(\mathcal{R}_{s,p} - \hat{\mathcal{R}}_{s,p} \right)^{\frac{1}{2}}$$

• DATA-GENIE-ranking:

$$\arg\min\sum_{\mathcal{D}, p}\sum_{\mathcal{R}_{s_{i},p} > \mathcal{R}_{s_{j},p}} - \ln \sigma \left(\hat{\mathcal{R}}_{s_{i},p} - \hat{\mathcal{R}}_{s_{j},p} \right)$$



Experiments

Setup

	Sampling strategy	
Jg	Random	
Interaction sampling	Stratified	
sam	Temporal	
uo	SVP-CF w/ MF	
acti	SVP-CF w/ Bias-only	
tera	SVP-CF-Prop w/ MF	
In	SVP-CF-PROP w/ Bias-only	
	Random	
guil	Head	
du	SVP-CF w/ MF	
User sampling	SVP-CF w/ Bias-only	
Jsei	SVP-CF-Prop w/ MF	
1	SVP-CF-PROP w/ Bias-only	
-	Centrality	
Graph	Random-walk	
Gr	Forest-fire	
	Table Compline	

Table: Sampling strategies used in our experiments

- 16 different sampling strategies
- 6 collaborative filtering datasets
- Explicit/Implicit/Sequential feedback for each CF-dataset
- 7 recommendation algorithms in our benchmarking suite

• A total of **400***k* recommendation models trained (~9 months of single-GPU compute time!)

Experiments

Major Results

	Sampling strategy	<i>Average</i> Kendall's Tau
Interaction sampling	Random	0.407
	Stratified	0.343
	Temporal	0.405
	SVP-CF w/ MF	0.484
	SVP-CF w/ Bias-only	0.468
tera	SVP-CF-Prop w/ MF	0.43
In	SVP-CF-Prop w/ Bias-only	0.458
	Random	0.431
guil	Head	0.19
ldm	SVP-CF w/ MF	0.344
User sampling	SVP-CF w/ Bias-only	0.343
Jsei	SVP-CF-Prop w/ MF	0.429
	SVP-CF-Prop w/ Bias-only	0.445
	Centrality	0.266
Graph	Random-walk	0.396
Gr	Forest-fire	0.382

Table: Average Kendall's Tau of various sampling strategies

- the worst ideas of all sampling strategies.
- recommendation algorithms.

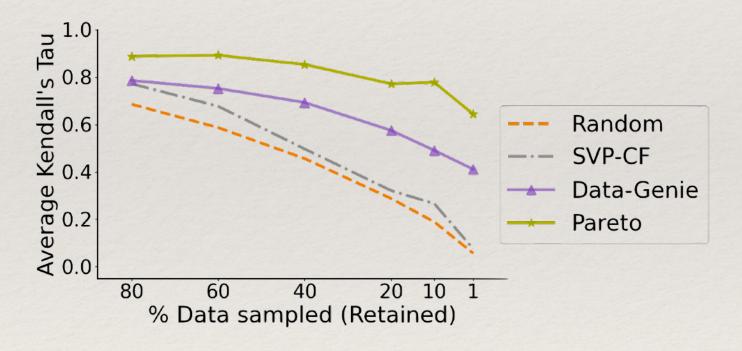


Figure: Does DATA-GENIE improve sampling performance with extreme sampling?

• Widely used practice of making dense data subsets (e.g., Head-user, centrality) seem to be

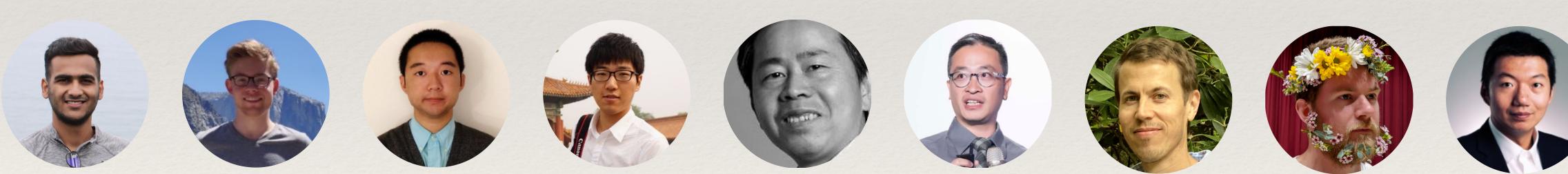
• SVP-CF significantly outperforms other samplers in retaining the ranking of different

- Using SVP-CF, we can efficiently gauge the ranking of different algorithms with adequate confidence on **40-50%** data sub-samples, leading in an ~2x time speedup.
- DATA-GENIE enjoys the same level of performance with only **10%** of the original data, equating to ~5.8x time speedup!

How to Train Data-Efficient LLMs

Noveen Sachdeva 1Benjamin Coleman 2Lichan Hong 2Ed H. Chi 2James Caverlee 2

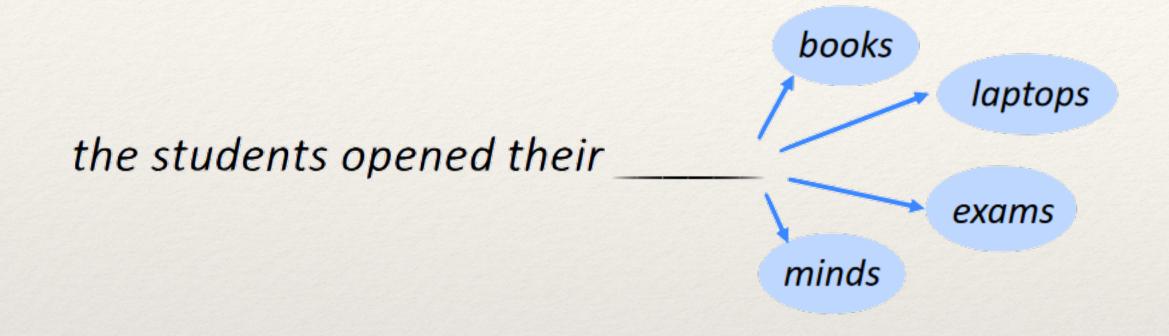
University of California, San Diego¹



Wang-Cheng Kang² Julian McAuley¹ Jianmo Ni² Derek Z. Cheng²

Google DeepMind²

Language Modeling



Pre-Training

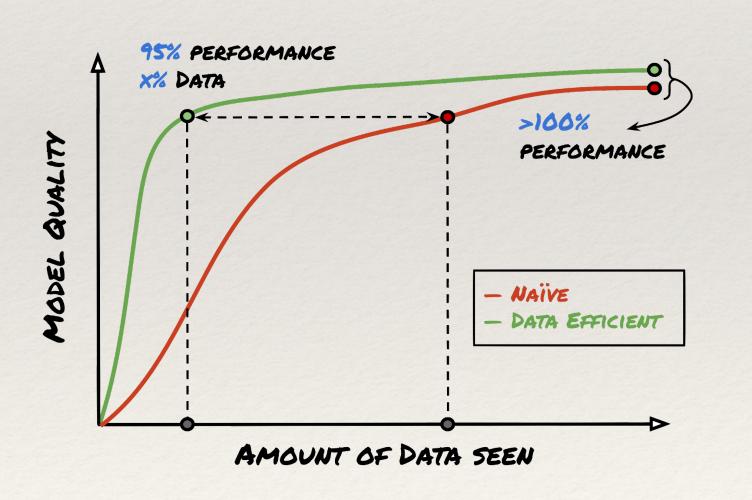
- Very large models
- Very large datasets collected from all of the internet
- Very expensive training procedure
- Evaluation over hundreds of different tasks

Perform Accurate Language Modeling

That is, learn better next-token predictors:

• δ : [token₁, token₂, ..., token_n] $\mapsto \mathcal{T}$; \forall token_i $\in \mathcal{T}$

Naive vs. Data-Efficient



Naive:

Train the model on the entire dataset

Data-Efficient:

Train the model on the sampled version of the dataset

Ask-LLM Sampling High-Quality LLM Pre-Training Data

Premise: Can we prompt an existing LLM to estimate the quality of a pre-training document?

Ask-LLM

Sampling High-Quality LLM Pre-Training Data

Robust framework:

- Leverages the reasoning capabilities of modern LLMs rather than common heuristics like perplexity
- We prompt Flan-T5 and Gemma-7B for data quality
- Explicit control over what kind of data we prefer

Why P("yes" | prompt) is a good idea:

- Real-valued "confidence" score needed to sort millions of documents
- One-shot decoding and no majority voting needed

Ask-LLM prompt

This is a pretraining datapoint.

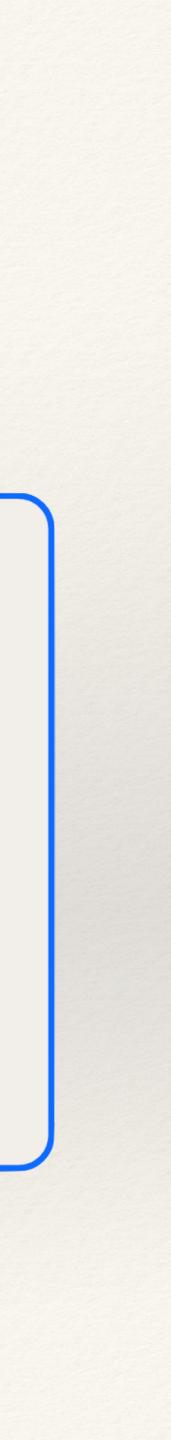
Does the previous paragraph demarcated within ### and ### contain informative signal for pre-training a large-language model? An informative datapoint should be well-formatted, contain some usable knowledge of the world, and strictly NOT have any harmful, racist, sexist, etc. content.

OPTIONS:

- yes

– no

Sampling score = P("yes" | prompt)



Density Sampling Diverse LLM Pre-Training Data

<u>Premise</u>: Can we sample datapoints from diverse topics in the original dataset?

Density

Sampling Diverse LLM Pre-Training Data

Robust framework:

- Estimate data density using hashed sentence-T5 embeddings
- Up-weights the tail components and downweights the head components
- No need for expensive techniques like clustering, graph-cuts, etc. to localize a notion of coverage

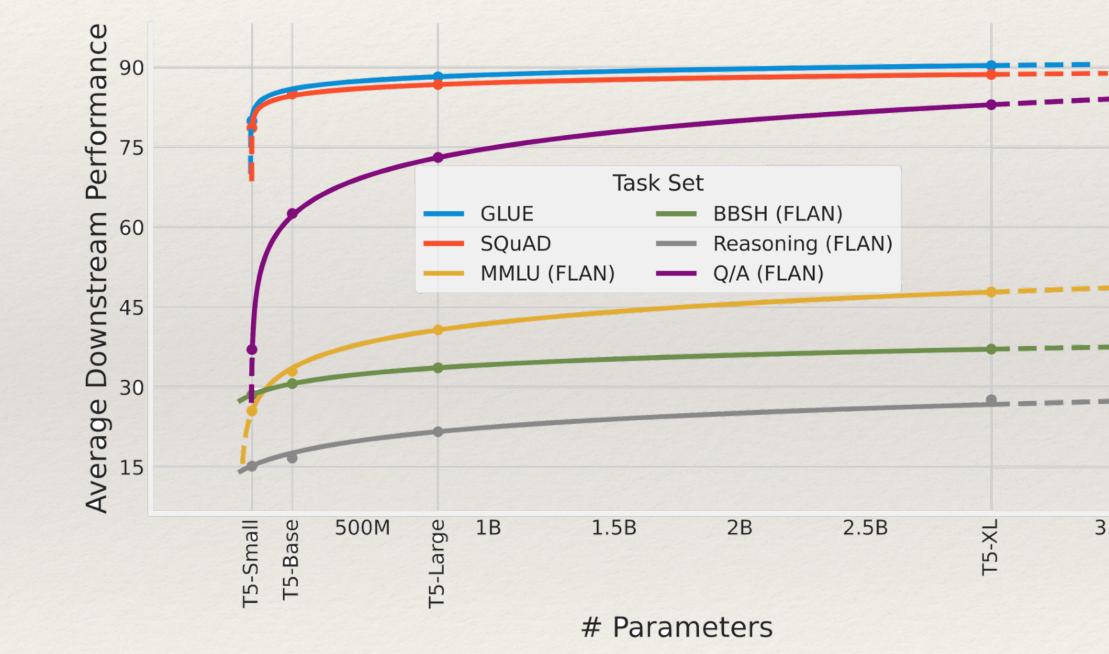
Sample proportional to inverse density

Ask-LLM & Density

Metric: Effective Model Size

- With 100s of metrics, hard to devise a single notion of "quality." Some metrics are hard-to-move whereas some are easy.
- We devise an "Effective Model Size" metric that is a scaling-law averaged normalized metric over all downstream tasks:

" If our ablations (data sampling) lead to *x* performance, what sized LLM should I have trained in the original setting (the full dataset) to achieve the same *x* performance? "



28

Ask-LLM & Density

Experiments

Setup

• We train T5-Large (800M parameters) for 524B tokens on the C4 dataset

Conclusions

- Up to 44% speedup while training T5-Large
- Training on data sampled by Ask-LLM (Gemma) is equivalent to training a 2x sized model on the entire dataset
- Density sampling recovers full-data performance (flat-line) but Ask-LLM consistently exceeds it

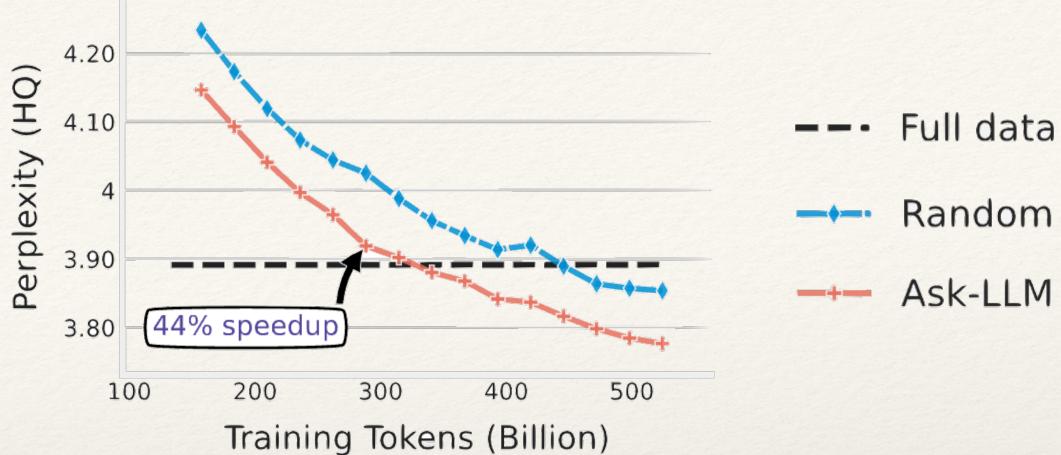


Figure A: Does training on Ask-LLM sampled data converge faster?

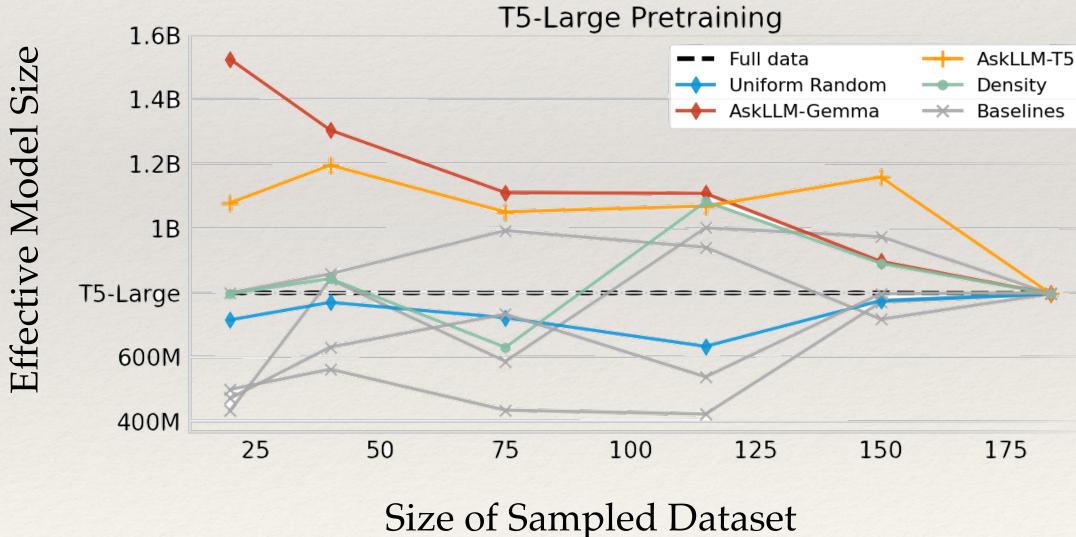
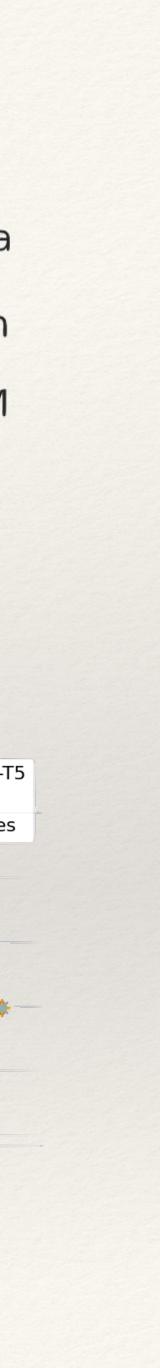
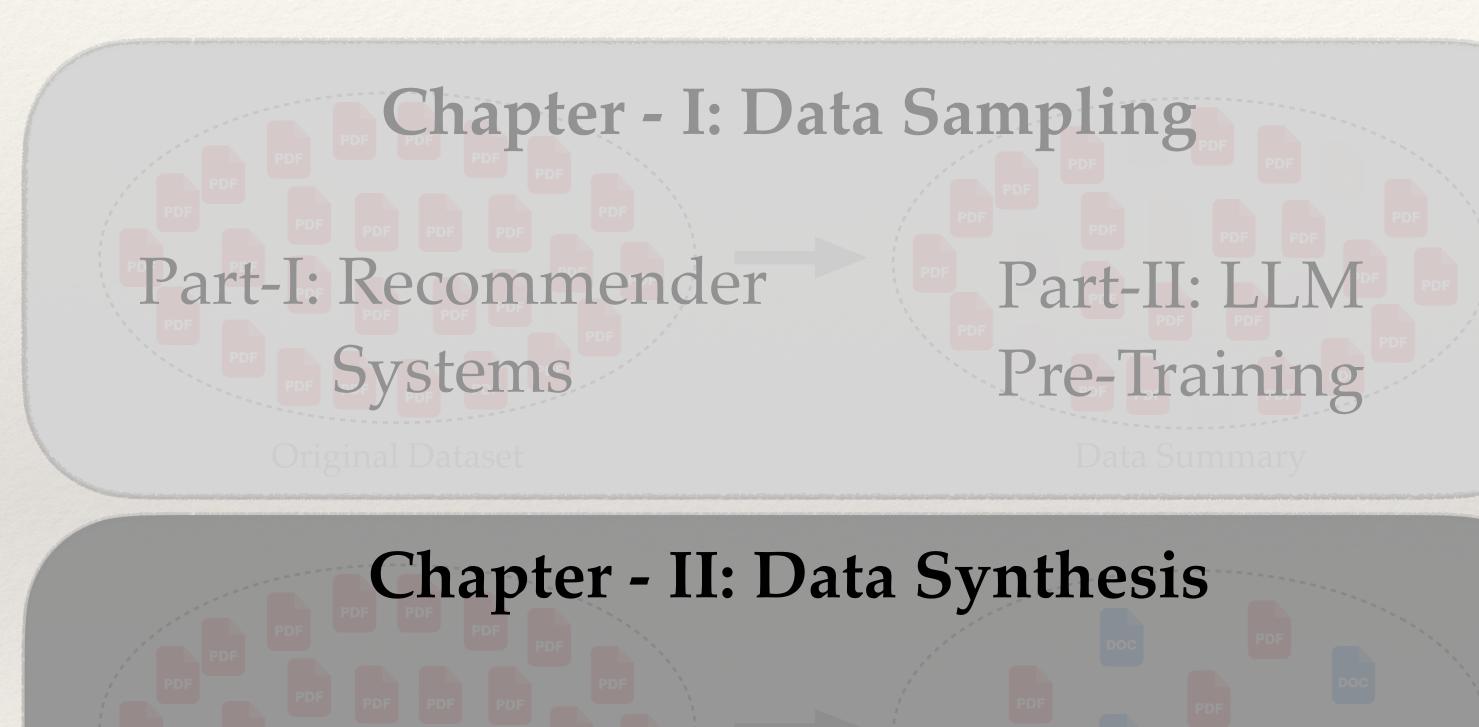


Figure B: Size of sampled data vs. final model quality

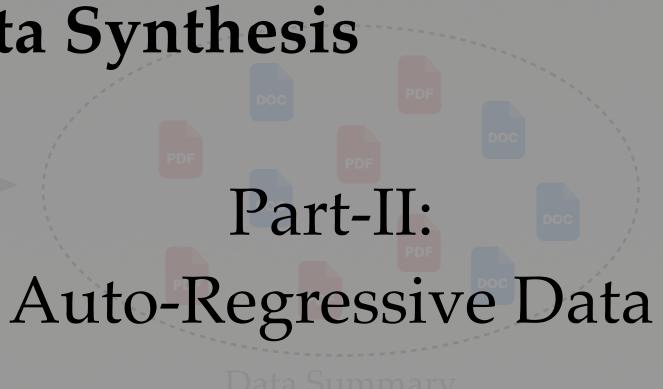


Outline



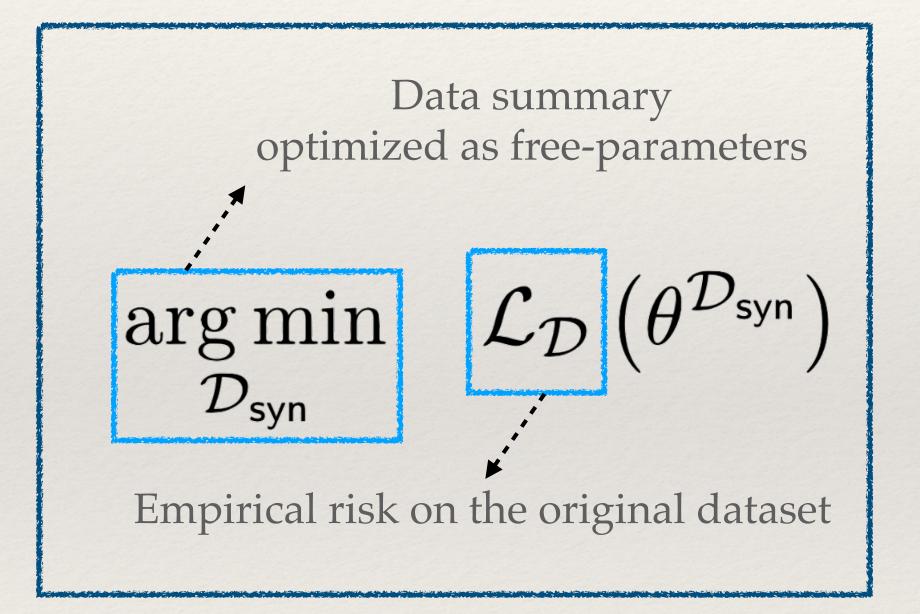
Part-I: Recommender

Systems

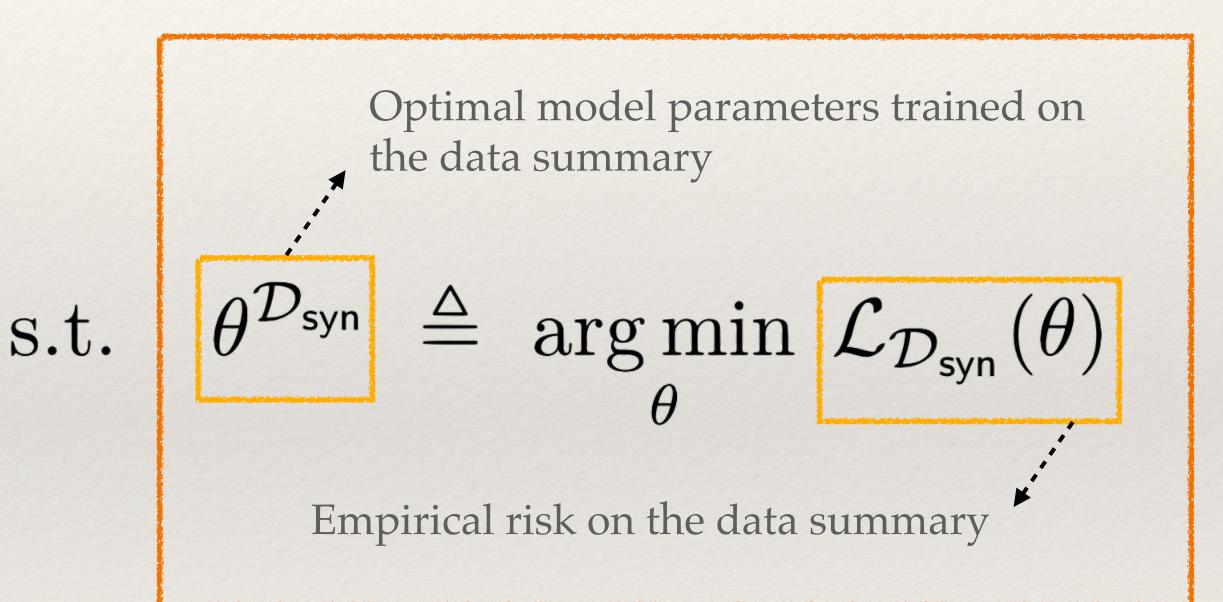


Data Distillation: Automated Data Optimization

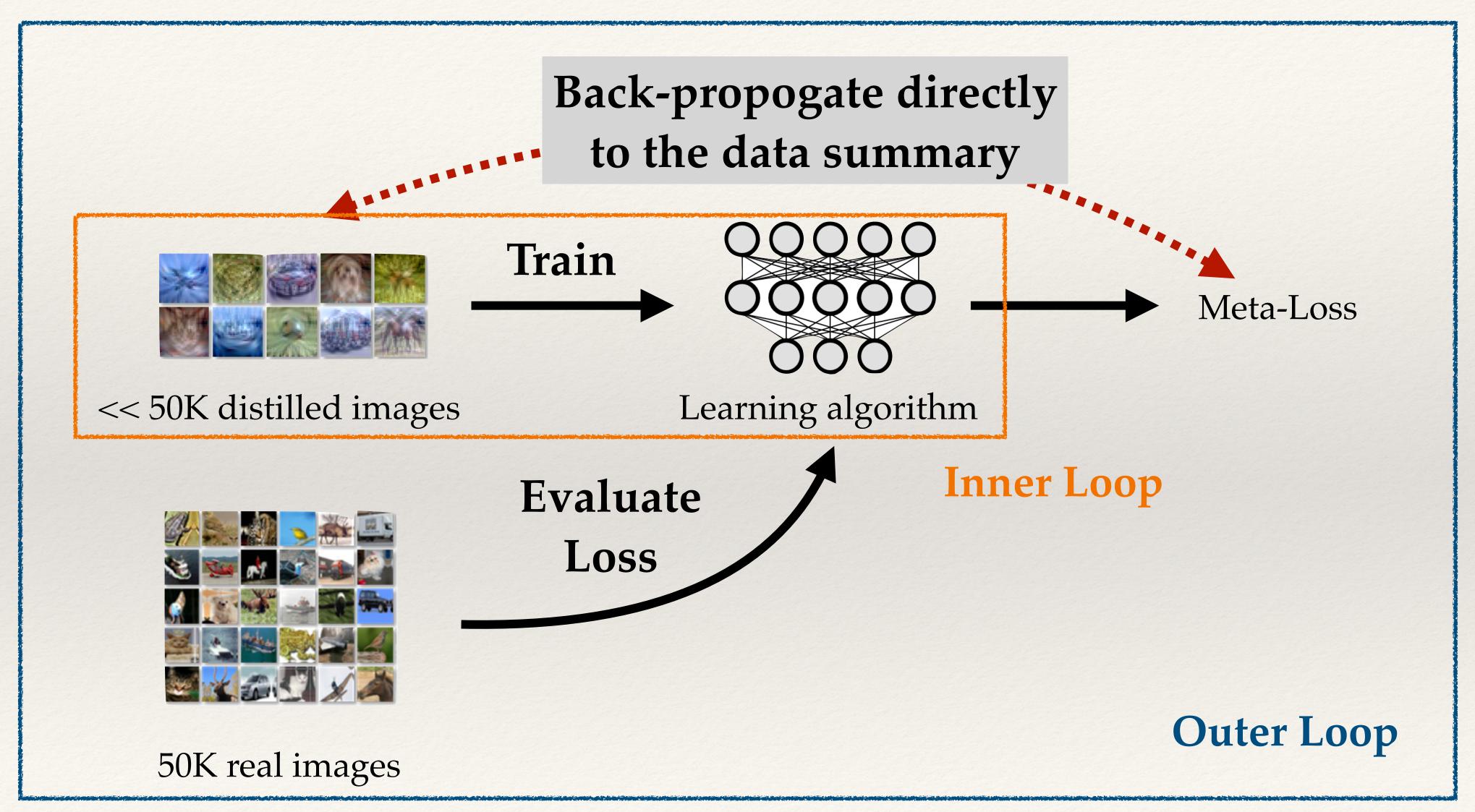
Outer Loop



Inner Loop

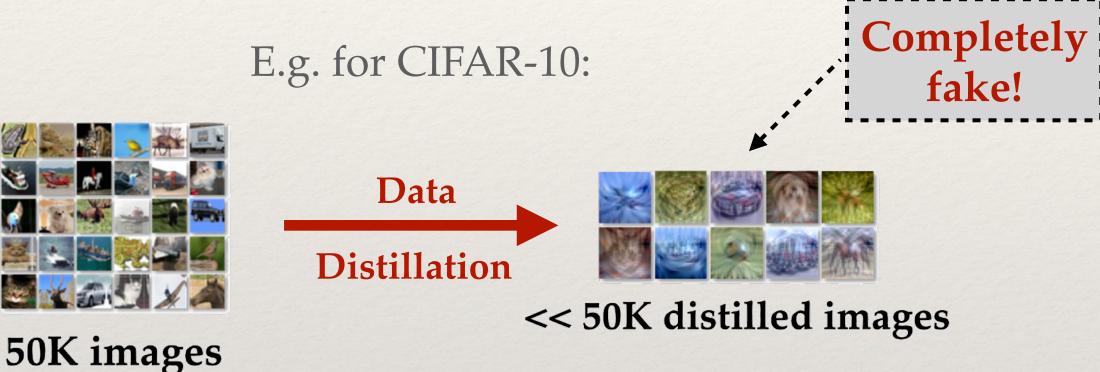


Data Distillation: Automated Data Optimization



Data Distillation: Automated Data Optimization

TL;DR Directly optimize the data summary (stored as free parameters) via meta-learning

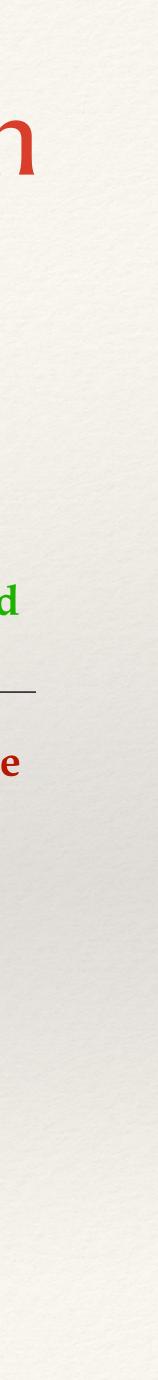


- The distilled data to be "optimizable", e.g., pixel values in an image
- graphs, etc. becomes highly non-trivial

No Heuristics	Data summary is optimized for training models
Data is optimized for a specific model	Computationally Expensive

Most notably, this framework also requires:

• Performing data distillation for discrete data settings like user-item interactions, text,

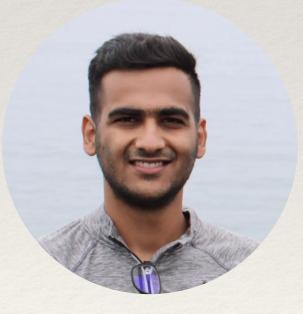


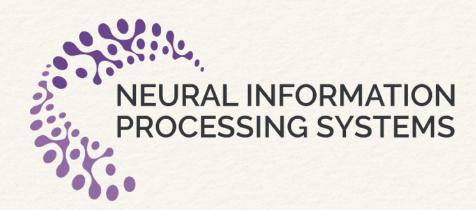
Infinite Recommendation Networks: A Data-Centric Approach

Noveen Sachdeva¹

Mehak Dhaliwal¹ Carole-Jean Wu² Julian McAuley¹

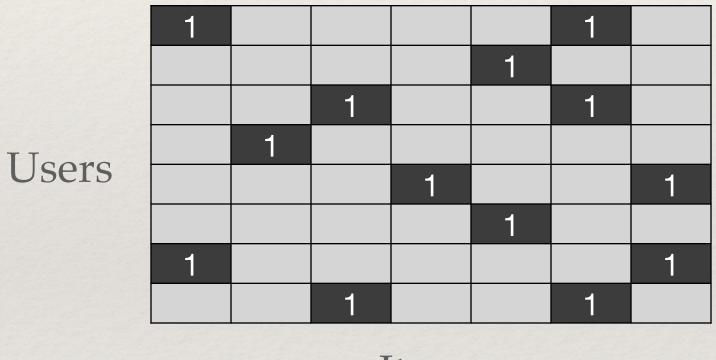
University of California, San Diego¹ Meta AI²





Scope

Implicit-feedback Recommender Systems



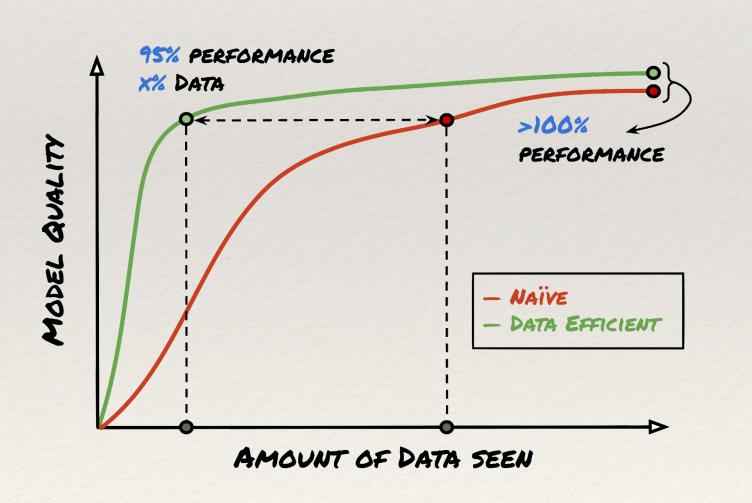
Items Movies, Ads, Songs ...

Perform Accurate Recommendation

That is, learn better relevance predictors:

• δ : (user, item) $\mapsto \mathbb{R}$; \forall user $\in \mathcal{U}$, item $\in \mathcal{I}$

Naive vs. Data-Efficient

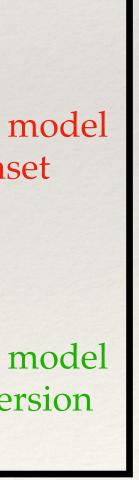


Naive:

Train the recommendation model on the entire dataset

Data-Efficient:

Train the recommendation model on the distilled version of the dataset



\infty-AE A Better Model for Recommendation

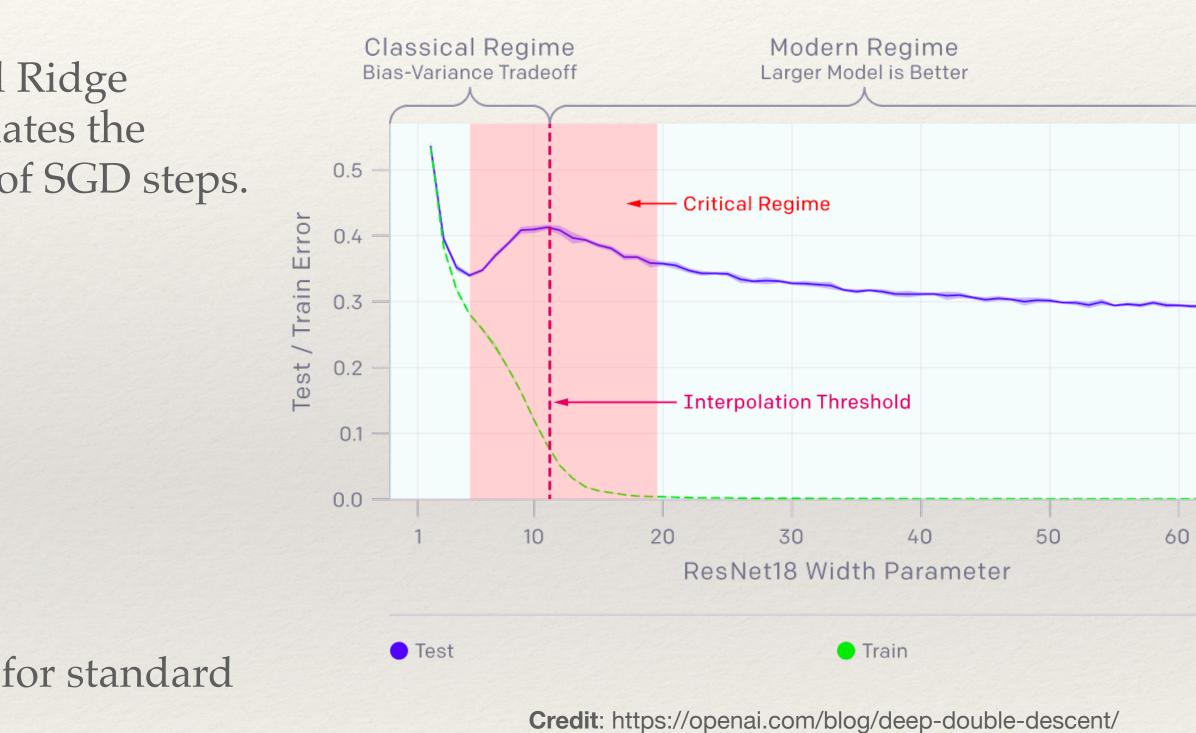
<u>Premise</u>: Does stretching the bottleneck layer of an autoencoder till ∞ help in better recommendation?

CO-AE Primer: Neural Tangent Kernel

- Infinite-width Correspondence: Performing Kernelized Ridge Regression with the Neural Tangent Kernel (NTK) emulates the training of an infinite-width NN for an infinite number of SGD steps.
- For a given neural network architecture $f_{\theta} : \mathbb{R}^d \mapsto \mathbb{R}$, its corresponding NTK $\mathbb{K} : \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$ is given by:

$$\mathbb{K}(x, x') = \mathbb{E}_{\theta \sim W} \left[\left\langle \frac{\partial f_{\theta}(x)}{\partial \theta}, \frac{\partial f_{\theta}(x')}{\partial \theta} \right\rangle \right]$$

- Learning follows a double-descent phenomenon
- Finite-width counterparts empirically outperform NTK for standard image classification tasks



∞ -AE Methodology

- *X_u* is the bag-of-items representation for user *u* i.e. all the items that *u* interacted with, and we aim to reconstruct it along with missing user preferences
- Due to the infinite-width correspondence, ∞ -AE optimizes in closed-form:

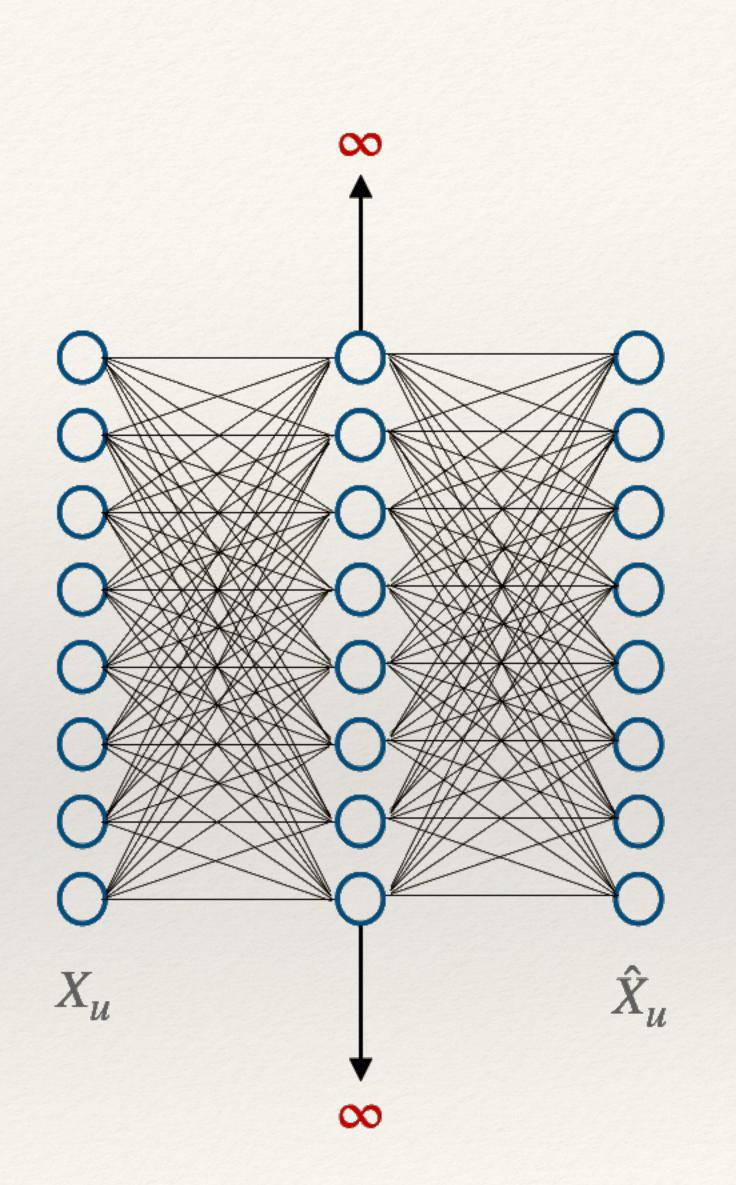
$$\hat{X} = K \cdot (K + \lambda I)^{-1} \cdot X$$
 s.t. $K_{u,v} := \mathbb{K}(X_u, X_v)$

- The optimization has only a single hyper-parameter λ
- Training: $\mathcal{O}(U^2 \cdot I + U^{2.376})$ • Time complexity
- Training: $\mathcal{O}(\boldsymbol{U} \cdot \boldsymbol{I} + \boldsymbol{U}^2)$ • Memory complexity

) $\forall u, v$

Inference: $\mathcal{O}(\boldsymbol{U} \cdot \boldsymbol{I})$

Inference: $\mathcal{O}(\boldsymbol{U} \cdot \boldsymbol{I})$



∞ -AE

Experiments

Dataset	NeuMF	GCN	MVAE	EASE	
Magazine	13.6	22.5	12.1	22.8	
ML-1M	25.6	28.8	22.1	29.8	
Douban	13.3	16.6	16.1	19.4	
Netflix	12.0		20.8	26.8	

Table: nDCG@10 performance (higher is better) of various recommendation algorithms. * represents training on 5% random users.

- ∞ -AE outperforms various state-of-the-art methods, even when trained on just 5% random users
- 1 layer seems to be enough for optimal recommendation performance: common folk-knowledge
- Even though the model is expensive; it is simplistic, easy to implement (thanks, JAX), and the performance is great! But how to scale it up? 🤪

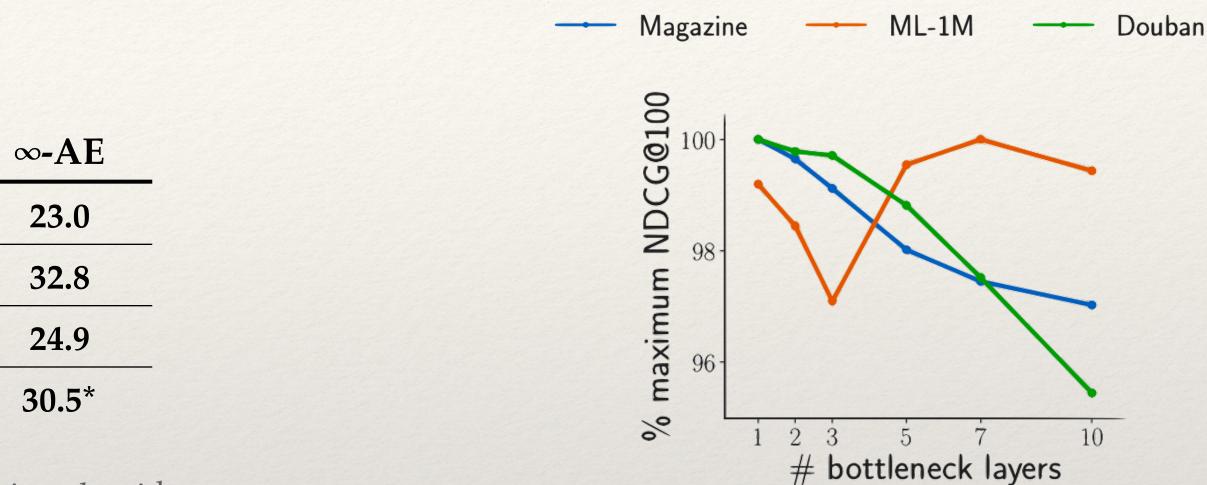


Figure: Performance of ∞ -AE with varying depth.

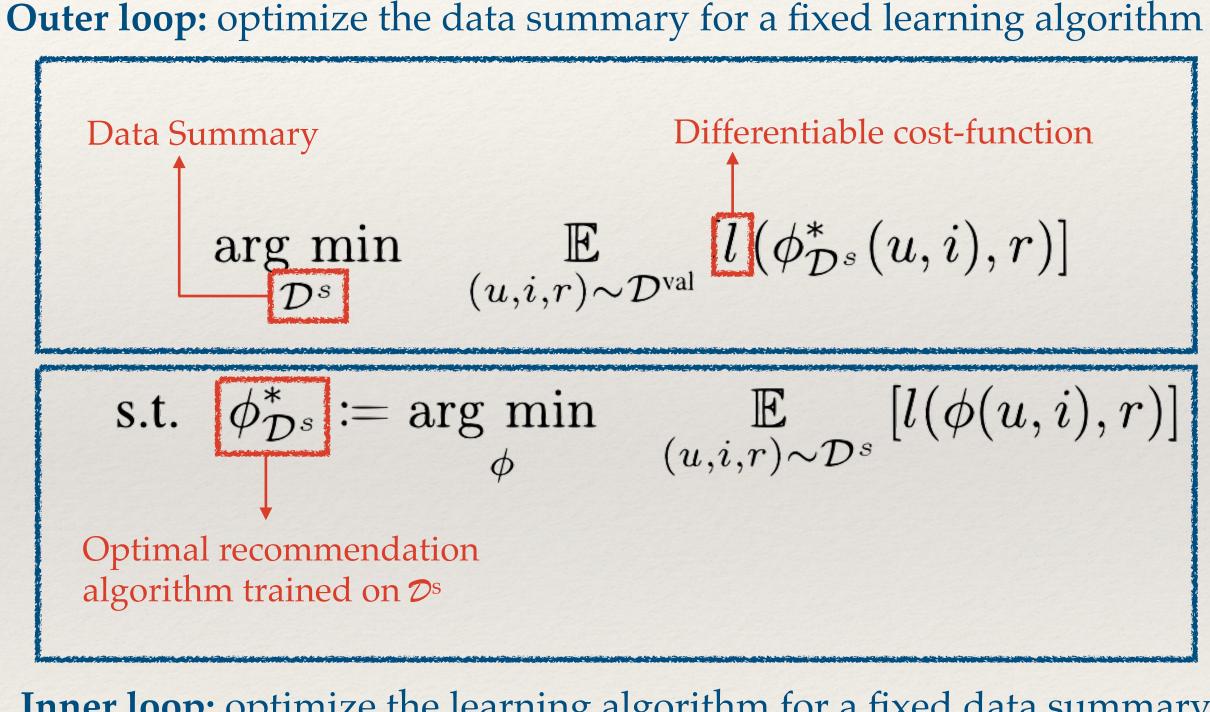
Data Distillation for Recommendation Data

Key Idea: Use a smooth prior matrix followed by differentiable Gumbel sampling to distill discrete data

Overview & Challenges

Unique challenges for distilling recommendation data:

- *D^s* consists of **discrete** (u, i, r) tuples
- Semi-structuredness: some users/items are more popular than others
- *D^s* is typically extremely sparse

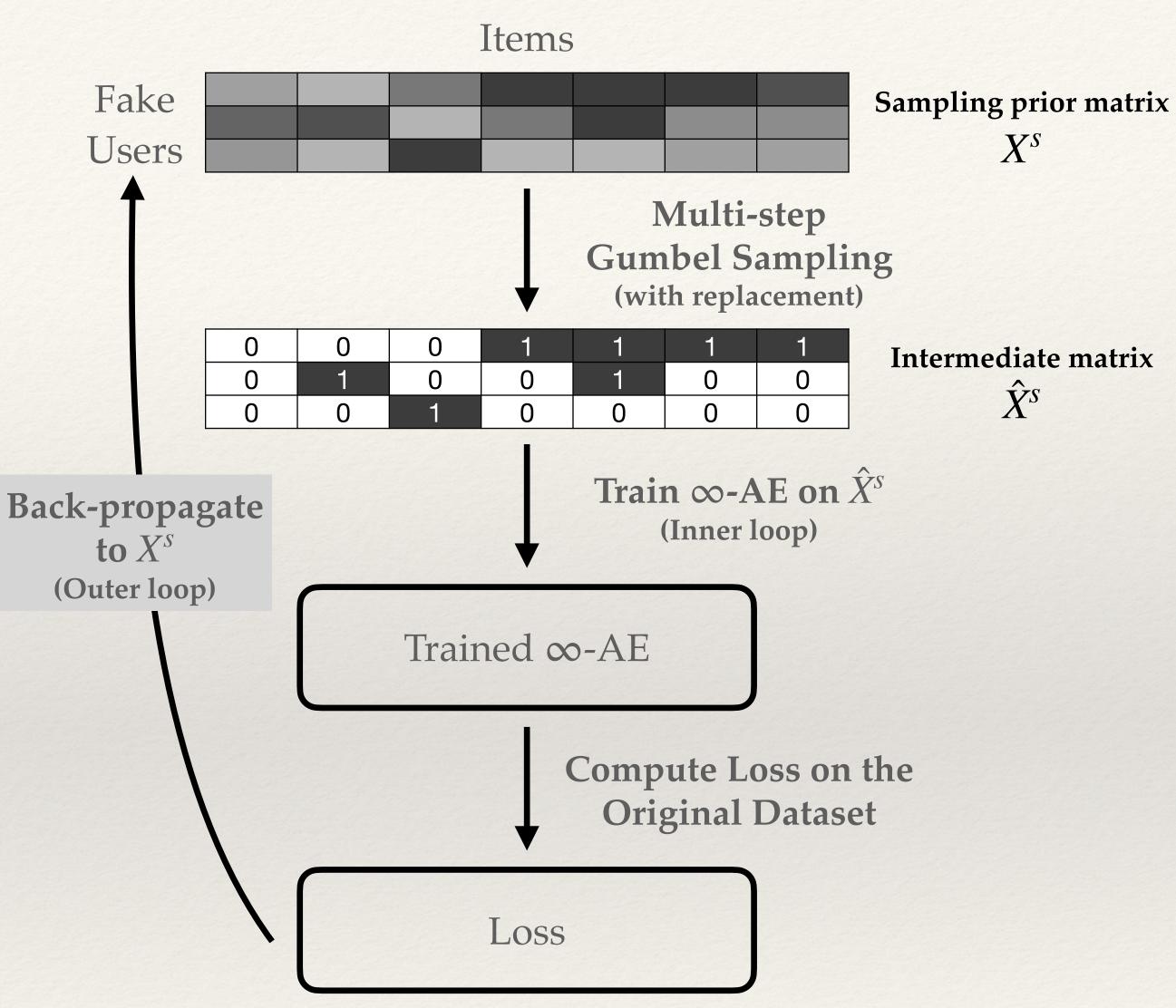


Inner loop: optimize the learning algorithm for a fixed data summary

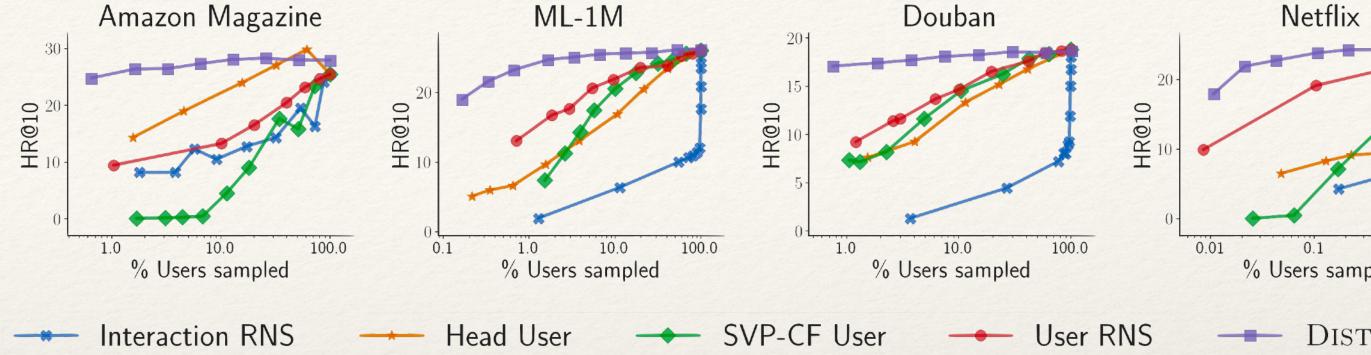
Methodology

Robust framework:

- Uses Gumbel sampling on *X^s* to mitigate the heterogeneity of the problem
- Perform Gumbel sampling multiple times for each fake-user to handle dynamic user/item popularity
- Automatically control sparsity in \hat{X}^s by controlling the entropy in X^s



Experiments



- Using Distill-CF, we can get **96-105**% of full-data performance on as small as **0.1%** data sub-samples, leading to as much as ~1000x time speedup!
- Distill-CF works well even for the second-best "Baseline" model, even though the data isn't optimized using "Baseline"

Magazine ML-1M Douban

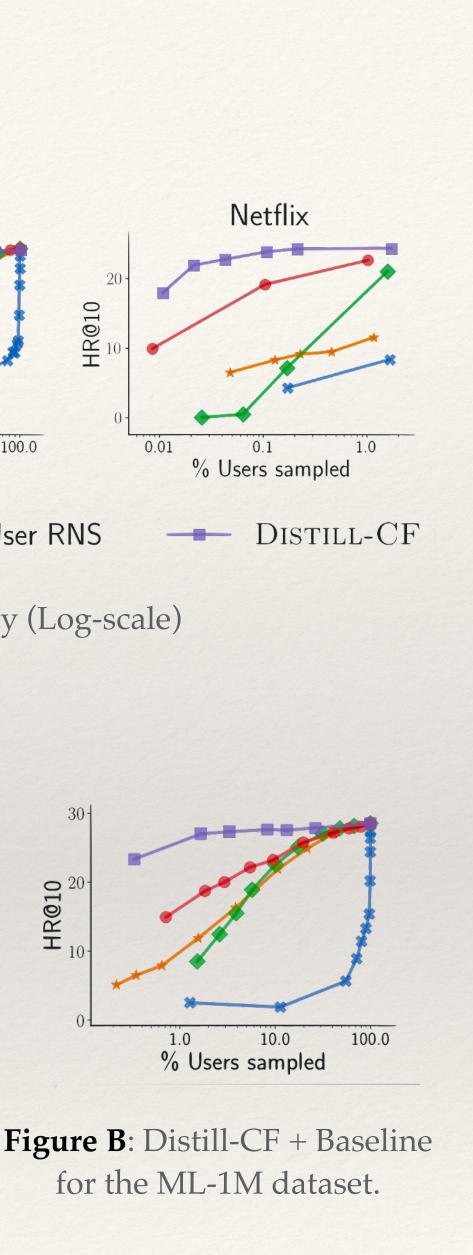
Dataset

Netflix

Table: nDCG@10 performance of various recommendation algorithms. * represents training on 5% random users. Distill-CF has a user budget of just 500 (0.1% for Netflix).

Figure A: Size of data summary vs. trained model quality (Log-scale)

	NeuMF	GCN	MVAE	EASE	∞-AE	∞-AE (Distill-CF)
9	13.6	22.5	12.1	22.8	23.0	23.8
	25.6	28.8	22.1	29.8	32.8	32.5
	13.3	16.6	16.1	19.4	24.9	24.2
	12.0		20.8	26.8	30.5*	30.5

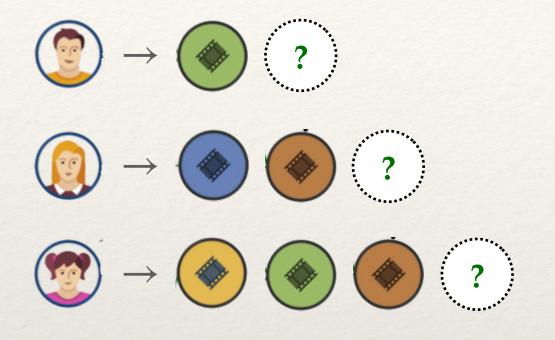


Farzi Data: Autoregressive Data Distillation

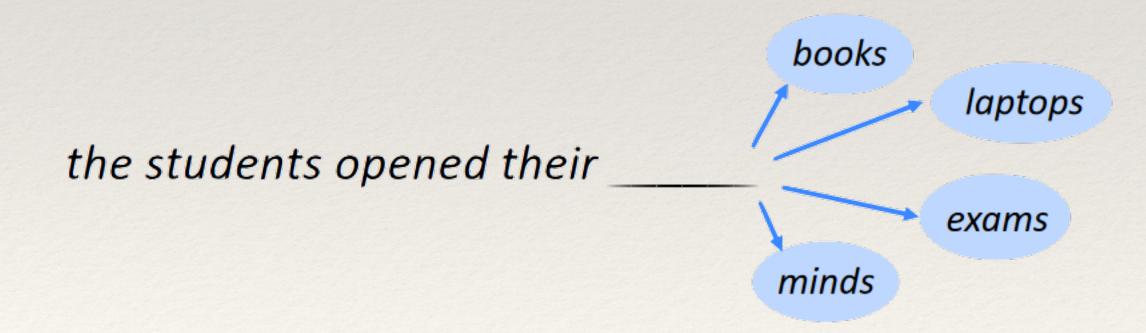
Noveen Sachdeva 1Zexue He 1Benjamin Coleman 2Wang-Cheng Kang 2Jianmo Ni 2Derek Z. Cheng 2Julian McAuley 1

University of California, San Diego¹ Google DeepMind²

1. Sequential Recommender Systems



2. Language Modeling



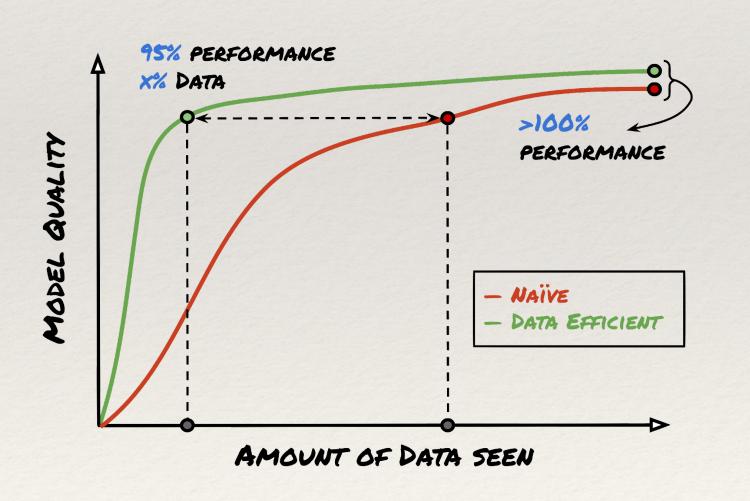
Objective

Perform Accurate Recommendation / LM

That is, learn better next-item / token predictors:

- δ : [item₁, item₂, ..., item_n] $\mapsto \mathcal{I}$; \forall item_i $\in \mathcal{I}$
- δ : [token₁, token₂, ..., token_n] $\mapsto \mathcal{T}$; \forall token_i $\in \mathcal{T}$

Naive vs. Data-Efficient



Naive:

Train the model on the entire dataset

Data-Efficient:

Train the model on the distilled version of the dataset

Farzi Distilling Auto-Regressive Data

<u>Key Idea</u>: Think of a discrete **sequence-of-events** as a **sequence-of-distributions** that can be now distilled via data distillation

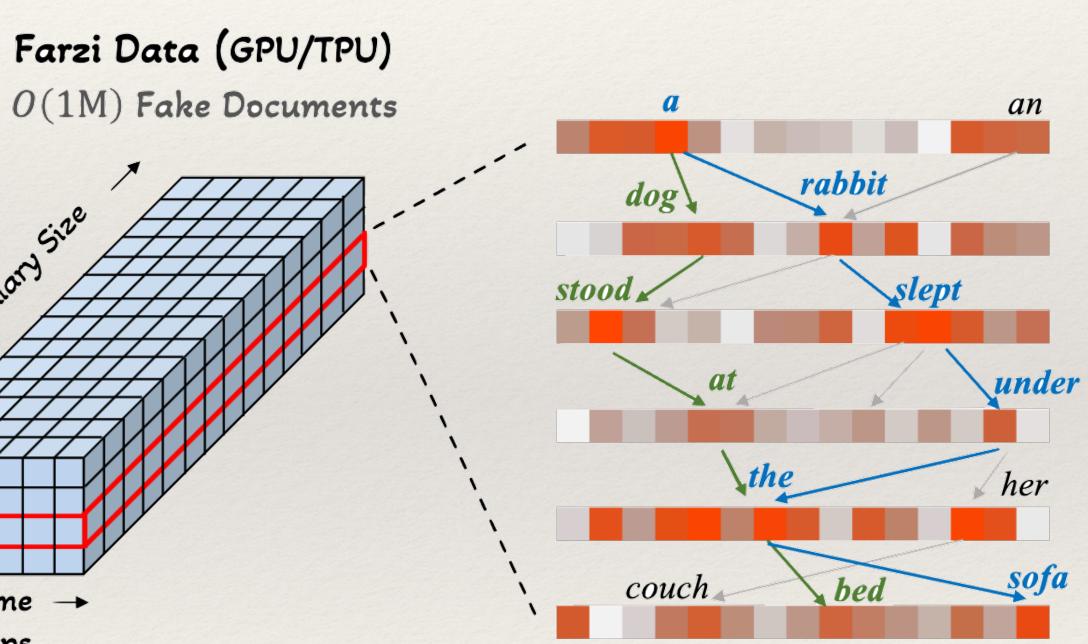
Farzi

Intuition

Language Modeling Corpus

O(100M) Documents

t a rabbit slept under the sofa Buffer Size Time -Steps



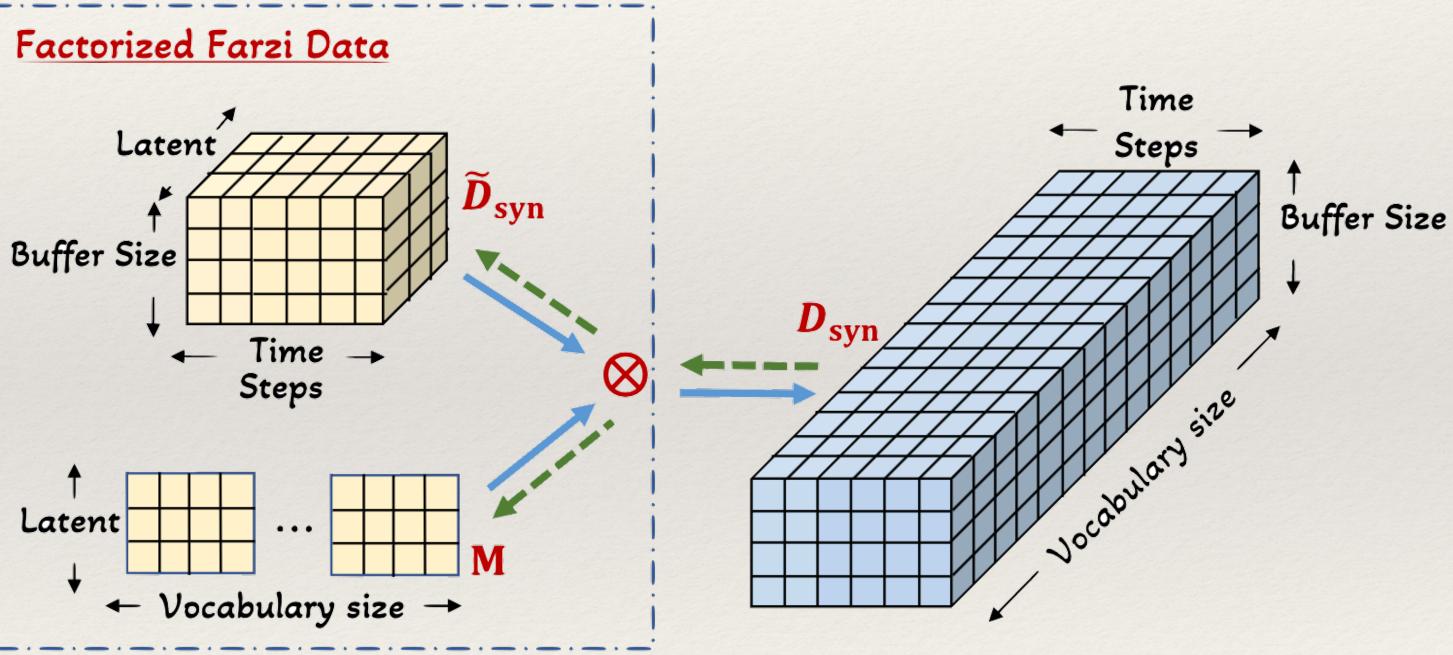
Farzi Can we distill this 3d tensor?

Challenge:

The data summary is 3-dimensional \implies computationally intractable

Idea:

Keep a factorized data summary instead!



Farzi **Methodology (Contd.)**

Challenge:

No closed-form inner-loop solvers \implies How to get meta-gradient?

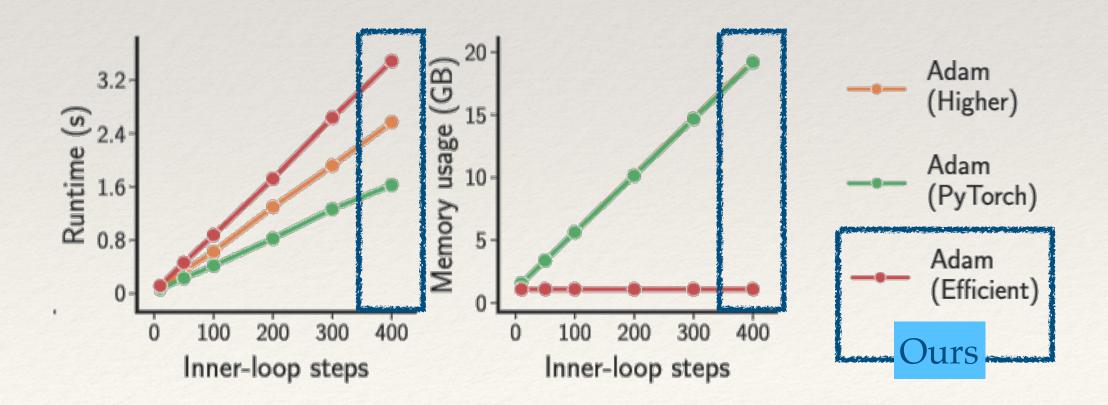
Solution:

Efficient reverse-mode Adam derivation

- Naïve auto-diff memory complexity: $\mathcal{O}(T \cdot \mathcal{G})$
- Reverse-mode Adam memory complexity: $\mathcal{O}(\mathcal{G})$

Algorithm 1 Reverse-mode differentiation of Adam.

1: Input: $\mathbf{w}_T, \mathbf{m}_T, \mathbf{v}_T, \gamma, \alpha, \epsilon, L(w, x)$, meta-objective f(w)2: Initialize: $d\mathbf{m} \leftarrow 0, d\mathbf{x} \leftarrow 0, d\mathbf{w} \leftarrow \nabla_{\mathbf{w}} f(\mathbf{w}_T)$ 3: for t = T to 1 do $\hat{\mathbf{m}}_t \triangleq \mathbf{m}_t / (1 - \beta_1^t)$ 4: $\hat{\mathbf{v}}_t \triangleq \mathbf{v}_t / (1 - \beta_2^t)$ 5: $\mathbf{w}_{t-1} = \mathbf{w}_t + \alpha \cdot \hat{\mathbf{m}}_t / (\hat{\mathbf{v}}_t + \epsilon)$ 6: 7: $\mathbf{g}_t \triangleq \nabla_{\mathbf{w}} L(\mathbf{w}_{t-1}, \mathbf{x})$ $\mathbf{m}_{t-1} = [\mathbf{m}_t - (1 - \beta_1) \cdot \mathbf{g}_t]/\beta_1$ $\mathbf{v}_{t-1} = [\mathbf{v}_t - (1 - \beta_2) \cdot \mathbf{g}_t^2]/\beta_2$ 8: 9: $\epsilon' \triangleq \epsilon \cdot \sqrt{1 - \beta_2^t}$ 10: $\alpha' \triangleq \alpha \cdot \sqrt{1 - \beta_2^t} / (1 - \beta_1^t)$ 11: $\beta' \triangleq (1 - \beta_2) / (1 - \beta_1)$ 12: $d\mathbf{m} = d\mathbf{m} + \alpha' \cdot \left(\frac{\beta' \cdot \mathbf{m}_t \cdot \mathbf{g}_t}{\sqrt{\mathbf{v}_t} \cdot (\sqrt{\mathbf{v}_t} + \epsilon')^2}\right)$ Derivation $\cdot d\mathbf{w}$ $\sqrt{\mathbf{v}_t} + \epsilon'$ $d\mathbf{w} = d\mathbf{w} - (1 - \beta_1) \cdot d\mathbf{m} \cdot \nabla_{\mathbf{w}} \nabla_{\mathbf{w}} L(\mathbf{w}_{t-1}, \mathbf{x})$ Hessian Vector Products $d\mathbf{x} = d\mathbf{x} - (1 - \beta_1) \cdot d\mathbf{m} \cdot \nabla_{\mathbf{x}} \nabla_{\mathbf{w}} L(\mathbf{w}_{t-1}, \mathbf{x})$ $d\mathbf{m} = \beta_1 \cdot d\mathbf{m}$ 16: 17: Output: gradient of $f(\mathbf{w}_T)$ w.r.t. \mathbf{w}_0 , \mathbf{m}_0 , and \mathbf{x}



Farzi Experiments

25-20-15-10-5-

- Using Farzi, we can get 98-120% of fulldata performance on as small as 0.1% data sub-samples, leading to as much as ~1000x time speedup!
- Farzi also improves the performance of models on the tail-portion of users and items which is of very valuable importance in practice

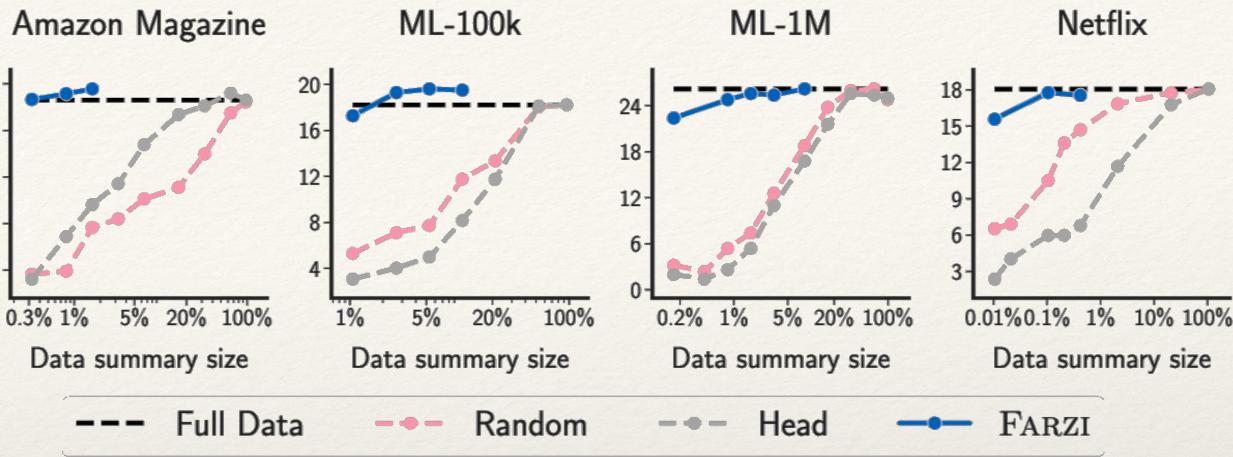


Figure A: Size of data summary vs. trained model quality (Log-scale)

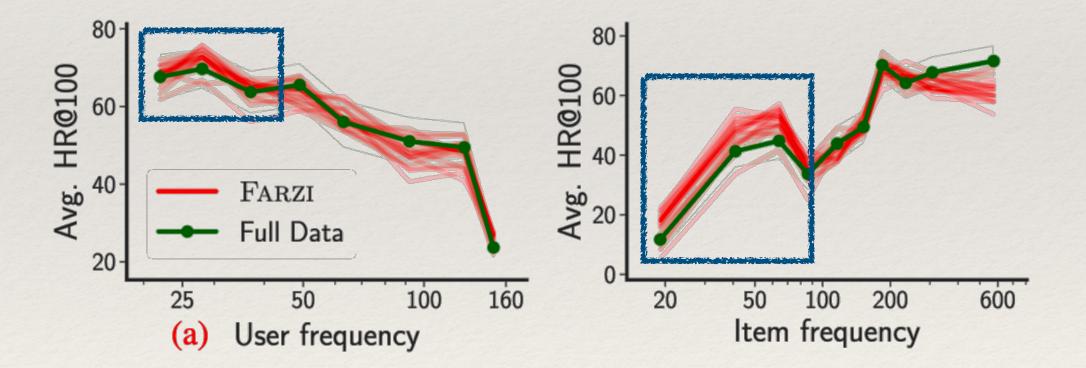


Figure B: Performance of models trained on Farzi Data vs. Full Data on the user/item coldness spectrum.

This Dissertation

Future Roadmap

New Data Modalities

- Language: SFT, RLHF
- Audio
- Video
- ...

New Applications

- Continual Learning
- Neural Architecture Search
- Hyper-parameter Opt.

Data Optimization

- <u>Efficiency</u>: Scalable ways to perform data distillation for bigger models & datasets
- drop-in replacement data summaries

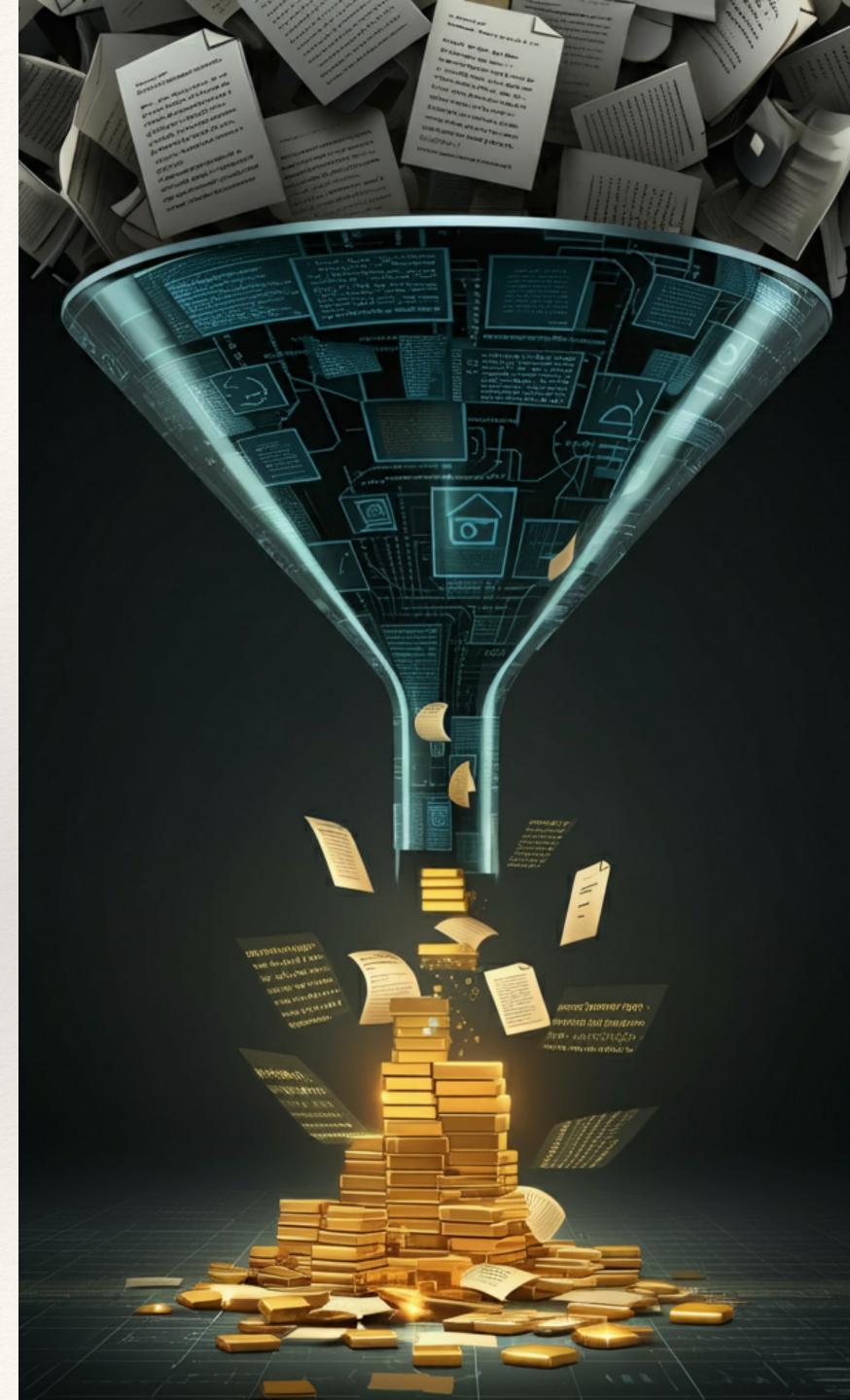
Fairness & Privacy

- How to optimize for these constraints while sampling/distillation
- summaries?

• <u>Transferability</u>: Better ways to create universal,

• Order-sensitive data optimization techniques

• DP: Can we guarantee impossibility of deanonymization when learning on data



Gratitude

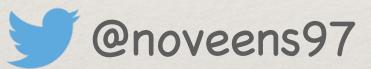
Julian McAuley UC San Diego

"Best Advisor Ever."

The McAuley Lab UC San Diego

My Wonderful Collaborators

Thank you! Questions?



For papers & code: noveens.com

What we covered:

- **01** What is Data-Efficiency
- **O2** Data Sampling for RecSys
- **O3** Data Sampling for LLMs
- **04** Data Distillation for RecSys
- **O5** Data Distillation for Autoregressive Data

