

# Overview of NIEHS Extramural Research Efforts in Gene-Environment Interaction (GxE) Studies



#### Kimberly McAllister Program Director National Institute of Environmental Health Sciences

National Institutes of Health • U.S. Department of Health and Human Services



### **Outline of Presentation**

- **Overview** of G x E portfolio/research extramural efforts at NIEHS
- Challenges related to G x E in human studies for complex disorders
- Recent NIEHS initiatives to address these challenges
- Other recent related efforts:
  - Multi-omics
  - Impacts of exposures on Mendelian diseases
  - **G x E ELSI** (Ethical, Legal, and Social Implications)
- Introduction for invited speaker talks for this afternoon



# Why Study G x E Interactions?

- Understanding biological mechanisms and pathways
- Risk prediction for complex disease

#### G x E (Gene-Environment) Interaction:

A varying effect of an environmental exposure(s) depending on genetic background of an individual.  Identify the most genetically susceptible individuals to exposures to ultimately adapt prevention/intervention strategies to protect (precision environmental health)

#### **NIEHS Areas of Scientific Focus**



#### NIEHS Investments in GxE Research in Partnership with Other NIH Institutes (esp. NHGRI and NCI)





# PD Risk by PON1 Metabolizing Status & OP-Pesticide Exposure



#### 3.5 4.00 3 3.50 D risk 2.5 3.00 PON1 192QQ Ratio PON1 2.50 2 Slow metabolizer **Metabolizing** 2.00 1.5 Ś **pp** 1.50 Capacity low 2.62 medi... Zero Low/High 1.00 high (1.42-4.83) Exposure Zero Low/High Exposure Exposure Zero 0.50 1.09 1.03 1.00 Exposure Low/High Diazinon Exposure (0.72-1.65) (ref.) (0.58 - 1.82)Exposure Chlorpyrifos 0.00 Parathion Never Use/Rare Use of Frequent Use of **Exposure** ANY household pesticides any OP pesticides

Household OP Pesticide Use

Functional paraoxonase 1 variants modify the risk of Parkinson's disease due to organophosphate exposure

Pei-Chen Lee <sup>a,b</sup>, Shannon L. Rhodes <sup>a</sup>, Janet S. Sinsheimer <sup>c</sup>, Jeff Bronstein <sup>d</sup>, Beate Ritz <sup>a,d,\*</sup>

#### Environ Int 56 (2013) 42-47

#### Household organophosphorus pesticide use and Parkinson's disease

Shilpa Narayan,<sup>1</sup> Zeyan Liew,<sup>1</sup> Kimberly Paul,<sup>1</sup> Pei-Chen Lee,<sup>1</sup> Janet S Sinsheimer,<sup>2</sup> Jeff M Bronstein<sup>3</sup> and Beate Ritz<sup>1,3</sup>\*

Int J Epidemiol 42 (5) (2013) 1476-1485



Past PARs: Development and Application of Statistical and Bioinformatics Methods/Approaches for GxE Discovery (in *Partnerships with Many Other NIH ICs*)

## **G x E Interaction Methods Initiative (1st PAR): PAR11-032**

- <u>Objective</u>: Develop and Test Designs, Algorithms, and Analytical Approaches for Identifying G x E in Complex Disease
- Other participating ICs: NLM, NIDA, NIDCR, NCI, NHLBI, NHGRI, NIBIB
- Two Step Approaches for GxE with Simultaneous Software Programs (University of S. California efforts-David Conti-guest speaker)

#### Analysis of Genome-Wide Gene-Environment (GxE) (2nd PAR): PAR13-382

- Objective: Continued Development of Innovative Analytical Methods and Application of these GxE Methods
  in an Existing Human Consortia or GWAS
- <u>Other participating ICs:</u> NCI, NHGRI, NIAMS, NIDA, NLM, NHLBI
- Consortium Meta-Analysis/ "Mega-Consortium": harmonized datasets/longitudinal measures of E (Peter Kraft-guest speaker)



# Challenges with Identifying New GxE Findings in Human Population Studies or Validating Existing Ones:

- Underpowered studies → Need 4x numbers compared to main effect study
- Complexity of measuring environmental exposures (ex. mixtures, dose, temporality) and harmonizing exposures across consortium
- Limited range of genetic and/or environmental variation
- Most genetic variants in non-coding regions → need tissue-specificity and regulatory context
- Secondary epidemiology studies with comparable G and E to validate may not exist

## In Recent Years, NIEHS has Explored Alternative Approaches for GxE Discovery and/or Validation....



#### Population-based Mouse Models for GxE





# Orthologous Locus in Humans Exhibits GxE with Air Pollution in Emphysema (from Dr. Samir Kelada's lab, UNC)



# Air Pollutant Exposure-by-Gene Interactions Associated with Emphysema, Lung Structure, and Lung Function in SPIROMICS



New Advances for In Vitro and In Silico Approaches Could Allow Functional Validation/Discovery and Mechanistic Understanding of G x E Findings:

- In Vitro Functional Genomics Advances for GxE, RFA-ES-20-018, using innovative tools/technologies:
  - Genome/epigenome editing tools (CRISPR/Cas9, etc.)
  - Single cell analyses and embryonic stem (ES) cells and/or induced pluripotent stem cells (iPSCs) from relevant cell types-allowing population-level studies to be performed in vitro
  - Organoid culture models (OCMs) and tissue-chip platforms-allowing more accurate in vitro human models of disease
- Nancy Cox chaired special emphasis panel review
- *"In Vitro* Functional Genomics Advances with E" webinar series launched in 2023



#### Lessons Learned From Functional Genomics of GxE (Francesca Luca and Colleagues, *In Vitro* Functional Genomics RFA Recipient)



- Functional genomics approaches can identify molecular mechanisms underlying environmental effects on complex traits with cellular and subcellular context
- Context-aware genetic analysis of gene regulation identifies latent environmental effects
- One can identify and fine-map genetic variants that contribute to inter-individual variation in the response to the environment



Integration of Environmental Data with other Omics Data (Beyond G) to Inform How E Alters Biological Pathways to Impact Disease Outcomes (G X E X Omics)

Increased mechanistic insights

Improved disease risk predictions

Challenges:

 Very few computational tools integrate complex environmental data well (heterogeneity, dose, timing, etc.)

 Many of our environmentally-rich cohorts lack comprehensive omics data







# Integrating Environmental Data With Other Omics for Cancer Epidemiology (Feb 14-15, 2023)

<u>Purpose:</u> Identify challenges and opportunities related to the integration of environmental exposure data with other omics data for human cancer population studies (especially exploring gaps in computational methods)

# **Workshop Report:**

https://www.niehs.nih.gov/sites/default/files/news/events/pastmtg/2023/environmental\_data/integrating\_ environmental\_data\_workshop\_report\_508.pdf



#### MOHD (Multi-Omics for Health and Disease): NHGRI/NCI/NIEHS Initiative



#### Goals:

- 1. Multi-omics (with phenotypic and environmental exposure data) integration to identify molecular "profiles" for disease states
- 2. Develop generalizable data harmonization, integration, and analysis methods, and best practices and standards for multi-omics application
- 3. Create a public multi-dimensional dataset

Adapted from slides presented by: M. Fornage's (UT Health Houston) T. Lappalainen (NY Genome Center)

https://www.genome.gov/research-funding/Funded-Programs-Projects/Multi-Omics-for-Health-and-Disease



#### **Mendelian Diseases and Environmental Risk Factors**

(ASHG symposium and Tox Sci commentary, 2021; Charmaine Royal)





National Institute of Environmental Health Sciences Your Environment. Your Health.



#### Ethical, Legal, and Social Implications (ELSI) of Gene-Environment Interaction (GxE) Research

#### \*NIEHS/NHGRI Workshop (January 2022):



What are the ELSI issues specifically related to genetic susceptibility to environmental exposures? **Report Back** (Return of Research Results to research participants), etc.

\*Strategies for Responsibly Reporting Back Environmental Health or GxE Research Results (RFA-ES-23-006, NIEHS/NHGRI/OSP): 8 new awards just made

\*Ongoing PAR-23-293: ELSI Research (NHGRI-led), exploring GxE report back, epigenomics ethics, etc.



# **Report Back Study for GxE**



<u>All participants</u> receive one-on-one informational intervention on arsenic effects and exposure reduction

**Hypothesis:** Returning "Inefficient" status will result in a larger decrease in urine arsenic levels compared to the control group (after 6 months)







National Institute of Environmental Health Sciences Your Environment. Your Health.

#### **GxE Mini-Symposium**

Dr. Peter Kraft, NIH/National Cancer Institute

Dr. Charmaine Royal, Duke University



Dr. David Conti, University of Southern California



Dr. Nancy Cox, Vanderbilt University Medical Center