Genetics, Functional, and Multi-omic Statistical Approaches to Integrate 'E' with Data

David Conti, PhD University of Southern California

Genomewide Association Studies

GWAS

 • SNPs with modest marginal effect that might be important in one or more subgroups?

 • SNPs with modest marginal effect that might be important in one or more subgroups?

- • SNPs with modest marginal effect that might be important in one or more subgroups?
- **Size of the marginal G** prevalence of exposure **effect** depends on

- • SNPs with modest marginal effect that might be important in one or more subgroups?
- **Size of the marginal G** prevalence of exposure **effect** depends on

- • SNPs with modest marginal effect that might be important in one or more subgroups?
- **Size of the marginal G** prevalence of exposure **effect** depends on

NIEHS• Sept. 11, 2024

Genomewide Interactions (GWIS)

Improving GWIS Efficiency: The Basic Idea

• For logistic regression of a case control sample:

 $logit(Pr D=1|G, E) = \alpha + \beta_G G + \beta_F E + \beta_{G \times F} G^* E$

the test of $H_0: \beta_{G\times E}=0$ has low power

Improving GWIS Efficiency: The Basic Idea

• For logistic regression of a case control sample:

 $logit(Pr D=1|G, E) = \alpha + \beta_G G + \beta_F E + \beta_{G \times F} G^* E$

the test of $H_0: \beta_{G\times E}=0$ has low power

• There is *additional information* in a case-control sample about GxE interaction that is not used in the above test

In the Presence of GxE…

- Induced "Marginal":
	- G to D association

In the Presence of GxE…

- Induced "Marginal":
	- G to D association
	- G to E association
		- 'case-only' style association

- • Observed in combined case-control sample if cases are oversampled relative to population prevalence
- Can we use this extra info to construct more efficient GW interaction scans?

2-step Approach: **DG**|GxE

 • Step 1: Genomewide screen of *M* SNPs using 'marginal-effect' test on all subjects

Logit[$Pr(D=1 | G)$] = $\mu_0 + \mu_1 G$

– Test H_o: μ_1 =0 for each SNP at α_M level

Kooperberg and LeBlanc, 2008

2-step Approach: **DG**|GxE

 • **Step 1**: Genomewide screen of *M* SNPs using 'marginal-effect' test on all subjects

Logit[$Pr(D=1 | G)$] = $\mu_0 + \mu_1 G$

 $-$ Test H_o: μ_1 =0 for each SNP at α_M level

r Genetic Epidemiology

• **Step 2**: For *m* SNPs with Step-1 $p < \alpha_M$, standard GxE analysis:

Logit[Pr(D=1 | G, E)] = β_0 + β_G G + β_E E + β_{GxE} GxE $-$ Test H_o: β_{GxE} =0 for the m SNPs at α/m level

Kooperberg and LeBlanc, 2008

2-step Approach: **EG**|GxE

 • Step 1: Genomewide screen of *M* SNPs using 'E vs. G' test on Logit[Pr(E=1 | G)] = γ_0 + γ_1 G – Test H_o: γ_1 =0 fer each SNP at α_M level all subjects

Murcray et al., 2009

2-step Approach: **EDGE**

- • Step 1: Genomewide screen of *M* SNPs using both 'D vs. G' *and* 'E vs. G' information
	- $-$ T_{EG} based on **E vs G** *(Murcray et al.)*
	- $-$ T_{DG} based on **D vs G** *(Kooperberg & LeBlanc)*
	- \rightarrow Screening Test: T_{EgDg} = T_{EG} + T_{DG} (2-df test)

Gauderman et al., 2013

2-step Approach: **EDGE**

- • Step 1: Genomewide screen of *M* SNPs using both 'D vs. G' *and* 'E vs. G' information
	- $-$ T_{EG} based on E vs G *(Murcray et al.)*
	- TDG based on D vs G *(Kooperberg & LeBlanc)*
	- \rightarrow Screening Test: T_{EgDg} = T_{EG} + T_{DG} (2-df test)
- For m SNPs with Step-1 $p < \alpha_M$, standard GxE analysis: • **Step 2:** For *m* SNPs with Step-1 $p < \alpha_M$, standard GxE analysis

Logit[Pr(D=1 | G,E)] = $\beta_0 + \beta_G G + \beta_E E + \beta_{G \times E} G \times E$

– Test H_o: $\beta_{C \times E} = 0$ for the *m* SNPs at α/m level Logit[Pr(D=1 | G,E)] = $\beta_0 + \beta_G G + \beta_E E + \beta_{G \times E} G \times E$
	- : β_{O} = 0 for the m SNPs at α/m level

"Subset" Testing

Genomewide Power to Detect

 $\rm OR_{GxE}$ =1.5 (N=3,500 cases, 3,500 controls) (Gauderman et al., 2013)

 $+$ $\frac{1}{2}$ - $\frac{1}{2}$

 $E=0$

 0.5

NIEHS. Sept. 11, 2024

Another way to combine information: NIEHS, Sept. 11, 2024 The "2-df" joint test

Logit(Pr D=1|G, E) = a + β_G G + β_E E + β_{GxE} G*E

 $H_0: \beta_G = \beta_{G \times F} = 0$ (Joint 2-df test of G, GxE;)

- • Can identify loci with …
	- A GxE effect and induced marginal G effect
	- A GxE effect but no G effect-

Kraft et al., 2007

• A G effect but no GxE effect

NIEHS. Sept. 11, 2024

 The "3-df" Joint Test Logit[Pr(G=1 | D, E, C)] = β_0 + $\beta_D D$ + $\beta_E E$ + $\beta_{D \times E} D \times E$ + $\beta_C C$ H_0 : $\beta_D = \beta_E = \beta_{D \times E} = 0$

What is it testing?

ntegrative Methods of A or Genetic Epidemiology

- Marginal G vs. D association (standard GWAS)
- Marginal G vs. E association ("case-only" style G x E)
- G x E interaction (standard GWIS)
- Potentially powerful for discovery

The "3-df" Joint Test: Power

Pure GxE

The "3-df" Joint Test: No Free Lunch

No GxE

GWIS Discoveries Using Efficient Methods

GxEScanR

Many Single-Marker Interactions

Many Single-Marker Interactions

Many Single-Marker Interactions

High Dimensional Interactions

Single-marker analysis vs. joint analysis

single-market:
$$
Y \sim \beta_0 + \beta_E E + \beta_{G_j} G_j + \beta_{G_j \times E} G_j \times E
$$
, for each $j = 1, ..., p$
joint:
all p SNPs together $Y \sim \beta_0 + \beta_E E + \sum_{j=1}^p \beta_{G_j} G_j + \sum_{j=1}^p \beta_{G_j \times E} G_j \times E$

- Polygenic traits
	- Nature of the signal is multi-marker/polygenic for complex traits
- • Joint analysis considers the impact other markers on the outcome
	- – A weak effect may be more apparent when other causal effects are already accounted for
	- – A false signal may be weakened by inclusion in the model of a stronger signal from a true causal association

Single-marker analysis vs. joint analysis

single-market:
$$
Y \sim \beta_0 + \beta_E E + \beta_{G_j} G_j + \beta_{G_j \times E} G_j \times E
$$
, for each $j = 1, ..., p$
joint:
all p SNPs together $Y \sim \beta_0 + \beta_E E + \sum_{j=1}^p \beta_{G_j} G_j + \sum_{j=1}^p \beta_{G_j \times E} G_j \times E$

• gesso [G(by)E(la)sso] model

subject to
$$
\begin{cases} (1) \ \sum_{j=1}^{p} (|\beta_{G_j}| + |\beta_{G_j \times E}|) \leq t \\ (2) \ |\beta_{G_j \times E}| \leq |\beta_{G_j}| \end{cases}
$$
 Hierarchical
Constraints

 $\beta_{G\times E}\neq 0 \implies \beta_G\neq 0$ or $\beta_G = 0 \Rightarrow \beta_{G \times E} = 0$

Zemlianskaia, et al; 2022

GWAS and Polygenic Risk

AGE Integrative Methods of Analysis
for Genetic Epidemiology

22 24 26 28

Kachuri et al. *Nat Rev Genet* 2024

Integrative Methods of Analysis for Genetic Epidemiology

NIEHS• Sept. 11, 2024 Lack of Diversity Could Impact Health Disparities

 Ancestry of GWAS participants over time relative to the global population

 Polygenic prediction accuracy relative to European ancestry individuals across 17 quantitative traits

Martin et al., *Nature Genetics* 2019

Polygenic Risk Score and E Interactions

PRS Across Populations in Prostate Cancer

- 156,319 prostate cancer cases
- 788,443 controls
- • European, African, Asian and Hispanic men
- • A 57% increase in the number of non-European cases from previous GWAS.

Wang et al. Nat. Gen. 2023

PRS x Age in Prostate Cancer

Wang et al. Nat. Gen. 2023

PRS x SDoH

What is the combined effect of genetic and socioeconomic risk on the prevalence of type 2 diabetes (T2D) and obesity?

Combined high genetic and socioeconomic risk, compared to combined low risk, was associated with a 7-fold and 3-fold increase. respectively, in T2D and obesity prevalence.

Increasing socioeconomic risk is associated with a greater absolute increase in T2D and obesity prevalence among those at high genetic risk compared to those at low genetic risk.

Cromer et al. Diabetes Care 2023

Polygenic Risk Score and E Interactions

Incorporating Functional Annotations Colorectal Cancer PRS:

- • ANNOQ (Liu et al., 2022) used to annotate GWAS SNPs to genes (153/205 SNPs annotated)
- • PANTHER (Mi et al., pathway analysis of 2017) used for those genes

Integrative Methods of Analysis
for Genetic Epidemiology

NIEHS Sept 11 2024
Inaling pathway (P04376)

- Adrenaline and noradrenaline biosynthesis (P00001)
- Alzheimer disease-presenilin pathway (P00004)
- Angiogenesis (P00005)
- Apoptosis signaling pathway (P00006)
-
-
-
-
- Beta2 adrenergic receptor signaling pathway (P04378)
- **Beta3** adrenergic receptor signaling pathway (P04379)
- CCKR signaling map (P06959)
- Cadherin signaling pathway (P00012)
- Cell cycle (P00013)
- Cortocotropin releasing factor receptor signaling pathway (P
- Cytoskeletal regulation by Rho GTPase (P00016)
- Endothelin signaling pathway (P00019)
- Enkephalin release (P05913)
- Glycolysis (P00024)
- Gonadotropin-releasing hormone receptor pathway (P06664
	- Heterotrimeric G-protein signaling pathway-Gi alpha and Gs
	- Histamine H2 receptor mediated signaling pathway (P04386
	- Huntington disease (P00029)
- Inflammation mediated by chemokine and cytokine signaling
- Integrin signalling pathway (P00034)
- Metabotropic glutamate receptor group III pathway (P00039
- Nicotinic acetylcholine receptor signaling pathway (P00044)
- Notch signaling pathway (P00045)
- PDGF signaling pathway (P00047)
- PI3 kinase pathway (P00048) Purine metabolism (P02769)
- Pyruvate metabolism (P02772) T cell activation (P00053)
- * TGF-beta signaling pathway (P00052) Vasopressin synthesis (P04395)
- * Wnt signaling pathway (P00057)
- p38 MAPK pathway (P05918)

NIEHS• Sept. 11, 2024

SNPs In Multiple Pathways

PRS* x NSAIDs

PRS formed based on 204 GWAS significant SNPS with weights extracted from the PGS Catalog *

& pPRS based on subsets of the 204 SNPs within the indicated pathway

ntegrative Methods of Analysis or Genetic Epidemiology^o

PRS based on the subset of 174 of the 204 SNPs that are not within any of the indicated pathways #

- a Odds ratios (OR) are scaled to a 1 s.d. increase for the indicated PRS and compare users to non-users for NSAIDS
- b p-value tests the null hypothesis of no PRS x E interaction. For PRS and E main effects, all $p<10^{-10}$.

PRS* x NSAIDs

PRS formed based on 204 GWAS significant SNPS with weights extracted from the PGS Catalog

& pPRS based on subsets of the 204 SNPs within the indicated pathway

ntegrative Methods of Analysis or Genetic Epidemiology^o

PRS based on the subset of 174 of the 204 SNPs that are not within any of the indicated pathways #

Odds ratios (OR) are scaled to a 1 s.d. increase for the indicated PRS and compare users to non-users for NSAIDS a

b p-value tests the null hypothesis of no PRS x E interaction. For PRS and E main effects, all $p<10^{-10}$.

Can we clarify the impact of each SNP within a PRS with *measured* omic data that captures the underlying biology?

Can we clarify the impact of each SNP within a PRS with *measured* omic data that captures the underlying biology?

Precision
• **Multiomic Mediation Framework Environmenta l Health**

Goodrich et al. *Environ Int.* 2024

Precision
• **Multiomic Mediation Framework Environmenta l Health**

Goodrich et al. *Environ Int.* 2024

Perera et al. 2022; Song et al. 2020, Zhang et al. 2016

NIEHS• Sept. 11, 2024

Precision
• **Multiomic Mediation Framework Environmenta l Health**

Goodrich et al. *Environ Int.* 2024

 O'Connell et al. 2016; Lock et al. 2013 ; Derkach et al. 2019; Albert et al. 2016

Precision
• **Multiomic Mediation Framework Environmenta l Health**

Goodrich et al. *Environ Int.* 2024

Peng et al. 2020; Zhao et al. 2024; Zhao et al. in press

NIEHS. Sept. 11, 2024

Precision
• **Multiomic Mediation Framework Environmenta l Health**

Goodrich et al. 2024; Zhao et al 2024; Zhao et al in press; Peng et al. 2020

Joint Analysis, Intermediate Integration

 Integrated information on environmental exposures, DNA methylation, miRNA levels, and transcripts can identify groups of children at elevated **risk of liver injury**

Integrative Methods of Analysis for Genetic Epidemiology

Goodrich et al. *Environ Int.* 2024

Epigenome

NIEHS• Sept. 11, 2024
11, 2024 Joint Analysis, Interactions Between Omic

- • Eight groups: exposure and defined by their outcome levels
- • Here, each point represents an individual from our data. Lines connect individuals with similar omics profiles

NIEHS • Sept. 11, 2024 Joint Analysis, Interactions Between Omic

Multiomic Interaction

Scalable analytic framework for performing analysis with multiple 'omics datasets as effect modifiers of the relationship between genetics/environmental factors (G/E) and disease or other health outcomes (D).

Characterize Associations: **Understand Biology: Human Studies Experimental Studies** $---$

- Pathways
- • Exposure Profiles and **Mixtures**
- Omic Features that Reflect the Exposome
- Interventional Impact

Multi-Omics for Health and Disease (MOHD*)

Contributing NIH Institutes: National Human Genome Research Institute (NHGRI) National Cancer Institute (NCI) National Institute of Environmental Health Sciences (NIEHS)

> Integrative Methods of Analysis for Genetic Epidemiology

*MOHD: pronounced "mode"

Max Aung, PhD

Lucy Golden, PhD

Lida Chatzi, PhD Max Aung, PhD Lucy Golden, PhD Ana Maretti-Garcia, PhD Matthew Salomon, PhD

Southern California Superfund Research and Training Program for PFAS Assessment, Remediation, and Prevention (ShARP)

R01ES030691,P30ES007048, R01ES029944, R01ES030364

Jesse Goodrich, PhD Jesse Goodrich, PhD Rob McConnell, PhD

• NIEHS Sept. 11, 2024

PRIMED-Cancer

USC

- David Conti, Chris Haiman, Dan Stram
- **Stanford**
	- John Witte

Kaiser

• Lori Sakoda

Harvard:

• Mingyang Song

Fred Hutch

• Riki Peters, Charles Kooperberg

PRIMED Consortium

Polygenic Risk Methods in Diverse Populations

Read more about us!

Hawaii Cancer Center

• Loic Le Marchand, Lynne Wilkens

NCI

 • Stephen Chanock, Sonja Berndts, Pete Kraft

- MPIs: Jim Gauderman and Kim Siegmund
- • PROJECT 1: INTEGRATION OF OMIC DATA TO ESTIMATE MEDIATION OR LATENT STRUCTURES:
	- David Conti, Josh Millstein, Nick Mancuso
- • PROJECT 2: INTEGRATION OF OMIC DATA IN THE ANALYSIS OF GENE x ENVIORNMENT INTERACTION:
	- Jim Gauderman, Juan Pablo Lewinger, Eric Kawaguchi, Lu Zhang
- • PROJECT 3: STATISTICAL METHODS FOR GENOME CHARACTERIZATION:
	- Paul Marjoram, Huaiyu Mi, Kim Siegmund, Kelly Street, Paul Thomas

P01CA196569

Special Thanks to All the Students and Post-Docs

Environmental Genomics (T32 ES013678 NIEHS)

Thank You!

dconti@usc.edu