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Genomewide Association Studies 

Y/D SNPs 
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GWAS 
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What Are We Missing? 
• SNPs with modest 

marginal effect that might 

be important in one or 

more subgroups? 
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What Are We Missing? 
• SNPs with modest 

marginal effect that might 

be important in one or 

more subgroups? 

• Size of the marginal G 

effect depends on 

prevalence of exposure 

50% 
Exposed 

Marginal G effect 
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What Are We Missing? 
• SNPs with modest 

marginal effect that might 

be important in one or 

more subgroups? 

• Size of the marginal G 

effect depends on 

prevalence of exposure 

75% 
Exposed 

Marginal G effect 
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What Are We Missing? 
• SNPs with modest 

marginal effect that might 

be important in one or 

more subgroups? 

• Size of the marginal G 

effect depends on 

prevalence of exposure 

25% 
Exposed 

Marginal G effect 
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Genomewide Interactions (GWIS) 

Y/D 

E 
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Improving GWIS Efficiency: The Basic Idea 

• For logistic regression of a case control sample: 

logit(Pr D=1|G, E) =  + GG + EE + GxEG*E 

the test of H0:GxE=0 has low power 
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Improving GWIS Efficiency: The Basic Idea 

• For logistic regression of a case control sample: 

logit(Pr D=1|G, E) =  + GG + EE + GxEG*E 

the test of H0:GxE=0 has low power 

• There is additional information in a case-control sample 

about GxE interaction that is not used in the above test 
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In the Presence of GxE… 

• Induced “Marginal”: 

– G to D association 

Marginal 

G effect 
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In the Presence of GxE… 

• Induced “Marginal”: 

– G to D association 

– G to E association 

Marginal 

G effect 

• ‘case-only’ style association 

• Observed in combined case-control sample if cases are 

oversampled relative to population prevalence 

• Can we use this extra info to construct 

more efficient GW interaction scans? 
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2-step Approach: DG|GxE 
• Step 1: Genomewide screen of M SNPs using ‘marginal-effect’ 

test on all subjects 

Logit[Pr(D=1 | G)] = 0 + 1G 

– Test H : 1=0 for each SNP at M level o 

M 

Kooperberg and LeBlanc, 2008 
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2-step Approach: DG|GxE 
• Step 1: Genomewide screen of M SNPs using ‘marginal-effect’ 

test on all subjects 

Logit[Pr(D=1 | G)] = 0 + 1G 

– Test H : 1=0 for each SNP at M level o

• Step 2: For m SNPs with Step-1 p < M , standard GxE analysis: 

Logit[Pr(D=1 | G, E)] = 0 + GG + EE + GxEGxE 

– Test H : GxE=0 for the m SNPs at m level o

Kooperberg and LeBlanc, 2008 
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2-step Approach: EG|GxE 
• Step 1: Genomewide screen of M SNPs using ‘E vs. G’ test on 

all subjects 

– Test Ho 

Logit[Pr(E=1 | G)] = 0 + 1G 

: 1=0 for each SNP at M level 

Murcray et al., 2009 
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2-step Approach: EDGE 
• Step 1: Genomewide screen of M SNPs using both ‘D vs. G’ 

and ‘E vs. G’ information 
– TEG based on E vs G (Murcray et al.) 

– TDG based on D vs G (Kooperberg & LeBlanc) 

→ Screening Test: TEgDg = TEG + TDG (2-df test) 

Gauderman et al., 2013 
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2-step Approach: EDGE 
• Step 1: Genomewide screen of M SNPs using both ‘D vs. G’ and 

‘E vs. G’ information 
– TEG based on E vs G (Murcray et al.) 

– TDG based on D vs G (Kooperberg & LeBlanc) 

→ Screening Test: TEgDg = TEG + TDG (2-df test) 

• Step 2: 

– Test H 2-step o 
“Subset” Testing 

For m SNPs with Step-1 p < M , standard GxE analysis: 

Logit[Pr(D=1 | G,E)] = 0 + GG + EE + GxEGxE 

: GxE=0 for the m SNPs at m level 
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Genomewide Power to Detect 
ORGxE=1.5 (N=3,500 cases, 3,500 controls) 

(Gauderman et al., 2013) 

Case Only 

EDGE 

EG 

DG 

GWIS 
GWAS 
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Another way to combine information: 

The “2-df” joint test 
Logit(Pr D=1|G, E) = a + GG + EE + GxEG*E 

= 0 (Joint 2-df test of G, GxE;)H0: G = GxE 

• Can identify loci with … 
• A GxE effect and induced marginal G effect 

• A GxE effect but no G effect 

• A G effect but no GxE effect 

Kraft et al., 2007 
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The “3-df” Joint Test 

What is it testing? 

• Marginal G vs. D association (standard GWAS) 

• Marginal G vs. E association (“case-only” style G x E) 

• G x E interaction (standard GWIS) 

• Potentially powerful for discovery 

Gauderman, et al; 2019 
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The “3-df” Joint Test: Power 

Pure GxE 



  

 

      

NIEHS• Sept. 11, 2024 

The “3-df” Joint Test: No Free Lunch 

No GxE 
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GWIS Discoveries Using 

Efficient Methods 

G x → CRC 

All analyses used 

GxEScanR 
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Many Single-Marker Interactions 

Y/D 

E 

G 
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Many Single-Marker Interactions 

Y/D 

E 

G 
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Many Single-Marker Interactions 

Y/D 

E 
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High Dimensional Interactions 

Y/D 

E 

G 
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Single-marker analysis vs. joint analysis 
single-marker: 

one-SNP-at-a-time 

joint: 

all p SNPs together 

• Polygenic traits 

– 

• Joint analysis considers the impact other markers on the outcome 

𝑌 ∼ 𝛽0 + 𝛽𝐸𝐸 + 𝛽𝐺𝑗 
𝐺𝑗 × 𝐸 , for + 𝛽𝐺𝑗×𝐸𝐺𝑗 each j = 1, . . , 𝑝 

𝑝 𝑝 

𝑌 ∼ 𝛽0 + 𝛽𝐸𝐸 +  𝛽𝐺𝑗 
𝐺𝑗 +  𝛽𝐺𝑗×𝐸𝐺𝑗 × 𝐸 

𝑗=1 𝑗=1 

Nature of the signal is multi-marker/polygenic for complex traits 

– A weak effect may be more apparent when other causal effects are 
already accounted for 

– A false signal may be weakened by inclusion in the model of a stronger 
signal from a true causal association 
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Single-marker analysis vs. joint analysis 
𝑌 ∼ 𝛽0 + 𝛽𝐸𝐸 + 𝛽𝐺𝑗 

𝐺𝑗 + 𝛽𝐺𝑗×𝐸𝐺𝑗 × 𝐸 , for each j = 1, . . , 𝑝 

𝑌 ∼ 𝛽0 + 𝛽𝐸𝐸 +  
𝑗=1 

𝑝 

𝛽𝐺𝑗 
𝐺𝑗 +  

𝑗=1 

𝑝 

𝛽𝐺𝑗×𝐸𝐺𝑗 × 𝐸 

gesso [G(by)E(la)sso] model 

𝛽𝐺×𝐸 ≠ 0 ⟹ 𝛽𝐺 ≠ 0 or 
𝛽𝐺 = 0 ⟹ 𝛽𝐺×𝐸 = 0 

subject to (1) σ𝑗=1 
𝑝 

(|𝛽𝐺𝑗 
| + |𝛽𝐺𝑗×𝐸|) ≤ 𝑡 

single-marker: 

one-SNP-at-a-time 

joint: 

all p SNPs together 

• 

Hierarchical 
Constraints 

(2) |𝛽𝐺𝑗×𝐸 | ≤ |𝛽𝐺𝑗 
| 

Zemlianskaia, et al; 2022 
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GWAS and Polygenic Risk 
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Polygenic Risk Score (PRS): 

Weighted sum of # risk alleles carried 

22 24 26 28

EUR.ONCO.Weighted.Conditional.meta.PRS.Y.Plot

PRS
D

e
n

s
it
y

Cases

Controls

25-75% 90-100% 0-10% 

PRS 

  

   

    

   

       

  

  

  

     

by each participant 

Count of risk alleles for 

variant m for individual i 

What SNPs? 

𝑚=1 
𝑃𝑅𝑆

𝑀 
𝑤𝑚𝐺𝑖𝑚𝑖 = 

What weight? 

Kachuri et al. Nat Rev Genet 2024 
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Lack of Diversity Could Impact Health Disparities 

Polygenic prediction accuracy relative to European 

ancestry individuals across 17 quantitative traits 

Ancestry of GWAS participants over time relative to the global population 

Martin et al., Nature Genetics 2019 
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Polygenic Risk Score and E Interactions 

Y/D 

E 

PRS 
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PRS Across Populations in Prostate Cancer 

• 156,319 prostate cancer cases 

• 788,443 controls 

• European, African, Asian and 

Hispanic men 
• A 57% increase in the number 

of non-European cases from 

previous GWAS. 

Population 1 SD OR

European 2.32 [95%CI: 2.30-2.35]

African 2.04 [95%CI: 2.00-2.08]

Asian 2.15 [95%CI: 1.99-2.32] 

Hispanics 2.12 [95%CI: 2.03-2.23]

Wang et al. Nat. Gen. 2023 
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PRS x Age in Prostate Cancer 

Wang et al. Nat. Gen. 2023 
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PRS x SDoH 

Cromer et al. Diabetes Care 2023 
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Polygenic Risk Score and E Interactions 

Y/D 

E 

PRS 
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Colorectal Cancer PRS: 

Incorporating Functional Annotations 

• ANNOQ (Liu et al., 

2022) used to annotate 

GWAS SNPs to genes 

(153/205 SNPs 

annotated) 

• PANTHER (Mi et al., 

2017) used for 

pathway analysis of 

those genes 

Gauderman et al. in preparation 
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SNPs In Multiple Pathways 

Gauderman et al. in preparation 
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PRS* x NSAIDs 

Gauderman et al. in preparation 
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PRS* x NSAIDs 

Gauderman et al. in preparation 
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Omic Data 

Omic Data 

PRS Y/D 

Can we clarify the impact of each SNP 
within a PRS with measured omic data 
that captures the underlying biology? 
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Omic Mediation 

Omic Data 

PRS Y/D 

Can we clarify the impact of each SNP 
within a PRS with measured omic data 
that captures the underlying biology? 
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For Precision
Environmenta

l Health

Goodrich et al. Environ Int. 2024 
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High Dimensional Mediation 

Y/D G/E 

Omic 

Perera et al. 2022; Song et al. 2020, Zhang et al. 2016 
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Goodrich et al. Environ Int. 2024 
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Latent Mediation 

Y/D G/E 

LE 

O’Connell et al. 2016; Lock et al. 2013 ; 
Derkach et al. 2019; Albert et al. 2016 
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Framework

For Precision
Environmenta

l Health

Goodrich et al. Environ Int. 2024 
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Estimate Latent Variables 

Y/D 

Omic 

G/E 

L 

Peng et al. 2020; Zhao et al. 2024; Zhao et al. in press 
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Goodrich et al. 2024; Zhao et al 2024; Zhao et al in press; Peng et al. 2020 



  

   

  

   

   

   

    

     

Joint Analysis, 

Intermediate Integration 

Integrated information on 

environmental exposures, 

DNA methylation, miRNA 

levels, and transcripts can 

identify groups of children at 

elevated risk of liver injury 

Goodrich et al. Environ Int. 2024 
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Profiles

Joint Analysis, Interactions Between Omic 
• Eight groups: 

defined by their 

exposure and 

outcome levels 

• Here, each point 
represents an 

individual from 

our data. Lines 

connect 

individuals with 
similar omics 

profiles 
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Profiles

Joint Analysis, Interactions Between Omic 
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Multiomic 

Interaction 



  

  

     

 

    

NIEHS• Sept. 11, 2024Discovery: 

Large Biobanks 

Cohorts 

Databases 

Characterize Associations: 

Human Studies 

Exposure Profiles and Mixtures 

Omic Features that Reflect the 

• AI and Analytic Methods that 

Leverage Prior Information 

• Pathways 

• 
• 

Exposome 



  

 

  

  

    

Characterize Associations: 

Human Studies 

• Pathways 

• Exposure Profiles and 

Mixtures 

• Omic Features that Reflect 

the Exposome 

• Interventional Impact 

NIEHS• Sept. 11, 2024 

Understand Biology: 

Experimental Studies 
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Jesse Goodrich, PhD Rob McConnell, PhD 

Lida Chatzi, PhD Max Aung, PhD Lucy Golden, PhD Ana Maretti-Garcia, PhD Matthew Salomon, PhD 

R01ES030691,P30ES007048, R01ES029944, R01ES030364 

Southern California Superfund Research and Training Program for 
PFAS Assessment, Remediation, and Prevention (ShARP) 
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Hawaii Cancer Center 

• Loic Le Marchand, Lynne Wilkens 

NCI 

• Stephen Chanock, Sonja Berndts, 

Pete Kraft 

PRIMED-Cancer 
USC 

• David Conti, 

Chris Haiman, 

Dan Stram 

Stanford 

• John Witte 

Kaiser 

• Lori Sakoda 

Harvard: 

• Mingyang Song 

Fred Hutch 

• Riki Peters, Charles Kooperberg 

U01CA261339 
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• MPIs: Jim Gauderman and Kim Siegmund 

• PROJECT 1: INTEGRATION OF OMIC DATA TO ESTIMATE MEDIATION OR LATENT STRUCTURES: 
• David Conti, Josh Millstein, Nick Mancuso 

• PROJECT 2: INTEGRATION OF OMIC DATA IN THE ANALYSIS OF GENE x ENVIORNMENT INTERACTION: 

• Jim Gauderman, Juan Pablo Lewinger, Eric Kawaguchi, Lu Zhang 

• PROJECT 3: STATISTICAL METHODS FOR GENOME CHARACTERIZATION: 

• Paul Marjoram, Huaiyu Mi, Kim Siegmund, Kelly Street, Paul Thomas 

P01CA196569 
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Special Thanks to All the Students and Post-Docs 

Environmental Genomics (T32 ES013678 NIEHS) 

Thank You! 

dconti@usc.edu 
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