
Data Descriptor: Transcriptomic
analyses of murine ventricular
cardiomyocytes
Morgan Chevalier1,*, Sarah H. Vermij1,*, Kurt Wyler2, Ludovic Gillet3,4, Irene Keller5 &
Hugues Abriel1

Mice are used universally as model organisms for studying heart physiology, and a plethora of genetically
modified mouse models exist to study cardiac disease. Transcriptomic data for whole-heart tissue are
available, but not yet for isolated ventricular cardiomyocytes. Our lab therefore collected comprehensive
RNA-seq data from wildtype murine ventricular cardiomyocytes as well as from knockout models of the ion
channel regulators CASK, dystrophin, and SAP97. We also elucidate ion channel expression from wild-type
cells to help forward the debate about which ion channels are expressed in cardiomyocytes. Researchers
studying the heart, and especially cardiac arrhythmias, may benefit from these cardiomyocyte-specific
transcriptomic data to assess expression of genes of interest.
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Sample Characteristic(s) Mus musculus • cardiac muscle fiber
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Background & Summary
In this study, we present next-generation RNA sequencing (RNA-seq) data of murine ventricular
cardiomyocytes (CMC). To date, only whole-heart RNA-seq data have been published1–3, in which a
variety of cell types, such as fibroblasts, endothelial cells, and atrial and ventricular cardiomyocytes, are
pooled. We endeavoured to provide RNA-seq data of isolated CMCs for several reasons. Firstly, since the
pump function of the heart relies on proper CMC function, CMCs are the most thoroughly studied
cardiac cell type. Researchers studying CMCs may benefit from CMC-specific RNA-seq data from which
expression of genes of interest can be extracted. Secondly, because of the crucial role of ion channels in
cardiac electrical excitability and arrhythmogenesis, researchers that study cardiac arrhythmias have
debated the question of which ion channels are expressed in CMCs. However, existing ion channel
expression data are low-throughput, often contradictory4–6, fragmented7, or expression is assessed in the
whole heart. The present work reveals the expression of the more than 350 ion channel family members,
including pore-forming and auxiliary subunits, in CMCs (see Fig. 1 and Tables 1–3 (available online
only)). We therefore believe that these data will be valuable for ion channel researchers attempting to
resolve the ongoing debate.

We have also included cardiac-specific knockout models of the ion channel regulators dystrophin,
synapse-associated protein-97 (SAP97), and calmodulin-activated serine kinase (CASK). They interact
with ion channels and modify their cell biological properties, such as membrane localization3,8–11.
Notably, CASK provides a direct link between ion channel function and gene expression. It regulates
transcription factors (TFs) in the nucleus, such as Tbr-1, and induces transcription of T-element-
containing genes12. CASK also regulates TFs of the basic helix-loop-helix family, which bind E-box
elements in promoter regions, by modulating the inhibitor of the DNA-binding-1 TF13. Additionally,
CASK and SAP97 directly interact with each other11. For these reasons, we include CASK, SAP97, and
dystrophin knockout mice to investigate whether these three proteins have a similar effect on gene
expression, which may suggest their involvement in similar pathways. However, research beyond the
scope of this paper would be needed to determine whether CASK-dependent TF regulation caused the
differential expression that we observed.

To date, mutations in approximately 27 ion channel genes have been associated with cardiac
arrhythmias, such as congenital short- and long-QT syndrome (SQTS and LQTS), Brugada syndrome
(BrS), and conduction disorders (see http://omim.org)14–16. Notably, our ion channel expression data, as
presented in Fig. 1 and Tables 1–3 (available online only), reveal that several arrhythmia-associated ion
channel genes are not or are scarcely expressed in murine ventricular CMCs (including Kcne2, Kcne3,
Scn2b, and Scn3b). Although murine and human ion channel expression may differ, we are presently
unaware of any available transcriptome of human CMCs17,18. We are also unable to either exclude or
assess the effect of enzymatic isolation on the transcriptome. Finally, other cardiac cell types such as
(myo)fibroblasts may express these ion channels and therefore may be important for arrhythmogenesis.
Indeed, many ion channel genes that are not expressed in cardiomyocytes have been reported in murine
whole-heart tissue2. These include Scn1a, Scn3b, 10 voltage-gated Ca2+ channels, 10 Kv channels, and
four two-pore K+ channels. Conversely, all ion channel genes expressed in CMCs are also reported in
whole-heart expression data.

In sum, this study presents RNA-seq data from wildtype murine ventricular CMCs, as well as from
SAP97, CASK, and dystrophin knockouts and controls (see Fig. 2 for a schematic overview of study
design). We performed differential gene expression analysis to compare the knockouts to their controls,
and we extracted wildtype ion channel gene expression data (Tables 1–3 (available online only), Fig. 1).
We believe that these data will be valuable for researchers studying cardiomyocytes and ion channels to
assess expression of genes of interest.

Methods
Mouse models
All animal experiments conformed to the Guide to the Care and Use of Laboratory Animals (US National
Institutes of Health, publication No. 85-23, revised 1996); have been approved by the Cantonal
Veterinary Administration, Bern, Switzerland; and have complied with the Swiss Federal Animal
Protection Law. Mice were kept on a 12-hour light/dark cycle. Lights were on from 6:30 AM to 6:30 PM.
To avoid the influence of circadian rhythm, mice were sacrificed between 10:00 AM and 1:00 PM. Mice
were all male and were between the ages of 8 and 15 weeks.

MHC-Cre. The cardiac-specific murine alpha-myosin heavy chain (μMHC) promoter drives the
expression of Cre recombinase, which, in turn, can recombine LoxP sequences. The μMHC-Cre strain
was generated as previously described19 and acquired from the Jackson Laboratory (stock #011038).

CASK and SAP97 knockout mice. CASK KO and SAP97/Dlg1 KO mice were generated as previously
described9,20. Both the CASK and SAP97 mouse lines were on mixed backgrounds. The appropriate
control mice were selected in accordance with the publications that characterized both mouse lines9,20.
CASK control mice express Cre while the first CASK exon is not floxed. SAP97 control mice are Cre-
negative and the first SAP97 gene was floxed.
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Figure 1. Gene expression of ion channels in murine ventricular cardiomyocytes. (a) Expression levels of

voltage-gated ion channel genes: voltage-gated sodium channels (Na+; purple), voltage-gated calcium channels

(Ca2+; blue), transient receptor potential cation channels (TRP; light blue), CS, CatSper channels (aqua), two-

pore channels (2P; green), cyclic-nucleotide-regulated channels (cN; light green), calcium-activated potassium

channels (KCa; ochre), voltage-gated potassium channels (K+; orange), inwardly rectifying potassium channels

(Kir; red) and two-pore potassium channels (2PK; burgundy). (b) Expression levels of the ligand-gated

purinergic receptor gene (PR; purple) and of ion channel genes from the “other” category: aquaporins (Aqp;

blue), voltage-sensitive chloride channels (Cl-; light blue), calcium-activated chloride channels (CaCl-; green)

and inositol triphosphate receptors (IP3; light green). (c) Expression levels of more ion channel genes from the

“other” category: ryanodine receptors (Ryr; orange), gap junction proteins (GJ; red) and chloride intracellular

channels (icCl-; burgundy). All expression levels are average TPM values of WT samples (n= 5). Shown

are genes with more than 75 reads per gene (normalized for gene length, prior to conversion to TPM) from

Tables 1–3 (available online only).
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Dystrophin knockout (MDX-5CV) mice. The MDX-5CV strain demonstrates total deletion of the
dystrophin protein. It was created as previously described21, and acquired from the Jackson laboratory
(stock #002379). MDX mice were on pure Bl6/Ros backgrounds. Control mice were on pure Bl6/J
background, except for MDX_Ct5 and MDX_5, which were Bl6/Ros mice backcrossed three times
on Bl6/J.

Cardiomyocyte isolation
Mice (n= 3–5 per genotype, male, age 10–15 weeks) were heparinized (intraperitoneal injection of 100 μL
heparin (5000 U/mL; Biochrom AG)) and killed by cervical dislocation. Hearts were excised, and the
aortas were cannulated in ice-cold phosphate-buffered saline (PBS). Subsequently, hearts were perfused
on a Langendorff system in a retrograde manner at 37 °C with 5 mL perfusion buffer (1.5 mL/min; in
mM: 135 NaCl, 4 KCl, 1.2 NaH2PO4, 1.2 MgCl2, 10 HEPES, 11 glucose), followed by the application of
type II collagenase (Worthington CLS2; 25 mL of 1 mg/mL in perfusion buffer with 50 μM CaCl2). Left
and right ventricles were triturated in PBS to dissociate individual ventricular cardiomyocytes and then
filtered through a 100 μm filter.

RNA extraction and sequencing
RNA-seq was performed by the Next Generation Sequencing Platform at the University of Bern. Total
RNA was isolated from freshly dissociated cardiomyocytes with an FFPE Clear RNAready kit (AmpTec,
Germany), which included a DNase treatment step. RNA quality was assessed with Qubit and
Bioanalyzer, and RNA quantity was checked with Qubit.

Figure 2. Experimental design and workflow. (1) 22 mice with six different genetic backgrounds (CASK KO

and control, SAP97 KO and control, and MDX and control) were used. fl+, first exon of gene is floxed; Cre+,

Cre recombinase is expressed. (2) Cardiomyocytes were isolated on a Langendorff system and RNA was

isolated with a FFPE Clear RNAready kit. (3) Libraries were constructed with 1 μg RNA per sample using a

TrueSeq Stranded Total RNA protocol and (4) sequenced on an Illumina HiSeq3000 machine. (5) Quality of

the reads was assessed with FastQC, and (6) reads were mapped to the Mus musculus reference genome

(GRCm38.83) with Tophat. (7) To assess sample variation within each group, we performed principle

component analyses (PCA) (see Fig. 3). (8) Lastly, ion channel expression was determined.
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To allow sequencing of long non-coding RNA (lncRNA), libraries were constructed with 1 μg RNA
using the TruSeq Stranded Total RNA kit after Ribo-Zero Gold (Illumina) treatment for rRNA depletion.
Library molecules with inserts o300 base pairs (bp) were removed. Paired-end libraries (2x150 bp) were
sequenced on an Illumina HiSeq3000 machine.

RNA-seq data analysis
Between 17.5 and 56.4 million read pairs were obtained per sample and the quality of the reads was
assessed using FastQC v.0.11.2 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Ribosomal
RNA (rRNA) was removed by mapping the reads with Bowtie2 v.2.2.1 (ref. 22) to a collection of rRNA
sequences (NR_003279.1, NR_003278.3 and NR_003280.2) downloaded from NCBI (www.ncbi.nlm.nih.
gov). No quality trimming was required.The remaining reads were mapped to the Mus musculus
reference genome (GRCm38.83) with Tophat v.2.0.13 (ref. 23). We used htseq-count v.0.6.1 (ref. 24) to
count the number of reads overlapping with each gene, as specified in the Ensembl annotation
(GRCm38.83). Detailed information about the genes including the Entrez Gene ID, the MGI symbol and
the description of the gene was obtained using the Bioconductor package BioMart v.2.26.1 (ref. 25).

Raw reads were corrected for gene length and TPM (transcripts per million) values were calculated to
compare the expression levels among samples. Gene lengths for the latter step were retrieved from the
Ensembl annotation (GRCm38.83) as the total sum of all exons.

Principal component analysis (PCA) plots were done in DESeq2 v.1.10.1 (ref. 26) (https://
bioconductor.org/packages/release/bioc/html/DESeq2.html) using the 500 genes with the most variable
expression across samples. A regularized log transformation was applied to the counts before performing
the PCA.

Statistics
To assess differential gene expression between genotypes, a Wald test was performed with the
Bioconductor package DESeq2 v.1.10.1 (ref. 26). We considered p values of up to 0.01, accounting for a
Benjamini-Hochberg false discovery rate adjustment, to indicate significant difference. Statistical tools
used included DESeq2, R-3.2.5 (https://cran.r-project.org), and Biomart_2.26.1 (www.biomart.org).

Sample ID Genotype # read
pairs total

# non-
rRNA
read pairs

% of total Insert size # read pairs
mapping to a
gene

% of total # no-
feature
read
pairs

% of total #
ambiguous
read pairs

% of total

CASK_Ct1 WT+Cre 47,543,799 47,343,548 99.58 492 34,076,980 71.67 2,721,942 5.73 8,287,647 17.43

CASK_Ct2 WT+Cre 45,437,500 45,287,356 99.67 476 33,988,592 74.8 1,440,229 3.17 7,578,641 16.68

CASK_Ct3 WT+Cre 55,117,414 54,944,721 99.69 479 40,469,641 73.42 1,790,829 3.25 11,381,005 20.65

CASK_KO1 CASK_fl+Cre 45,685,573 45,565,815 99.74 472 32,765,612 71.72 5,738,568 12.56 5,504,670 12.05

CASK_KO2 CASK_fl+Cre 55,895,769 55,607,105 99.48 511 39,344,558 70.39 2,372,238 4.24 12,476,403 22.32

CASK_KO3 CASK_fl+Cre 56,437,329 56,008,449 99.24 499 42,159,185 74.7 2,804,256 4.97 9,655,232 17.11

MDX_1 MDX 17,485,935 17,320,513 99.05 380 (sample exluded)

MDX_2 MDX 39,536,744 39,037,330 98.74 447 27,475,113 69.49 3,258,092 8.24 6,543,268 16.55

MDX_3 MDX 39,626,959 39,432,254 99.51 455 27,841,146 70.26 2,169,924 5.48 7,327,584 18.49

MDX_4 MDX 42,406,246 40,919,896 96.49 488 29,805,158 70.28 2,905,415 6.85 6,497,990 15.32

MDX_5 MDX 50,934,677 47,518,076 93.29 484 34,233,480 67.21 1,864,210 3.66 10,028,518 19.69

MDX_Ct1 WT 48,311,563 46,288,106 95.81 380 32,827,800 67.95 4,353,181 9.01 7,779,264 16.1

MDX_Ct2 WT 47,283,192 46,988,962 99.38 446 32,237,279 68.18 2,304,142 4.87 10,939,883 23.14

MDX_Ct3 WT 35,275,617 34,938,284 99.04 427 24,235,276 68.7 3,631,537 10.29 4,922,208 13.95

MDX_Ct4 WT 33,977,175 32,900,815 96.83 515 25,298,933 74.46 1,713,065 5.04 4,619,558 13.6

MDX_Ct5 WT 49,379,536 45,499,492 92.14 485 32,227,570 65.27 1,210,708 2.45 10,698,976 21.67

SAP_Ct1 WT+Cre 47,930,112 47,715,719 99.55 461 34,192,649 71.34 1,965,652 4.1 9,896,590 20.65

SAP_Ct2 WT+Cre 44,934,245 44,566,395 99.18 444 30,350,071 67.54 4,879,732 10.86 7,491,483 16.67

SAP_Ct3 WT+Cre 43,586,968 43,382,766 99.53 451 29,836,839 68.45 1,332,267 3.06 8,751,881 20.08

SAP_KO1 SAP_fl+Cre 44,319,566 44,146,526 99.61 452 34,155,235 77.07 2,606,959 5.88 5,090,692 11.49

SAP_KO2 SAP_fl+Cre 41,547,517 41,397,099 99.64 469 28,697,320 69.07 3,765,768 9.06 7,431,842 17.89

SAP_KO3 SAP_fl+Cre 46,143,349 45,812,985 99.28 443 30,710,635 66.55 5,476,238 11.87 8,174,538 17.72

Table 4. RNA-seq raw data and mapping metrics. Total and non-ribosomal RNA read pairs, average RNA
fragment size (bp), and mapping metrics, including absolute number and percentages of read pairs mapping to
all annotated exons of the mouse reference genome, and no-feature and ambiguous reads, per sample. Note the
low number of read pairs in MDX_1, which is therefore excluded from further analysis. CASK KO and Ctrl,
SAP97 KO and Ctrl ns= 3, MDX KO n= 4, MDX Ctrl n= 5.
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Figure 3. Quality control. (a) Histogram of inferred insert size for each sample, which represents distance

between the two reads of one RNA fragment. (b) Principle component analyses (PCA) plots were performed to

assess variability of samples within and between groups. Plot of the first two axes from a PCA based on the 500

genes with the most variable expression across all samples except MDX_1. CASK control (red, n= 3) and KO

(green, n= 3); MDX control (orange, n= 5) and KO (blue, n= 4); SAP97 control (grey, n= 3) and KO (black,

n= 3). (c) Distribution of GC content of the reads for each sample. (d) Base quality (Phred scores) along the

length of the reads in each FastQC file of MDX_Ct1 as representative sample. The box plots are drawn as

follows: red line, median; yellow box, range between upper and lower quartiles; whiskers, range between 10 and

90% quantiles. The blue line shows the mean quality. Y-axis represents quality scores across all bases. X-axis

represents position in read (bp). (e) Gene body coverage. Distribution of reads along the length of the genes

(5’-end on the left, 3’-end on the right). Shown image of sample MDX_Ct1 is representative for all samples.

(f) Saturation report, depicting the number of splice junctions detected using different subsets of the data from

5 to 100% of all reads. Red, known junction based on the provided genome annotation; green, novel junctions;

blue, all junctions. The red line reaches a plateau where adding more data does not increase the number of

detected junctions, indicating that the sequencing depth suffices for performing alternative splicing analysis.
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Data Records
The data were submitted to NCBI Gene Expression Omnibus (GEO) (Data Citation 1). This GEO project
contains raw data and TPM values from all samples, and differential gene expression analysis between
knockout and control samples.

Technical Validation
RNA metrics
RNA-seq yielded 1.0 billion read pairs in total, with an average of 44.5 million read pairs per sample
(standard deviation 8.4 million). The number of read pairs (in millions) was 306 for CASK KO and Ctrl,
268 for SAP97 KO and Ctrl, and 404 for MDX and Ctrl (see Table 4 for an overview of RNA-seq metrics,
including mapping rates). One sample (MDX_1) yielded few reads and was therefore excluded from
further analyses. The proportion of reads mapping to annotated exons ranged from 65 to 77%. Mapping,
no-feature (2–13%), and ambiguous (11–23%) read pairs together accounted for 89–97% of the total
number of RNA reads (Table 4). Read pairs covered 49,671 genes of the Mus musculus reference genome
(GRCm83.38).

Quality assessment
The quality of all samples was assessed with FastQC. Except for MDX_1, all samples were of high quality.
Where applicable, a representative example (MDX_Ct1) is shown. Firstly, the insert size histogram
(Fig. 3a) shows that the inferred insert size of each sample exceeded 150 base pairs, demonstating that the
sequencing was not contaminated by adapter sequences. Secondly, the GC content plot (Fig. 3c) ideally
shows a roughly normal distribution centred around the average GC content of the genome, which varies
between species. The peaks observed in Fig. 3c are likely caused by sequences that are detected at high
copy numbers, and should not pose problems for downstream analyses. Furthermore, Phred scores
(Fig. 3d) are well within the green area of the graph indicating good base quality along the length of reads.
As well, the gene coverage graph (Fig. 3e) of sample MDX_Ct1 shows that reads are distributed evenly
along the length of the gene body. Because the gene coverage for all other samples is highly comparable to
that of MDX_Ct1, only one example is shown. Lastly, the saturation report (Fig. 3f) represents the
number of splice junctions detected using different subsets of the data from 5 to 100% of all reads. At
sequencing depths sufficient to perform alternative splicing analysis, at least the red line, representing
known junctions, should reach a plateau where adding more data does not much increase the number of
detected junctions. Only MDX_1 does not reach this plateau.

Gene expression variation of biological replicates
We performed Principle Component Analyses (PCA) to assess whether samples from the same
experimental group have similar gene expression profiles (Fig. 3b). Of note, samples within each sample
group still show considerable variation. The mixed genetic background of most sample groups may
explain this variation; only the MDX control mice are on a pure Bl6/J background. The variation seen in
MDX control mice is likely due to a batch effect, as two rounds of samples were sequenced. However,
considering that PCA plots are based on the 500 genes with the highest variability in one sample, our
genes of interest, including all ion channel genes, show similar expression levels throughout all samples.

Ion channel expression
Based on the list of ion channel genes from HUGO Gene Nomenclature Committee (https://www.
genenames.org/cgi-bin/genefamilies/set/177), we distilled ion channel expression from WT mice
expressed as TPM (Tables 1–3 (available online only), Fig. 1).
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Corrigendum: Transcriptomic
analyses of murine ventricular
cardiomyocytes
Morgan Chevalier, Sarah H. Vermij, Kurt Wyler, Ludovic Gillet, Irene Keller & Hugues Abriel

Correction to: Scientific Data https://doi.org/10.1038/sdata.2018.170, published online 21 August 2018.

In the CASK and SAP97 knockout mice sub-section of the Methods in this Data Descriptor it is
incorrectly stated that CASK KO mice were generated as previously published in references 9 and 20.
This is incorrect. Instead, mice in which the first coding exon of the CASK gene is flanked by loxP sites
(CASKtm1Sud, purchased from the Jackson Laboratory, stock #006382) were crossed with αMHC-
Cre mice.

In the same section of the Data Descriptor it is incorrectly stated that in SAP97 mice the first SAP97 gene
was floxed. In actuality the first three coding exons were floxed.

In Table 4 of the Data Descriptor, the genotype of samples SAP_Ct1, SAP_Ct2 and SAP_Ct3 is
incorrectly listed as WT+Cre. The correct genotype is WT_fl, consistent with Figure 2 and the Mouse
models sub-section of the Methods.
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