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Multi-decadal trends in global 
terrestrial evapotranspiration and 
its components
Yongqiang Zhang1, Jorge L. Peña-Arancibia1, Tim R. McVicar1,2, Francis H. S. Chiew1, 
Jai Vaze1, Changming Liu3, Xingjie Lu4, Hongxing Zheng1, Yingping Wang4, Yi  Y. Liu2,  
Diego G. Miralles5,6 & Ming Pan7

Evapotranspiration (ET) is the process by which liquid water becomes water vapor and energetically this 
accounts for much of incoming solar radiation. If this ET did not occur temperatures would be higher, 
so understanding ET trends is crucial to predict future temperatures. Recent studies have reported 
prolonged declines in ET in recent decades, although these declines may relate to climate variability. 
Here, we used a well-validated diagnostic model to estimate daily ET during 1981–2012, and its three 
components: transpiration from vegetation (Et), direct evaporation from the soil (Es) and vaporization 
of intercepted rainfall from vegetation (Ei). During this period, ET over land has increased significantly 
(p < 0.01), caused by increases in Et and Ei, which are partially counteracted by Es decreasing. These 
contrasting trends are primarily driven by increases in vegetation leaf area index, dominated by 
greening. The overall increase in Et over land is about twofold of the decrease in Es. These opposing 
trends are not simulated by most Coupled Model Intercomparison Project phase 5 (CMIP5) models, and 
highlight the importance of realistically representing vegetation changes in earth system models for 
predicting future changes in the energy and water cycle.

Terrestrial ET is a key component of the energy and water cycles over global land1. It is the second largest com-
ponent of the hydrological cycle after precipitation2,3. Variation of terrestrial ET influences precipitation1, and 
land surface water availability in water bodies, such as lakes and rivers. ET is the second largest component in 
the surface energy balance after net radiation1. Change in terrestrial ET, and its associated latent heat flux, will 
impact the sensible heat flux by changing land surface temperature, having important implications on regional 
and global warming4.

Recent studies have focused on ET trends in last several decades, and have attributed the ET trends to regional 
drought1, climate change5, or internal climate variability6. In addition to potential discrepancies in the direction and 
cause of these changes, the relative contribution of the three main components of ET (i.e., Et, Es and Ei) to these global 
trends remains unknown. ET components can respond differently to changes in environmental conditions and/or  
vegetation. For example, while Et is dependent on plant phenology and water-use efficiency, Es is mostly driven by 
the atmospheric demand for vapour, the availability of water in the soil, and the amount of vegetation above the 
soil, and Ei by the occurrence of rainfall and the characteristics of the vegetation stand.

Several studies report the partitioning of global land surface ET, mainly using global land models7 or isotope 
observations8,9. Although Et is a major component of ET, the global ratio of Et to ET remains uncertain9. More 
importantly, it is not clear how the ET components contribute to annual trend and variability in ET. To unravel the 
key mechanisms behind the trends in ET, and the contribution of each ET component to these trends over the last 
three decades, we used the observation-driven Penman-Monteith-Leuning (PML)10,11 model. The PML model 
has been chosen because of its sound physical basis, simple parameterization, and relatively straightforward 
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application10–12; furthermore, it can be implemented globally, and at high spatial and temporal resolutions, when 
forced with readily-available gridded meteorological13–15 and satellite data16,17.

Results
Model validations. The PML estimated ET and its partitioning are comprehensively assessed from point to 
global scale, including: (i) catchment precipitation (P) and streamflow (Q) data; (ii) eddy-covariance flux tower 
data; (iii) satellite-derived soil moisture; (iv) field experiments of ET partitioning; (v) comparing annual Ei/P ratio 
in homogeneous forests; (vi) evaluation of Es in extreme climates; and (vii) model inter-comparison. This assess-
ment includes five validations, being (i) to (v), and two evaluations, (vi) to (vii); all are outlined below in-turn.

First, over a long-term catchment water balance, ‘observed’ mean annual ET is the difference between the 
observed catchment mean annual P–Q. The PML estimated ET compares well with long-term water-balance ET 
observations from 643 largely unregulated large (> 2000 km2) catchments across the world (Fig. 1a), with coeffi-
cient of determination R2 =  0.87 and Bias =  − 1.4%. The time-series of aggregated estimated annual ET from the 
643 catchments also show good correspondence to the annual P–Q aggregated series (Fig. 1d, R2 =  0.65). This 
indicates a good performance of the annual ET simulations. In addition, PML-estimated ET trend compares rea-
sonably well to the catchment annual P–Q trend for 46 large unregulated catchments (> 10,000 km2) distributed 
across North America, Europe, South America and Australia (Fig. 1b, R2 =  0.40). It is noted that the catchment 
annual P–Q trend may have noticeable errors in some catchments due to the influence of catchment storage 
changes.

Second, at monthly scale, the estimated ET is compared to eddy-covariance flux measurements in 95 flux 
towers widely spread (Fig. 1c), yielding a good agreement indicated by R2 =  0.77 and Bias =  − 6.0% (Fig. 1c). 
To test the robustness of the PML model for simulating ET in various climatic conditions, we split the 95 flux 
towers into two groups: dry and wet. The 16 sites with aridity index (the ratio of potential evapotranspiration 
to precipitation) more than 1.5 are deemed as ‘dry’; and the 79 sites with aridity index less than 1.5 classified as 
‘wet’. Monthly estimated ET corresponds well to the measured in both dry (R2 =  0.77 and Bias =  − 9.7%) and wet 
(R2 =  0.77 and Bias =  − 5.3%) climatic conditions, demonstrating that the PML model performs equally well in 
both dry and wet conditions.

Third, the ET partitioning into its respective components is also independently evaluated. The annual Es series 
estimated by the PML model shows good agreement with the TRMM (Tropical Rainfall Measuring Mission) 

Figure 1. Validation of the PML-ET model. (a) Comparison of the estimated mean annual ET (1981–2012, 
mm year−1) to catchment ET (P–Q) observations in 643 catchments (red dots in the global map).  
(b) Comparison of estimated annual ET trend (mm year−2) to catchment annual ET (P–Q) for 46 large 
catchments (> 10, 000 km2) with less than 3-year missing data. (c) Comparison of the estimated ET (mm 
month−1) to the measured ET at 95 flux sites (red dots in the global map). (d) Annual anomalies of the 
estimated ET, ET components, and catchment observed ET (P–Q), all aggregated from catchments (number 
of catchments per year provided using grey bars) with annual Q observations.  (e) Annual anomalies of the 
estimated ET, ET components, and the observed microwave soil moisture, all aggregated between 40 °N and 
40 °S (area covered by the microwave soil moisture data). Error bars for ET and its components are s.d. obtained 
from the two PML simulations. Error bars for P–Q are s.d. obtained from the two precipitation datasets. R2 
in Fig. 1(a–d) is obtained from comparing measured ET and estimated ET. R2 in Fig. 1(e) is obtained from 
comparing soil moisture and estimated Es. The maps were generated using a commercial software MATLAB.
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soil moisture estimates (aggregated over 40 °N–40 °S TRMM coverage but excluding grid cells with over tropical 
forests where soil moisture retrieval is difficult), with R2 =  0.71 (Fig. 1e).

Fourth, the ET partitioning is also checked against 12 field experiments covering various ecosystems for which 
the Es/ET percentage ratio is obtained (Table 1). The Es/ET percentage ratio estimated by the PML model corre-
sponds well to the results obtained by the field experiments, with R2 =  0.79.

Fifth, the annual Ei/P percentage is also compared to measurements in 11 largely homogeneous inland forest 
sites (Table 2). Most sites are in humid tropical forests where Ei likely accounts for a significant proportion of ET. 
Both measurements and estimates show narrow ranges of Ei/P percentage ratios. The measurements show that 
about 8–14% of annual P is partitioned to Ei for the selected forests, which are similar to the PML estimates that 
vary from 5% to 11%.

Sixth, the ET partitioning can be qualitatively evaluated in extreme climates, such as deserts in Sahara, central 
Asia, Arabian Peninsula, and central Australia where mean annual potential ET is more than 10 times of mean 
annual P (Fig. 2a). In these areas, most of precipitation is used for Es, as estimated by the PML model (Figs 2c and 2d). 

Site Lat. Long.
Es/ET 

(Measured)
Es/ET 

(Estimated)
Land cover 

type Reference
Year 

length

Santa Rita Experimental Range 
(USA) 31.91 − 110.84 58 42 Shrub Cavanaugh et al. 

(2011)47 1

Walnut Gulch Experimental 
Watershed (USA) 31.74 − 110.05 53 54 Shrub Cavanaugh et al. 

(2011)47 1

Oak Ridge (USA) 35.96 − 84.29 16 16 Forest Wilson (2001)48 3

Steinkreuz catchment (Germany) 49.87 10.47 10 20 Forest Kostner (2011)49 5

Luan Cheng (China) 37.88 114.68 30 28 Cropland Liu et al. (2002)50 5

Oerst Forests (New Zealand) − 42.22 172.25 10 9 Forest Kelliher et al. 
(1992)51 1

Sultana Vineyard (Australia) − 34.22 142.03 43 46 Vineyard Yunusa et al. 
(2004)52 2

Punjab Agricultural University 
(India) 30.93 75.87 39 23 Cropland Balwinder et al. 

(2011)53 2

Yang Ling (China) 34.33 108.40 30 21 Cropland Kang et al. (2003)54 10

lower coastal plain, North Carolina 
(USA) 35.80 − 76.67 14 24 Forest Domec et al. 

(2012)55 3

Norunda Common (Sweden) 60.08 17.05 13 16 Forest Constaintin et al. 
(1999)56 2

Menglun Forest Reserve, Yunnan 
(China) 21.93 101.27 4 6 Tropical Forest Liu et al. (2006)57 2

Table 1.  Comparing the estimated (average from simulations 1 and 2) percentage of soil evaporation 
(Es) corresponding to total evapotranspiration (ET) to the measured percentage obtained from 12 field 
experiments.

Site Lat. Lon.
Ei/P 

(Measured)
Ei/P 

(Estimated)

Land 
cover 
Type Reference

Year 
length

Tapajos National Forest south of 
Santarém (Brazil) − 2.9 − 54.9 11.6 9.89 Forest Czikowsky and 

Fitzjarrald (2009)58 3

Lambir Hills National Park, Sarawak 
(Malaysia) 4.3 114.0 8 9.79 Forest Kume et al. (2011)59 10

Central Kalimantan (Indonesia) − 1.30 112.38 11.4 9.96 Forest Asdak et al. (1998)60 1

Pena Rojo (Colombia) − 0.62 − 70.72 12 9.93 Forest Martin et al. (2000)61 3

Reserva Florestal Ducke (Brazil) − 2.95 − 59.95 8.9 10.47 Forest Lloyd and Marques 
(1988)62 2

Abracos forests (Brazil) − 10.1 − 61.9 11.6 9.86 Forest Ubarana (1996)63 2

Cuieiras Biological Reservation 
(Brazil) − 2.5 − 60.2 13.3 10.18 Forest Cuartas et al. (2007)64 2

Central Amazonia (Brazil) − 2.95 − 59.95 9.1 10.47 Forest Shuttleworth (1988)65 2

Tai National Park (Ivory Coast) 5.85 − 7.34 9.2 9.21 Forest Hutjes et al. (1990)66 1

Central Kalimantan (Indonesia) 0.1 113.9 13 9.40 Forest Vernimmen et al. 
(2007)67 1

South− east of Lisbon (Portugal) 38.63 − 8.6 10.8 5.61 Forest Valente et al. (1997)68 3

Table 2.  Comparing the estimated (average from simulations 1 and 2) percentage of interception 
evaporation (Ei) corresponding to annual precipitation (P) to the measured obtained from 11 field 
experiments.
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Seventh, the ET estimates from the PML model are also compared to other two diagnostic models (MTE1 
and GLEAM6), 9 land surface models1 and 39 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate 
models18 (Fig. 3). The PML model shows reasonable agreement to the median of the nine land surface models, 
MTE and GLEAM in the annual global average ET estimates: R2 of 0.69, 0.52 and 0.31, respectively, and shows the 
least agreement to the median of 39 CMIP5 models: R2 of 0.14. All the three diagnostic models show significantly 
increasing ET trend over 1982–2011, being 0.68, 0.32 and 0.38 mm year−2 for PML (p <  0.01), MTE (p <  0.01) 
and GLEAM (p <  0.1) models, respectively.

Overall, these seven assessments, including five point to regional validations and two global evaluations, give 
confidence on the ET components used in our analysis.

Global and continental summary. The spatial distribution of PML mean annual ET is shown in Fig. 2b. 
The 1981–2012 mean ET across the global land surface (not considering water bodies and permanent ice sur-
faces) is 538.1 ±  56.5 mm year−1 (i.e., 63.2 ×  103 km3 year−1) (Fig. 4a) or ~67% of mean annual P (805.6 ±  41.7 mm 
year−1); in good agreement with previous estimates based on similar study periods1,2,3,6. PML Et accounts for 
~65% of ET (350.4 ±  54.7 mm year−1), Es for ~25% (133.9 ±  15.0 mm year−1) and Ei for ~10% (53.7 ±  5.5 mm 
year−1). These estimates fall within the broad range of variability reported by studies based on isotopes8,9, and 
satellite observations and modelling19–21. The relative contribution of the different ET components varies per 
continent (Fig. 2c,d), reflecting water availability, energy constraints and land cover heterogeneity. Continents 
containing vast tracts of tropical forests, like South America, evaporate more and the relative contributions from 
Et and Ei are larger (Fig. 2b,c); whereas in largely arid continents, such as Australia, Es is a substantial contributor 
(Fig. 2d).

Averaged across the global land surface, the inter-annual variance of ET is 1907 ±  147 mm2 year−2, repre-
senting only ~6.2% of the P variance (Fig. 4b). The greater than ten-fold difference between P and ET vari-
ances is because vegetation and soil serve as ‘storage’ buffers. The Es variance of 967 ±  28 mm2 year−2 is similar 
to the Et variance globally (958 ±  94 mm2 year−2), despite the Et being more than double Es. This is because some 
vegetation, especially trees, has access to deep soil water for Et, and have developed deep roots in response to  

Figure 2. Global maps of climatology (1981–2012). (a) aridity index (the ratio of mean annual precipitation 
to mean annual potential ET). (b) mean annual ET. (c) the percentage of Et to ET. (d) the percentage of Es to ET. 
The maps were generated using MATLAB.

Figure 3. Annual global anomalies (mm year−1) in ET. Outputs from 39 CMIP5 models span from 1982 to 
2005; outputs from 9 land surface models are from 1982 to 2008; outputs from other models (i.e., MTE, GLEAM 
and PML) are from 1982 to 2011. Dash lines show linear trends for the median of nine land surface models 
(yellow), MTE (blue), GLEAM (cyan) and PML (black), respectively.
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P variability22,23. Compared to that, shallow soil water is a more immediate buffer for Es responding directly to the  
P variability. As a result, global variance in Es is comparable to that in Et, as Es is a larger component of ET in 
regions with a high inter-annual variability in P, like Australia or South Africa6.

The global multi-decadal trend (1981–2012) in ET is positive (p <  0.01), i.e. in the same direction as pre-
vious estimates1,6 (Fig. 3). This is caused by significant positive trends in Et (0.72 ±  0.23 mm year−2) and in Ei 
(0.14 ±  0.07 mm year−2), which are partly counter-balanced by a significant but smaller negative trend in Es 
(–0.32 ±  0.07 mm year−2) (Fig. 4c). Strong positive ET trends are observed in northern and eastern Asia, India, 
eastern North America, Europe, northern Sub-Saharan Africa and northern and eastern Amazonia (Fig. 5a), 
mainly as a result of increased Et (Fig. 5b). Negative ET trends are observed over parts of subtropical and tem-
perate South America, the Middle East and western United States, and are mainly explained by reductions in 
Es (Fig. 5a,c). Decreases in Es in the Sahel24, Indian Subcontinent and southern China are also accompanied by 
increases in Et (Fig. 5b,c).

Causality analysis. The contrasting positive trend in Et and negative trend in Es is mostly explained by the 
increase in leaf area index (LAI) (Fig. 5d). This increasing trend in LAI has been attributed to CO2 fertilization25, 
global warming26, increased productivity in croplands27, afforestation and forest protection27,28. The increase in 
LAI also means more shading of the soil surface and less coupling between the atmosphere and the soil surface, 
and these are likely to be the main reasons for the decreasing trend in Es

29,30.
The trends in ET and its components due to the observed increase in LAI are further explored as the difference 

between PML-ET simulations obtained using the observed LAI time series and PML-ET results obtained using 
detrended LAI time series. The spatial distribution of the trend difference is shown in Fig. 6 and the continental 
summary of the trend difference is summarised in Table 3. The LAI increase causes noticeable increase in ET 
(Fig. 6a) in Europe, India, eastern China, eastern and northern Australia, Sahel, and eastern Amazon, which is 
accompanied by an increase in Et (Fig. 6b) and decrease in Es (Fig. 6c). The trend difference in Ei is much smaller 
compared to that in Et or in Es (Fig. 6d).

The contrasting trends between Es and Et occur mainly in croplands, grasslands, mixed forests and shrublands 
(see Supplementary Information Figs S1 and S2). Furthermore, the contrasting trends are confirmed when they 
are stratified using the LAI trend ranging from − 0.025 to 0.035 m2 m−2 year−1 (see Supplementary Information 
Fig. S3).

Globally, the increase in LAI causes an increase in Et and Ei trends by 0.71 and 0.08 mm year−2, and a decrease 
in Es trend by 0.30 mm year−2 (Table 3). The increase in LAI causes an increase in Et trend for all continents, 
ranging from 0.57 mm year−2 in Africa to 1.16 mm year−2 in Europe, and also causes a slight increase in Ei trend, 
ranging from 0.04 mm year−2 in Australia to 0.19 mm year−2 in Europe. In contrast, the increase in LAI reduces Es 
trend for all continents; ranging from − 0.18 mm year−2 in North America to − 0.56 mm year−2 in South America. 
These impacts on Et, Es and Ei cause noticeable ET trends increasing in all continents, ranging from 0.30 mm 
year−2 in North America to 0.84 mm year−2 in Europe.

While the trend in ET is influenced by vegetation change, the ET (and its components) variability is dominated 
by inter-annual climate variability31. Globally, this is demonstrated by Fig. 7a showing similar variance estimates 
in annual ET, Et and Es from PML using observed LAI time series and using detrended LAI time series. There is a 

Figure 4. Mean global land surface and continental averages (1981–2012) of various statistics for P, ET, 
Et, Es and Ei. (a) Mean annual values (mm year−1). (b) Variance or covariance of annual values (mm2 year−2). 
(c) Trend (mm year−2). Error bars are s.d. obtained from PML simulations 1 and 2. The symbol ** indicates 
significance level 1–α  =  99% (p <  0.01); the symbol * indicates significance level 1–α  =  95% (p <  0.05); the 
symbol ‘n’ is not significant (p >  0.05). In each figure sub-part for each geographic area the numbers presented 
are ordered equivalently to the sub-part legend. Note that scaling is applied to the Var (P) on part (b).
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strong correlation between P and Es (and ET) (Fig. 5e) and the P trend influences Es and ET trends in the southern 
mid-latitudes, such as the increasing trend in northern Australia and southern Africa and the decreasing trend 
in southern South America (Fig. 5a,c,f). In these regions, the dynamics of the EI Niño/Southern Oscillation6,32 
dominate the multi-decadal P and ET variability. When stratified using the P trend, the ET trend gradually rises 
with increasing P trend (see Supplementary Information Fig. S4). Furthermore, a decrease in Es trend and Ei 
trend occurs when the P trend decreases; a strong increase in Ei trend accompanies the strong increase in P trend.

Figure 5. Global maps of trend and correlation (1981–2012). (a) ET trend (mm year−2). (b) Et trend (mm 
year−2). (c) Es trend (mm year−2). (d) LAI trend (m2 m−2 year−1). (e) correlation between annual P and annual 
ET (for land grid cells where p <  0.01, else they are white). (f) P trend (mm year−2). Trends in ET, Et, and Es are 
obtained from the average of the two PML simulations. Trends in LAI are obtained from the AVHRR based LAI 
product, and P trends are averaged from the two P products (i.e., PGF and WFDEI). The maps were generated 
using MATLAB.

Figure 6. Global maps of trend difference. (a) ET (mm year−2). (b) Et (mm year−2). (c) Es (mm year−2).  
(d) Ei (mm year−2). Using the PML model, the trend difference is calculated between the average estimates using 
the observed LAI time series (experiments 1 and 2) minus the average estimates using detrended LAI time 
series (experiments 3 and 4); details of these experiments are provided in the Methods section. The maps were 
generated using MATLAB.
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Discussion
Using the well-validated diagnostic PML model, we estimated that global ET is comprised of 65% Et, 25% Es 
and 10% Ei. Although Et is larger than Es, their inter-annual variability is similar, because the variability in Et 
is buffered by vegetation and soil moisture storage. The Es has high inter-annual variability reflecting the high 
inter-annual variability of P. Regionally, the ET variability is dominated by Et and Ei in densely vegetated and wet 
regions, and by Es in sparsely vegetated and arid regions.

The PML model showed positive trend in ET consistent with, and close to, the median (+ 0.63 mm year−2) of 
the trends in four other global ET products1,6,33,34. PML and these other four products all show slightly positive ET 
trends globally of similar magnitude in the last three decades. Over 1981–2012, the PML model estimates positive 

LAI inputs Global Africa Asia Australia Europe
North 

America
South 

America

ET

Trended 0.54** 0.30n 0.41n 1.24n 1.99** 0.32n 0.40n

Detrended 0.05n − 0.08n − 0.05n 0.55n 1.15** 0.02n − 0.29n

Difference 0.49 0.38 0.46 0.69 0.84 0.30 0.69

Et

Trended 0.72** 0.14n 0.78** 0.75n 2.15** 0.65** 0.87*

Detrended 0.01n − 0.44* 0.14n − 0.15** 0.99** 0.22n − 0.22n

Difference 0.71 0.57 0.64 0.90 1.16 0.43 1.09

Es

Trended − 0.32** 0.04n − 0.53** 0.40n − 0.33* − 0.37** − 0.68**

Detrended − 0.02n 0.28n − 0.28* 0.66 n 0.17n − 0.19n − 0.12n

Difference − 0.30 − 0.24 − 0.25 − 0.26 − 0.50 − 0.18 − 0.56

Ei

Trended 0.14** 0.12** 0.16** 0.09 n 0.17** 0.04n 0.21*

Detrended 0.06n 0.07n 0.10* 0.05n − 0.02n − 0.01n 0.05n

Difference 0.08 0.05 0.06 0.04 0.19 0.05 0.15

Table 3.  Trends (mm year−2) in ET and its components (average from simulations 1 and 2) obtained 
using observed LAI time series and those obtained (average from simulations 3 and 4) using the detrended 
LAI across globe and each continent. The symbols **, * and n denote significance level 1–α  =  99% (p <  0.01), 
1–α  =  95% (p <  0.05), and not significant (p >  0.05), respectively. The “Difference” is calculated as “Trended” 
minus “Detrended”.

Figure 7. Summary of variance and trend in global ET components and LAI obtained from CMIP5 and 
PML models for 1981–2005. (a) variance in ET components (mm year−2). (b) variance in LAI (m4 m−4).  
(c) trend in ET components (mm year−2). (d) trend in LAI (m2 m−2 year−1). The global variance and trend in 
the CMIP5 and PML models are obtained using area–weighted average over all land gird cells. All eight CMIP5 
models with archived ET, Et and Es outputs are used. Five of the eight models also archived LAI outputs. The 
model details are summarised in Table S1. Green dots are variance or trend estimated by PML using observed 
LAI time series (Fig. 7a,c), and are variance and trend in LAI time series (Fig. 7b,d); black dots are variance or 
trend estimated by PML using detrended LAI time series (Fig. 7a,c), and are variance and trend in detrended 
LAI time series (Fig. 7b,d). Red crosses are the variance or trend estimated by each CMIP5 model. The bottom, 
middle and top of each box are the 25th, 50th, and 75th percentiles, respectively, and the bottom and top whiskers 
represent the minimum and maximum values.
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Et trend of 0.72 mm year−2, which is partially counteracted by a negative Es trend of 0.32 mm year−2. These con-
trasting trends are primarily driven by the increasing trend in vegetation LAI.

There is a limitation in the PML model in that it does not directly account for the impact of enhanced CO2 
concentration on vegetation water use efficiency. To quantify this potential impact, we used the CABLE35 global 
land surface model which simulates changes in water use efficiency. The experiment was performed using the 
same forcing data, but with two CO2 concentration forcings: fixed CO2 concentration set at 1981 level, and annual 
CO2 concentration time series from 1981 to 2012. The CABLE simulations show that the change in vegetation 
water use efficiency due to increasing CO2 concentrations from 1981 to 2012 reduces Et by 0.17 mm year−2 and 
increases Es by 0.04 mm year−2, hence reducing ET by 0.13 mm year−2. The positive Et trend estimated by the PML 
model will therefore be smaller (by 20–30%) if the CO2 influence on vegetation water use efficiency is taken into 
account, but the PML result will still show the strong opposing trends in Et and Es.

We further explore the trends in PML ET components with simulations from the eight CMIP5 models that 
archive outputs of ET, Et and Es (Fig. 7c) over a common 1981–2005 period. All eight models show positive ET 
trend, with the PML estimate close to the median of the trend from the eight models. However, the CMIP5 mod-
els do not show the contrasting Et and Es trends, and generally simulate higher positive trend in Es than in Et. 
Possible reasons for this may include: (i) a more direct ET response to P in the CMIP5 models thereby implying 
an insufficient accounting of the vegetation and soil moisture buffering on ET in the CMIP5 models (as seen in 
the higher variance in ET and its components in the models (Fig. 7a)); and (ii) the limited number of CMIP5 
models used here (not all models archive all ET components, and there is possible inconsistency in the definition 
of ET components between models). Also for 1981–2005, we compare observed LAI with simulations from the 
five CMIP5 models that archived LAI. Results show that the five CMIP5 models overestimate inter-annual LAI 
variability (Fig. 7b) and do not optimally incorporate LAI to simulate ET components (Fig. 7c) though these five 
CMIP5 models simulate global LAI greening reasonably (Fig. 7d). Both these findings (i.e., assessing CMIP5 ET 
and LAI characteristics) suggest the need for better incorporating vegetation dynamics for land-atmospheric 
interactions in global earth system models to adequately predict future changes in the energy and water fluxes.

Methods
The PML model. At each grid cell, daily ET is the sum of Es, Et and Ei. The PML model estimates Es and Et 
according to10
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where ε =  s/γ, in which γ is the psychrometric constant and s =  de*/dT is the slope of the curve relating saturation 
water vapour pressure to temperature; ρis the density of air and c p is the specific heat of air at constant pressure; 
= ( ) −⁎D e T ea a a is the water vapour pressure deficit of the air (humidity deficit), in which ( )⁎e T a  is the satura-

tion water vapour pressure at air temperature and ea is the actual water vapour pressure; Ga is the aerodynamic 
conductance; Gc is the canopy conductance for transpiration; and f is the fraction of P to equilibrium soil evapo-
ration εAs/(1+ ε), estimated from the accumulated precipitation over the previous month11. A, the available 
energy absorbed by the surface (net absorbed radiation minus soil heat flux), is partitioned using LAI into canopy 
absorption (Ac) and soil absorption (As). Ei is modelled using an adapted version of the widely adopted Gash 
rainfall interception model, and assumes that the ratio between the wet canopy evaporation rate and the rainfall 
rate does not vary between storms36. ET estimated at a land grid cell is aggregated from ET estimated from each 
land cover type within the grid cell.

There is only one-free parameter, the maximum stomatal conductance ( gsx) to calculate Et in PML. The gsx was 
estimated for each land cover type using the trial-and-error method by comparing (1) modelled mean annual ET 
with water balance ET observations (mean annual P minus mean annual Q), and (2) modelled monthly ET with 
in situ flux tower ET measurements.

At the mean annual scale (1981–2012), the PML model is further constrained by the classic Budyko frame-
work, the Fu hydroclimatic model37 at each grid cell since PML is not constrained by mean annual water balances. 
The Fu model ensures that mean annual ET is always less than mean annual P for grid cells covered by non-crop 
vegetation. For cropland, mean annual ET can be larger than mean annual precipitation if irrigation uses ground-
water or water transferred from other basins. Therefore, in only those grid cells covered by non-crop vegetation, 
the three ET components were equally scaled to match the mean annual ET (1981–2012) estimated from the Fu 
model. There is one parameter β in the Fu model, which was calibrated against catchment ET observations.

Data. Meteorological forcings from 1981 to 2012 used to drive the PML model include daily precipitation, air 
temperature, vapour pressure, shortwave downward radiation, longwave downward radiation and wind speed. 
The forcings were obtained from two widely used datasets: the Princeton Global Forcing (PGF) data14,15 and the 
WATCH Forcing Data ERA-Interim (WFDEI) meteorological forcing data13.

Vegetation forcing data were obtained as follows. LAI data from 1981 to 2011 were obtained from Boston 
University (BU) dataset16. It was derived from the Advanced Very High Resolution Radiometer (AVHRR)-NDVI 
data. The temporal resolution for the BU dataset is half-monthly and its spatial resolution is 0.0833°. The LAI 
time series data in 2011 was used for 2012. Emissivity and albedo at 0.05° spatial resolution and 8-day resolution 
from 1981to 2012 were obtained from the Global Land Surface Satellite (GLASS) dataset38. The GLASS albedo 
product was produced from both AVHRR (1981–1999) and Moderate Resolution Imaging Spectroradiometer 
(MODIS) (2000–2012) data. The GLASS longwave emissivity product was generated from both AVHRR vis-
ible and near-infrared reflectance from 1981 to 1999 and MODIS seven black-sky albedos ranging from 2000 
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to 2012. The surface emissivity and mean daily air temperature, was used to estimate daily outgoing longwave 
radiation, Rlo. Static land cover for 16 land cover types based on the International Geosphere-Biosphere Program 
(IGBP) Data, generated using 2000–2001 MODIS data, were obtained from the Oak Ridge National Laboratory 
Distributed Active Archive Center39.

Validation datasets include catchment streamflow, fluxnet eddy covariance ET and over land microwave soil 
moisture. A total of 643 largely unregulated catchments with a widespread geographic distribution were selected 
to evaluate model performance at the mean annual scale. To exclude regulated catchments, major dam loca-
tions were obtained from three sources: (i) International Commission of Large Dams40; (ii) Meridian World 
Data (http://www.meridianworlddata.com/) and (iii) National Land and Water Resources Audit of Australia 
(http://www.nlwra.gov.au/). Daily streamflow data for the selected catchments was obtained from four sources: 
(i) the Global Runoff Data Centre (located in Germany, http://www.bafg.de/GRDC/EN/Home/homepage_node.
html); (ii) the Water Information Research and Development Alliance between CSIRO and Australian Bureau of 
Meteorology41; (iii) the Model Parameter Estimation Experiment (MOPEX)42 and (iv) the Chinese Academy of 
Sciences. Each catchment had at least 5 years of observations. Catchment mean annual ET values were estimated 
as mean annual P minus mean annual runoff (Q), assuming that changes in soil water storage are negligible in 
the long term43.

A total of 95 fluxnet towers were selected to evaluate model performance at monthly scale. Data for the 93 
towers were obtained from the LaThuile FLUXNET dataset. An additional two sites were obtained, one from the 
OzFlux and another from AmeriFlux. The selected sites span a wide range of climate regimes, covering a total 
of 11 vegetation types39. These include: grasslands (GRA), evergreen broadleaf forest (EBF), croplands (CRO), 
mixed forest (MF), evergreen needleleaf forest (ENF), wetlands (WET), open shrublands (OSH), deciduous 
broadleaf forest (DBF), savannas (SAV), woody savannas (WSA), and closed shrublands (CSH).

Each flux site meets the following criteria: (1) mostly homogeneous land cover at 1 km radius from the flux 
tower (checked with Google Earth); (2) daily energy balance closure of more than 75%; and (3) more than 2 years 
of daily data (during days with no precipitation) available. Note here that our evaluation compares the ETPML at 
0.50° spatial resolution (i.e., the resolution of the global forcing data) against ETflux representing ET from a radius 
of tens to hundreds of metres (depending on biophysical, atmospheric and instrumental characteristics).

Annual variation of ET and its components was validated against that of observed soil moisture in 
sparsely-vegetated regions. The observed soil moisture data were obtained from the radiometer Microwave 
Instrument on board NASA’s Tropical Rainfall Measuring Mission (TRMM) that started providing passive micro-
wave observations at 10.7 GHz (X-band) and eight higher frequencies including the 37 GHz (Ka) band from 
December 1997. The observations can be assimilated in a microwave radiation transfer model to infer soil mois-
ture, soil and canopy temperature and vegetation optical depth. We used the top soil moisture retrieved from the 
Land Parameter Retrieval Model44 based on L- and Ka-band brightness temperatures. The retrieved soil moisture 
represents the top few centimeters corresponding to 10.7 GHz (X-band). The platform TRMM covers regions 
between 40 °N and 40 °S. Due to the influence of dense vegetation, reasonable soil moisture retrievals over trop-
ical forests are not available and thus masked out45. The dataset used in this study was resampled to 0.50° spatial 
resolution and aggregated to monthly average for January 1998 to December 2012.

Modelling experiments. The PML model simulations used two forcing datasets (PGF and WFDEI). Four 
simulations were run as follows: (1)PML +  PGF; (2) PML +  WFDEI; (3) PML +  PGF (detrended LAI); (4) PML 
+  WFDEM (detrended LAI).

Simulations 1–2 were carried out using observed LAI time series, and simulations 3–4 were carried out by 
repeating the simulations 1–2 but using detrended LAI (i.e. removing the long-term trend, but allowing for 
sub-annual variation related to seasonal cycles). The difference between simulations 1–2 and simulations 3–4 is 
used to quantify the impacts of LAI change on trends and variability in ET and its components.

Statistical analysis. Annual variance in ET at each grid cell was partitioned into Et, Es and Ei components, 
and expressed as ( ) = ( ) + ( ) + ( ) + ( , ) + ( + , )Var ET Var E Var E Var E Cov E E Cov E E E2 2t s i i s i s t .  The 
Mann–Kendall Tau-b non-parametric test including Sen’s slope method46 was used for trend analysis and signif-
icance testing.
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