
Epigenetic silencing of microRNA-203 is
required for EMT and cancer stem cell
properties
Joseph H. Taube1,2,10, Gabriel G. Malouf3,4, Emily Lu5, Nathalie Sphyris1,2, Vidya Vijay1,2,
Priyanka P. Ramachandran1,2, Katumasa R. Ueno1, Sanchaika Gaur1, Milena S. Nicoloso6, Simona Rossi6,
Jason I. Herschkowitz7, Jeffrey M. Rosen7, Jean-Pierre J. Issa8, George A. Calin6, Jeffrey T. Chang5,9

& Sendurai A. Mani1,2,10

1Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,
2Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, 3Department of Leukemia,
The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, 4Department of Medical Oncology, Hôpital de la
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The epithelial-mesenchymal transition (EMT) imparts metastatic competence on otherwise non-metastatic
cancer cells through decreased inter-cellular adhesions, increased migratory capacity, stem cell properties
and anoikis and chemotherapy resistance. In this study, we profiled changes in microRNA expression
during EMT in conjunction with changes in DNA methylation at microRNA promoters to discover essential
mediators of EMT-imparted stemness properties. MicroRNA-203 (miR-203) expression is repressed
following EMT induced by multiple different stimuli and in established claudin-low cell lines as well as the
CD44hi/CD24lo stem cell-enriched fraction. Expression of miR-203 in mesenchymal cells compromises
migratory and invasive capacity in vitro, and tumor initiation and metastasis in vivo. Unexpectedly,
miR-203 expression affects the sphere-forming capacity of neighboring cells by indirectly enhancing
expression of DKK1, a secreted inhibitor of Wnt signaling and stemness resulting in suppression of
b-catenin protein levels. Our data suggest that restoring miR-203 expression levels may inhibit metastasis
and combat deregulated Wnt signaling.

T
he epithelial-mesenchymal transition (EMT) is a complex series of profound morphological changes that
culminates in the loss of epithelial characteristics and the acquisition of a mesenchymal motile phenotype. In
the context of cancer, EMT facilitates the dissemination of cancer cells and endows them with properties

essential for metastasis including stemness, invasiveness, and the ability to survive in the circulation and seed a
secondary site1–4. The reversal of EMT–known as mesenchymal-epithelial transition (MET)–is also an integral
part of the metastatic cascade, in particular the last steps: colonization and establishment of macroscopic tumors
at distant sites5,6. Due to their dynamic nature and reversibility, epigenetic alterations are proposed to facilitate
EMT, MET and metastasis7. Indeed a number of epigenetic regulators are known to functionally regulate genes
important for an EMT8. For instance, HDAC3, which deacetylates H3K4, acts preferentially upon EMT marker
genes downstream of a hypoxia-induced EMT9. The removal of this repressive mark (H3K4ac) is balanced by
methylation of this residue leading to activation of EMT marker genes. Additionally, a TGF-b induced EMT leads
to increased expression of the histone demethylase LSD1 (KDM1), which plays a role in E-Cadherin (CDH1)
repression through interaction with the EMT-promoting, transcription factor Snail10.

In addition to histone modification, DNA methylation of key genes facilitates an EMT11. Hypermethylation of
the CDH1 promoter is associated with cancer progression in multiple tumor types12,13. Several microRNAs
(miRNAs) are known to play important roles in regulating EMT and cancer stem cell (CSC) properties during
cancer progression14,15. Moreover, epigenetic regulation also impacts microRNAs that regulate gene networks
involved in EMT. In particular, the miR-200 family of miRNAs, which target the EMT-inducing transcription
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factors Zeb1 and Zeb216–18, is repressed by DNA methylation and
histone modifications following an EMT and during the early stages
of carcinogenesis19–21. In prostate cancer, the survival-associated
miR-23b is also repressed by DNA methylation which relieves its
repression of the proto-oncogene Src kinase22.

To discover novel methylation-regulated mediators of EMT and
stem cell properties, we performed analyses to identify microRNAs
which are regulated by DNA methylation and which regulate EMT-
derived stemness properties. We found that the promoter of
microRNA-203 (miR-203)–a known regulator of skin cell differenti-
ation23,24–is methylated significantly in cells that have undergone
EMT due to Twist expression and that its downregulation facilitates
the gain of EMT/stemness properties. Thus, activating miR-203–
either epigenetically or by other means–may inhibit invasion and
metastasis.

Results
MiR-203 expression is downregulated via promoter methylation.
To examine epigenetic regulation and in particular, the role of DNA
methylation in regulating the expression of microRNAs during an
EMT, we analyzed global changes in DNA methylation by genome-
wide digital restriction enzyme (DREAM) assay using immortalized
human mammary epithelial cells (HMLE)25 and HMLE cells induced
to undergo EMT through overexpression of the transcription factor
Twist (HMLE-Twist)26. In parallel, we also conducted a microRNA
microarray using the same cells and found multiple microRNAs up-
and down-regulated consistently in the EMT-induced, HMLE-Snail,
-Twist, -TGFbeta, and -Gsc cells (Fig. 1a).

Among the differentially expressed miRNAs, in cells that had
undergone an EMT (Fig. 1a), we found a 10-fold gain in DNA
methylation at the promoter of microRNA-203 (miR-203) (Quad-
rant 1) which stood out among other microRNAs which had little to
no change in DNA methylation (Quadrants 2 and 3) (Fig. 1b) com-
pared to HMLE control cells (Fig. 1b). Additionally, among those
microRNAs which acquired DNA methylation in HMLE Twist cells
compared to HMLE control cells (Fig. S1a), only miR-203 expression
changed in response to exposure to the DNA demethylating agent 5-
azacytidine (5-azaC) (Fig. S1b). Based on these findings, we further
tested the role of epigenetically regulated miR-203 in EMT and stem
cell properties. Importantly, we also found that miR-203 is strongly
downregulated in cells induced to undergo EMT by other stimuli
including overexpression of Snail or TGF-b1 in addition to Twist
(Fig. 1c). In addition, we examined a patient-derived panel of breast
cancer cell lines for the expression of miR-203. We found that, as in
Park et al.16, the expression of miR-203 is higher in more dif-
ferentiated, epithelial-appearing, luminal cancer cell lines (MCF-7
and T47D) compared to the less differentiated and mesenchymal-
appearing, EMT/CSC enriched claudin-low cancer cell lines
(Hs578T, MDA-MB-231 and SUM159) (Fig. 1d). Finally, we ana-
lyzed the expression of miR-203 in the stem cell-enriched CD44hi/
CD24lo fraction relative to the CD44lo/CD24hi fraction isolated
from HMLE cells. Consistent with our previous results, we found
that miR-203 expression is significantly lower in the mesenchymal,
stem cell-enriched CD44hi/CD24lo subpopulation (Fig. 1e) com-
pared to the CD44lo/CD24hi differentiated cell fraction. Collec-
tively, these data indicate that the miR-203 promoter is highly
methylated in Twist expressing mesenchymal cells and its expression
is downregulated in cells induced to undergo EMT as well as in EMT/
CSC enriched claudin-low tumors.

We next ascertained the functional relevance of DNA methylation
in the promoter of miR-203 to its reduced expression. To test this, we
treated HMLE-Snail and -Twist cells as well as a number of breast
cancer cell lines either with an epithelial phenotype (MCF7), or with
EMT/CSC properties including SUM159 and Hs578t, with the DNA
methylation inhibitor 5-azaC. Strikingly, in all the cell lines, we found
that miR-203 is re-expressed between four and seven fold excepting

MCF7, which already expresses a high level of miR-203 (Fig. 2a).
Analysis of expression of 5 other microRNAs revealed that they are
not uniformly affected by 5-azaC treatment (Fig. S1b). To further
extend our findings, we analyzed the methylation status of miR-203
in human tumors using The Cancer Genome Atlas (TCGA).
Remarkably, we found that methylation at the miR-203 promoter
is significantly higher in triple-negative breast cancers relative to the
rest of the tumor subtypes (Fig. 2b). These findings suggest that DNA
methylation is one of the major drivers for the suppression of miR-
203 expression following the induction of EMT as well as in cancer
cells with increased EMT/CSC properties including the triple nega-
tive breast cancers.

Restoring miR-203 expression induces differentiation and
suppresses mesenchymal and stem cell attributes. Since the EMT
process is known to promote migration and invasion, we investigated
the effect of restoring miR-203 expression on EMT properties. For
this, we overexpressed miR-203 both in cells induced to under-
go EMT (HMLE-Twist) as well as in a mesenchymal-appearing
established breast cancer cell line (SUM159) using a retrovirus. In
order to ensure that the overexpression of miR-203 did not affect
either the cellular microRNA processing machinery or the levels of
other processed microRNAs, we analyzed a spectrum of microRNAs
by qRT-PCR and found that the overexpression of miR-203 did not
alter either the expression of abundant or rare miRNAs (Fig. S2).
Furthermore, overexpression of miR-203 did not impact cell growth
in 2D cultures, in contrast to previous reports that miR-203 affects
cell proliferation in other contexts27 (Fig. S3). Overexpression of
miR-203 in SUM159 cells partially altered the mesenchymal mor-
phology resulting in epithelial-looking cells (Fig. 3a) and reduced the
expression of select mesenchymal markers such as N-cadherin and
vimentin while not affecting fibronectin expression (Fig. 3b). To test
the effect of miR-203 expression on migration and invasion, we
performed in vitro wound closure and Boyden-chamber invasion
assays. In concert with the observations of others that miR-203
expression is lost at the invasive front of certain cancers28, we
found that miR-203 inhibited wound closure by 1.4-fold as well as
the ability of cells to invade through a transmembrane by 1.4-fold
relative to control vector-transduced counterparts (Fig. 3c,d).

Since EMT and stem cell properties are interconnected, we also
assessed the impact of miR-203 on CSC properties. For this, we
performed a mammosphere assay, an in vitro surrogate assay of
the self-renewal capabilities of mammary stem and progenitor
cells29,30. Strikingly, we observed that the overexpression of miR-
203 in HMLE-Twist cells as well as in SUM159 and Hs578t breast
cancer cell lines reduced mammosphere formation by 2- to 6-fold
(Fig. 3e/f, Fig. S4). In addition, overexpression of miR-203 doubled
the proportion of differentiation-associated CD24-positive cells (Fig.
S5) relative to vector-transduced SUM159 cells. Since we previously
observed that the inhibition of DNA methylation using 5-azaC
resulted in increased miR-203 expression, we also assessed whether
restoration of miR-203 expression by 5-azaC treatment could recap-
itulate the impact of exogenous miR-203 overexpression on sphere
formation. For this, we treated SUM159 cells with the DNA methy-
lation blocker 5-azaC for 8 days followed by 48 hours in the absence
of drug. As expected, drug-treated cells expressed higher level of
miR-203 (Fig. 2a) and lost the ability to form spheres compared to
vehicle treated cells (Fig. 3g). Additionally, we analyzed the gene
expression signature of miR-203-overexpressing SUM159 cells and
found that it associated more closely with gene expression profiles
derived from differentiated as opposed to ES, or iPS cells (Fig. 3h).

Both tumor formation and dissemination of cancer cells depend
on EMT and CSC properties31. Therefore, a crucial test for the sup-
pressive effect of miR-203 expression on stem cell properties is its
ability to inhibit tumor formation in limiting dilution tumor ini-
tiation assays. Indeed, we found that as few as 104 SUM159 control
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Figure 1 | Low miR-203 expression is associated with EMT, claudin-low breast cancer and stem-like cells and the promoter of miR-203 is methylated in
HMLE-Twist. (a) A microarray was performed to gauge changes in microRNA expression due to EMT induction in HMLE cells by Snail, Twist,

Goosecoid or TGF-b1 overexpression. MicroRNAs with greater than 2-fold change in any at least two of the indicated cell lines are plotted. (b) DNA

methylation levels at CpG islands were determined by DREAM analysis of HMLE and HMLE-Twist cells. MiRNAs for which microarray-derived

expression data is available are color-coded to indicate the direction of their expression change after an EMT. (c/d) Relative levels of miR-200c and miR-

203 were determined in cell lines induced to undergo EMT (c) and in established breast cancer cell lines (d) by qRT-PCR. (e) HMLE cells were FACS-

sorted for CD44 and CD24. Relative levels of miR-200c and miR-203 were measured by qRT-PCR in the two subpopulations.
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cells were sufficient to form tumors within 60 days, whereas 2 3 106

SUM159 cells expressing miR-203 were necessary to form tumors
within the same timeframe (Fig. 4a). Furthermore, 5 3 106 vector-
transduced SUM159 cells grew palpable tumors within 20 days, while
the same number of miR-203 expressing SUM159 cells took more
than 60 days to form a palpable tumor (Fig. 4b), despite equivalent
levels of luciferase activity observed at the time of inoculation of these
cells into the mammary fat-pad (Fig. S6). Injection of 2 3 106 cells
yielded similar results whereupon vector-transduced cells formed
tumors between 30 and 40 days and miR-203 expressing SUM159
cells failed to form tumors up to 100 days after injection (Fig. 4c).
Through extreme limiting dilution analysis32, we found that the
tumor initiating cell frequency for the vector-transduced cells is 1/
498,752 whereas the frequency for the miR-203 transduced cells
is 1/7,560,563 (x2

1 5 44.2, P , .0001) (Fig. 4a). These findings show
that stable expression of miR-203 dramatically decreases tumor
formation and latency of the tumorigenic breast cancer cell line
SUM159.

Since EMT is known to facilitate and regulate metastasis, we also
evaluated the effect of miR-203 expression on experimental meta-
stasis. For this, we injected 1.5 3 106 luciferase-labeled SUM159 cells
expressing either miR-203 or the control vector into mice via the tail
vein. We found that mice injected with the vector-transduced cells
developed metastases within 4–5 weeks, at which time the mice were
sacrificed. Conversely, mice injected with miR-203 expressing cells
failed to develop metastases in the lung even after 15 weeks (Fig. 4d).
Consistent with this, a recent report indicated that metastasis-prone
Lewis lung carcinoma cells express low levels of miR-20333.
Collectively, these data demonstrate that expression of miR-203 pro-
motes differentiation and lends strong support for the potential use
of miR-203 as a therapeutic agent to promote differentiation.

Microarray analysis reveals novel putative miR-203 downstream
targets. In order to investigate the molecular pathways downstream
of miR-203 that potentially mediate its effects, we performed gene
expression arrays using miR-203 expressing SUM159 cells relative to
vector-transduced control counterparts. To identify the genes that
mediate the effect of miR-203 downregulation during an EMT, we
focused on genes which are highly downregulated in miR-203 ex-
pressing cells and at the same time, are upregulated in cells induced
to undergo EMT in response to multiple different EMT-inducing
stimuli, using the EMT core signature reported previously34. With
these selection criteria, we found that overexpression of miR-203
reduces the expression of 112 genes by at least 1.5 fold and that
only 8 out of these 112 genes are also upregulated following EMT
in the EMT core signature (Fig. 5a). Next, we confirmed the negative
effect of miR-203 on expression of these genes by quantitative RT-
PCR. Among these eight genes, we confirmed downregulation of five
genes (and only two to a significant degree) following miR-203
expression (Fig. 5b) and that three of these five downregulated
genes contain interaction sites for miR-203 in their 39UTR’s by
miRanda (Fig. 5c)35. Next, we knocked down the five miR-203
downregulated genes using shRNA in SUM159 cells and found
that a decrease in three of these genes (NEBL, PPAP2B and TFPI)
was able to significantly reduce sphere formation (Fig. 5d), pheno-
copying the effect of miR-203, while knockdown of the other genes
did not affect sphere formation. Interestingly, expression of one of
these genes (TFPI) is significantly higher in the mesenchymal-like,
claudin-low breast cancer subtype. Nevertheless, re-expression of
these genes was not sufficient to rescue the effect of miR-203 on
sphere formation (data not shown) suggesting that the moderate
suppression of multiple genes by miR-203 is responsible for the
decreased stemness phenotype.
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Paracrine effects of miR-203 via the secreted factor DKK1 affects
b-catenin. We next tested whether the suppressive effect of miR-203
on sphere formation was intrinsic to the cell in which it is expressed
or if expression of miR-203 could lead to suppressive effects on
neighboring cells in a paracrine fashion. For this, we labeled con-
trol and miR-203 expressing cells with GFP and RFP respectively and
mixed an equal number of these cells under normal cell culture
conditions. Similar to culturing of these cells individually (Fig. S3),
there was no significant difference in their representation up to 45
hours after plating (Fig. 6a). It is known that cells with stem cell
properties are capable of surviving better in suspension culture
relative to more differentiated cells36. To investigate whether miR-
203 expressing cells undergo differentiation and are unable to evade
anoikis and thus survive less well in suspension, we mixed GFP-labeled
miR-203 cells and RFP-labeled control cells in a 151 ratio and cultured
them in suspension using agar coated plates. Remarkably, the number
of viable miR-203 expressing cells decreased to less than a third within
45 hours (Fig. 6b). In order to ensure that the effect that we observed is
not due to the GFP or RFP, we reversed the color labels and observed
similar results (data not shown). These findings indicate that,
consistent with our earlier observation, overexpression of miR-203
induces differentiation and reduces stem cell properties.

Similar to our earlier observation, the RFP-labeled miR-203
expressing cells formed significantly fewer spheres relative to vec-
tor-transduced cells (Fig. 6c). Moreover, when we mixed RFP-labeled
miR-203 expressing cells (500 cells) with GFP-labeled vector-trans-
duced cells (500 cells), we observed entire spheres made of either
RFP1 or GFP1 cells even though both GFP and RFP labeled cells
were mixed together for this assay. This is due to the presence of
methylcellulose. However, relative to control vector-transduced
SUM159 cells cultured alone, we observed at least a 1.4 fold reduction
in the number of spheres formed by these control cells when miR-203
expressing cells were added to the culture (Fig. 6d). Notably, revers-
ing the color labeling did not change the outcome (data not shown).
These results suggest that the miR-203 expressing cells reduce the
sphere forming ability of control cells in co-culture conditions,
potentially in a paracrine manner. Analysis of our microarray data
revealed that expression of the Wnt antagonist DKK137,38 was sig-
nificantly higher in miR-203 expressing SUM159 cells (Fig. 6e). To
test whether DKK1 could inhibit sphere formation, we treated par-
ental SUM159 cells with recombinant DKK1 and found that the
sphere formation decreased by nearly two fold (Fig. 6f). As DKK1
inhibits Wnt signaling by preventing Frizzled-Wnt-LRP6 com-
plex formation leading to decreased b-catenin stability39, we next
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examined the effect of miR-203 expression on b-catenin expression
by Western blot and immunofluoresence. Indeed we found that b-
catenin expression was decreased in SUM159 cells expressing miR-
203 compared to vector-transduced cells (Fig 6g/h). Together, these
results indicate that miR-203’s paracrine effect on stemness prop-
erties is mediated, at least in part, through inhibition of the Wnt
signaling pathway.

Discussion
The role of EMT in cancer progression is becoming increasingly well
understood40. In addition to cellular detachment and increased
migratory capacity, EMT has also been correlated with the
acquisition of stemness properties that contribute to metastatic

competence4,41. However, molecules that function downstream of
multiple EMT pathways and that contribute specifically to a gain
in stemness properties have not yet been uncovered. A Snail- or
Twist- induced EMT leads to profound changes in gene expression
and cellular behavior26,34 including the repression of the miR-200
family of microRNAs, which are linked to both the EMT and stem-
ness properties42,43. However, we observed that miR-203, which is
repressed to an even greater degree than miR-200 family members, is
linked directly to the EMT-generated stemness properties.

Prior studies have linked the loss of miR-203 expression to stem
cell properties and EMT in several contexts27,28,44–46. However, our
study is the first to show: 1) miR-203 silencing via DNA methylation
in breast cancer cell lines 2) the ability of miR-203 to markedly
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reduce tumor initiation in breast cancer cell lines and 3) the ability of
miR-203 to upregulate DKK1 and downregulate b-catenin express-
ion and thereby affect the stemness properties of neighboring cells.
While miR-203 has been shown to reduce the expression of a number
of targets in other contexts (most notably p63, Bmi1 and Snai2)23,42,44,
the expression of these genes was not affected by expression of miR-
203 in HMLE Twist or SUM159 cells. MicroRNA target selection
depends on the profile of expressed mRNAs in a particular cell. In
SUM159 breast cancer cells miR-203 affects a unique gene set leading
to upregulation of the Wnt inhibitor DKK1, seemingly indepen-
dently of its effects on other established targets.

Herein, we describe how suppression of miR-203, downstream of
an EMT, is essential for stemness properties, yet largely independent
of other mesenchymal attributes. This is significant as recent work
has demonstrated that EMT reversal is important for the final step in
the metastatic cascade, namely the progression of micrometastases to
macrometastatic nodules5,47. Therefore, therapies focused on a com-
plete reversal of EMT may inadvertently promote the growth of
nascent micrometastases. Instead of complete EMT reversal, expres-
sion of miR-203 in mesenchymal cells affects only select properties.
Collectively, the repression of miR-203 in EMT/CSC-enriched cell
lines as well as triple-negative breast tumors and the ability to restore
its expression following treatment with 5-azaC in HMLE-Snail and
-Twist cells–despite the continued expression of Snail or Twist–
suggest that miR-203 expression is downregulated epigenetically
by methylation of its promoter. This could lead to the use of

miR-203, or epigenetic therapy to relieve miR-203 repression, as a
selective inhibitor of stemness properties in cancer treatment.

Methods
MicroRNA microarray, data processing, and statistical methods. Quantification of
microRNA expression by microarray was performed as in48. Briefly, 5 mg of RNA
from each cell type was labeled with biotin and hybridization was carried out on a
miRNA-chip (ArrayExpress accession number A-MEXP-25849), which contained
238 probes for mature miRNA and 143 probes for precursor miRNAs.
Hybridization signals were detected by biotin binding of a Streptavidin-Alexa647
conjugate (one-color signal) using a GenePix 4000B scanner (Axon Instruments).
Images were quantified using the GenePix Pro 6.0 (Axon Instruments). Raw data
were analyzed in BRB-ArrayTools developed by Dr. Richard Simon and
Amy Peng Lam (Version: 3.6.1,May 2008; National Cancer Institute) http://
linus.nci.nih.gov/BRB-ArrayTools.html. Probes were normalized over the entire
array. A two-sample T-test (with random variance model) was used to analyze each
comparison.

The ELDA webtool was used to perform extreme limiting dilution analyses. Unlike
the standard least squares regression approach, the maximum likelihood (ML)
method underlying ELDA does not ignore 0% or 100% positive cultures as often
appear in limiting dilution assays. ELDA computes a maximum likelihood estimate
and 95% confidence interval for the active frequency of tumor initiating cells in
defined cell populations and performs a diagnostic test on the assumed Poisson
single-hit model.

Cell culture and drug treatments. Immortalized human mammary epithelial cells
(HMLE), including cells expressing the empty vector (pWZL), Snail, Twist,
Goosecoid or TGF-b1 were maintained as in4. Established human breast cancer cell
lines were cultured in cell specific media as in 5-azacytidine (5-azaC; Sigma) was used
at a concentration of 10 mM, dissolved as per manufacturer’s instructions.
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DNA methylation analysis. DREAM was performed as reported previously50.
Briefly, genomic DNA was sequentially digested with a pair of enzymes recognizing
the same restriction site (CCCGGG) containing a CpG dinucleotide. The first
enzyme, SmaI, cuts only at unmethylated CpG and leaves blunt ends. The second
enzyme, XmaI, is not blocked by methylation and leaves a short 59 overhang. The
enzymes thus create methylation-specific signatures at the ends of digested DNA
fragments. These are deciphered by next generation sequencing using the Illumina
Gene Analyzer II and Hiseq2000 platforms. Methylation levels for each sequenced

restriction site are calculated based on the numbers of DNA molecules with the
methylated or unmethylated signatures. Overall, we acquired around 36 million
sequence tags per sample that were mapped to unique CpG sites in the human
genome using hg18 version. Details of the DREAM method were previously
reported in50.

Antibodies, immunoblotting, immunofluoresence and flow cytometry.
For immunoblotting, proteins were extracted by lysing cells in ice-cold
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radio-immunoprecipitation (RIPA) buffer containing protease and phosphatase
inhibitors (Roche). Protein was quantified using the Bradford Assay (BioRad). Cell
lysates (50 mg) were resolved using SDS-PAGE and transferred to PVDF membranes.
Membranes were probed with primary antibodies against fibronectin (BD
Biosciences), vimentin (Neomarkers) and b-actin (Abcam). Immunofluoresence was
performed as described in4 with anti-b-catenin (BD Biosciences). Fluorescence
activated cell sorting for CD44 and CD24 cell surface marker expression was
performed as described in4 using the Flow Cytometry and Cellular Imaging Facility at
MD Anderson Cancer Center.

microRNA and mRNA quantitation and statistical methods. RT-PCR for
microRNAs was performed using miR-specific primers from Applied Biosystems.
Quantitative PCR was performed on an Applied Biosystems Viia7 using SYBR for
mRNAs and Taqman for microRNAs. All experiments were performed with at least
three biological replicates with at least three technical replicates each and the results
are reported as the mean of the biological replicates plus or minus the standard error
of the mean. In all cases *** denotes p , 0.001, ** denotes p , 0.01, and * denotes
p , 0.05.

Microarray. For changes in mRNA expression we harvested RNA using Trizol
(Ambion). Reverse transcription, hybridization to the Human Genome U133 Plus 2.0
microarray (Affymetrix) and image processing were performed by SeqWright Inc,
Houston, TX. Data from this microarray is available at GSE50697.

Growth, migration and invasion assays. Cell growth rates were determined by
counting cells after the indicated number of days in culture. For migration cells were
serum-starved overnight and scratch wounds were created using a sterile pipette tip
on the cell monolayer. The distance between the two edges at multiple points was
quantified using Photoshop CS4 (Adobe) at the indicated timepoints. For invasion,
the number of cells invaded through a PET track-etched membrane towards serum-
containing media was quantified by staining with methylene blue.

Sphere and non-adherent culture. Mammospheres were grown as in29,30. Spheres
larger than 50 micrometers were counted. For measuring cell survival under non-
adherent conditions, plates were coated with 1% agarose and cells were plated in their
own media. The proportion of surviving RFP1 and GFP1 cells was determined by
FACS. In co-culture experiments, we used the number of spheres formed by each cell
line on their own to calculate the expected number of spheres from co-culture of the
labeled cells.

Animal studies. NOD/SCID mice were purchased from the Jackson Laboratory
(Maine, USA). All mouse procedures were approved by the Animal Care and Use
Committees of MD Anderson Cancer Center under protocol #10-10-08531 and
performed in accordance with institutional policies. For xenograft tumor-initiation
studies, luciferase-labeled cells suspended in DMEM were mixed 151 with matrigel
and then injected into the inguinal or thoracic fat pads of NOD/SCID mice. For
experimental metastasis studies, luciferase-labeled cells were suspended in PBS for
tail vein injection. Mice were assessed periodically for tumor growth via the
intraperitoneal injection of D-Luciferin (Caliper LifeSciences) at 150 mg/kg in PBS
and bioluminescent imaging using the IVIS imaging system 200 series (Xenogen
Corporation). All mice were monitored for tumor growth and lung metastasis. Once
mammary gland tumors reached 1.5 cm in diameter, mice were euthanized and their
organs harvested and fixed using Bouin’s fixative.

Associations with differentiated cell gene expression and triple negative breast
cancer. To evaluate the methylation of the miR-203 promoter in breast cancer, we
acquired the methylation data (Illumina Human Methylation 450 array) for 672
breast tumor samples in TCGA by downloading the beta values (a measure of the
percent methylation) processed by the Broad Firehose pipeline. We distinguished the
tumors into ones that are triple-negative and others using the clinical annotations
provided by the TCGA. Then, using annotations from Illumina, we identified the
probes targeting the region upstream of the miR-203 transcription start site. We
compared the methylation levels of the triple negative and non-triple negative tumors
using a two-sided t-Test with unequal variance.

To score the association of miR-203 with stem cells, we generated a gene expression
signature that consists of the genes with at least a 2-fold change in gene expression and
are correlated with the expression of miR-203. Using a SAM analysis51 we found 66
genes that are positively correlated with miR-203, and 65 negatively correlated genes.
Then, we collected data from the Gene Expression Omnibus 25 Affymetrix gene
expression data sets that contained both differentiated cells and either embryonic
stem (ES) or induced pluripotent stem (iPS) cells. We preprocessed each data set with
RMA and normalized each gene to mean 0 and variance 1. Then, to derive the miR-
203 score, we averaged the positively correlated genes with the inverse of the nega-
tively correlated genes. We compared the miR-203 scores of the differentiated cells
and stem cells using a t-Test with unequal variance.
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