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Multifaceted mitochondria in innate
immunity

Check for updates

Eloïse Marques, Robbin Kramer & Dylan G. Ryan

The ability of mitochondria to transform the energy we obtain from food into cell phosphorylation
potential has long been appreciated. However, recent decades have seen an evolution in our
understanding of mitochondria, highlighting their significance as key signal-transducing organelles
with essential roles in immunity that extend beyond their bioenergetic function. Importantly,
mitochondria retain bacterial motifs as a remnant of their endosymbiotic origin that are recognised by
innate immune cells to trigger inflammation and participate in anti-microbial defence. This review aims
to explore how mitochondrial physiology, spanning from oxidative phosphorylation (OxPhos) to
signalling of mitochondrial nucleic acids, metabolites, and lipids, influences the effector functions of
phagocytes. These myriad effector functions include macrophage polarisation, efferocytosis, anti-
bactericidal activity, antigen presentation, immune signalling, and cytokine regulation. Strict
regulation of these processes is critical for organismal homeostasis that when disrupted may cause
injury or contribute to disease. Thus, the expanding body of literature, which continues to highlight the
central role ofmitochondria in the innate immune system,may provide insights for the development of
the next generation of therapies for inflammatory diseases.

Mitochondria are double-membraned organelles found in the cytoplasm of
virtually all eukaryotic organisms.Theycontain their owngeneticmaterial, a
circular chromosome termed mitochondrial DNA (mtDNA)1, differ-
entiating them from most other eukaryotic subcellular structures with the
exception of chloroplasts. It is proposed that mitochondria originated from
an endosymbiotic event between an α-proteobacterial ancestor and an
archaeal host of the Lokiarchaeota phylumover 2.5 billion years ago2, which
acted as a primary driving force in eukaryotic evolution3. These dynamic
and morphologically diverse organelles have captivated scientists for dec-
ades, inspiring several conceptual and theoretical advances across scientific
disciplines, from evolution to metabolism andmedicine4. Perhaps the most
pervasive analogy for mitochondria is as the ‘powerhouse of the cell’, an
analogy derived from the chemiosmotic theory of oxidative phosphoryla-
tion (OxPhos) introduced by the paradigm-shifting work of Peter Mitchell
and Jennifer Moyle in the 1960s5. Structurally, mitochondria possess an
outer mitochondrial membrane (OMM) that encloses the organelle and an
inner mitochondrial membrane (IMM) that forms numerous folds called
cristae, which increase the surface area available for ATP synthesis by
chemiosmotic coupling. In fact, mitochondrial bioenergetics, the ability of
energy-transducing pathways in mitochondria to maintain cell phosphor-
ylation potential, is a leading theory of how endosymbiosis triggered the
explosion, diversification, and multi-cellularity associated with the

eukaryotic domain of life3,6. Equally fascinating is the idea that a break in
mitochondrial endosymbiosismayevenbe abasis for inflammatorydiseases
in the modern age7.

The use of the terms mitochondrial function and dysfunction in the
scientific literature often directly relates to mitochondrial OxPhos8.
Although it has been proposed that this terminology is misleading and
should be avoided8, it is also argued that these terms represent appropriate
umbrella terms to describe overall mitochondrial health9. Despite these
debates on terminology, it is clear that thepowerhouse analogy only tells one
part of a larger story. In themodern era,mitochondria are nowknown to act
as central organising hubs coordinating biosynthetic and signalling mod-
alities with the ability to influence fate and function decision-making across
cell and tissue types4,10. This inherent complexity in mitochondrial biology
has led to the proposition ofmitochondria as processors of the cell and it has
been suggested we refer to it as the mitochondrial information processing
system (MIPs)4.While only timewill tell if this newly suggested terminology
persists, mitochondrial signal transduction is emerging as a critically
important regulator of cellular and systemic physiology. This concept is
perfectly illustrated in cells of our innate immune system, a universal and
evolutionarily ancient form of host defence against infection and tissue
damage11. Key components of the innate immune system include physical
barriers like the skin and mucous membranes, as well as cellular and
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chemical defences such as phagocytes (e.g., dendritic cells (DCs), neu-
trophils, and macrophages), natural killer cells, and antimicrobial proteins
like complement and interferons. These components work together to
recognise and eliminate pathogens, initiate inflammation to recruit immune
cells, and activate the adaptive immune response if needed. Our objective in
this review article is to underscore the importance of mitochondrial signal
transductionduring the innate immune responseusing clear examples anda
focus on phagocytes, rather than providing an exhaustive list of all studies
and signals in this growing field. The integrated nature of mitochondrial
physiology for the generation of these important signals will also be
highlighted.

Mitochondrial bioenergetics
OxPhos
The electron transport chain (ETC) is a crucial component of aerobic
respiration, occurringwithin the IMMof eukaryotic cells. The ETC consists
of a series of protein complexes (I, II, III, IV) and electron carriers, including
flavoproteins, cytochromes, and ubiquinone. These complexes work toge-
ther to transfer electrons derived from the oxidation of redox equivalents,
NADH and FADH2, down a series of reactions, ultimately to molecular
oxygen (O2), the terminal electron acceptor. As electrons move along the
ETC, they release energy that is utilised to pump protons (H+) across the
IMM, establishing an electrochemical gradient known as the protonmotive
force (Δp). The electrochemical gradient then drives the synthesis of ATP
via F0F1-ATP synthase (also known as Complex V) in a process referred to
as chemiosmosis5. This method of maintaining cell phosphorylation
potential is far superior to the other major alternative energy-transducing
metabolic pathway, glycolysis12. The oxidation of glucose to pyruvate yields
a net gain of 2 molecules of ATP per molecule of glucose, whereas the
complete oxidation of glucose by OxPhos yields ~32 molecules of ATP12. If
pyruvate is reduced to lactate in the presence of O2, this is commonly
referred to as the Warburg effect or aerobic glycolysis, first observed in
carcinoma cells13,14. However, it is now apparent that modulation of both
OxPhos and aerobic glycolysis is a critical feature of metabolic remodelling
in stimulated innate immune cells, such as macrophages and DCs.

Macrophages are phenotypically plastic phagocytic cells widely dis-
tributed throughout the body and can adopt a variety of polarisation states

depending on their environment15. DCs on the other hand are primarily
found in tissues that interface with the external environment, such as the
skin, respiratory tract, and gastrointestinal tract16. Here, they act as
important sentinels for the capture and processing of antigens to initiate
adaptive immune responses. Classically activated macrophages, defined
experimentally by stimulation with lipopolysaccharide (LPS) with or
without interferon-gamma (IFN-γ) but can also include other microbial
products, are inflammatory innature and required to counteract pathogenic
microorganisms15. On the other hand, anti-inflammatory macrophages,
often generated experimentally using IL-4, IL-13, or IL-10 stimulation, are
associated with the resolution of inflammation, wound healing, and type II
immune responses15.

Classical activation of macrophages and stimulation of DCs by Toll-
like receptor (TLR) ligands (also known as pathogen-associated molecular
patterns (PAMPs)), results in the suppression of mitochondrial respiration
and an increase in aerobic glycolysis (Fig. 1A)17–20. Mechanistically,
respiratory impairment has been linked to the inducible nitric oxide syn-
thase (iNOS), also known as NOS2, and increased nitric oxide (NO)
production18,20. NO is a free radical that has long been known to inhibit ETC
complexes in macrophages21–24. More recently, NO has been shown to
reduce theprotein levels of complexes I, II, III, and IVand impair the activity
of complexes I, II, and IV inmacrophages co-stimulated with LPS and IFN-
γ25,26. In contrast, IL-4-stimulatedmacrophages exhibit increasedOxPhos, a
process dependent on PPARγ-coactivator-1β (PGC1β)-mediated mito-
chondrial biogenesis, CD36-dependent lysosomal lipolysis, and fatty acid
oxidation (FAO) (Fig. 1B)27,28. As such, FAO-driven mitochondrial
respiration is required for effective type II immune responses against
parasitic helminth infections28. Intriguingly, IL-4-stimulated macrophages
readily repolarise into classical inflammatory macrophages20. However,
NO-mediated inhibition of OxPhos prevents the repolarisation of inflam-
matory macrophages highlighting the importance of mitochondrial bioe-
nergetics for macrophage plasticity20. Similarly, the anti-inflammatory
cytokine IL-10 antagonises classical macrophage polarisation by suppres-
sing aerobic glycolysis and increasing OxPhos29. This positive impact of IL-
10 onmitochondrial respiratory function is linked to the restriction of iNOS
expression, increased arginase 2 levels, reduced NO production, and sup-
pression of mammalian targets of rapamycin (mTOR)29,30.

Fig. 1 | Mitochondrial bioenergetics in innate
immunity.ANOproduced by inducible nitric oxide
synthase (iNOS) inhibits OxPhos and increases
mtROS following prolonged LPS stimulation.
Increased mtROS has bactericidal activity. Impaired
OxPhos promotes tolerance and prevents alter-
native activationwith subsequent IL-4 challenge. IL-
10 antagonises NO by increasing mitochondrial
Arg2. B IL-4/IL-13 increases OxPhos by enhancing
glutamine anaplerosis and FAO. Increased OxPhos
following IL-4/IL-13 training facilitates a hyperin-
flammatory response with subsequent LPS chal-
lenge and exhibits improved anti-mycobacterial
responses. C NLRP3 inflammasome activation
depends on mitochondrial PCr that is converted to
ATP in the cytosol by CKB.
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In inflammatory macrophages or DCs, the precise reason behind the
shift away from mitochondrial respiration and toward aerobic glycolysis is
still unclear. This acute inflammatory response is generally short-livedwhen
compared to the more prolonged activities of alternatively activated mac-
rophages. Indeed, evidence suggests that inhibiting glycolysis limits the
activation and survival of DCs and impairs cytokine production in mac-
rophages, particularly the pro-inflammatory cytokine IL-1β18,19,31. Specifi-
cally, the rapid glycolytic burst downstream of TLR signalling in DCs
facilitates anabolic processes, such as de novo fatty acid synthesis, enabling
the expansion of membranes for protein secretion32. This suggests that the
observed metabolic switch is essential for function, perhaps by allowing for
the rapid synthesis of cytoplasmic ATP and reducing equivalents for these
energetic processes. However, one alternative hypothesis is that by sup-
pressing mitochondrial respiration this acts as an “off switch” for an acute
inflammatory response, thereby promoting tolerance. This notion is sup-
ported by kinetic analyses of metabolic reprogramming and cytokine levels
in classically activated macrophages with links to the mitohormetic impact
of mitochondrial-derived reactive oxygen species (mtROS) and reactive
electrophilic species (mtRES)33,34. In line with this concept, Garaude et al.35

demonstrated a transientdecrease in complex I-containing super complexes
and a switch to complex II-mediatedmitochondrial respiration early afterE.
coli infection,whichwas required for anti-bacterial immunity35.However, at
later timepoints, complex II activity had decreased relative to the uninfected
controls35. Additional support comes from IL-4/IL-13 training of macro-
phages, which enhances anti-mycobacterial killing and pro-inflammatory
cytokine production in a manner dependent on OxPhos36. Nevertheless, it
can also lead to a hyperinflammatory response following subsequent LPS
exposure that can potentially drive pathology37. Therefore, this hyperin-
flammatory phenotype in the absence of respiratory chain suppressionmay
provide insights into the role of this metabolic remodelling process.

More recently, the mitochondrial ETC has also been shown to be
essential for activation of the NOD-, LRR- and pyrin domain-containing
protein 3 (NLRP3) inflammasome in macrophages38. NLRP3 serves as an
intracellular sensor capable of detecting a wide array of microbial motifs,
endogenous danger signals, and environmental irritants, leading to the
formation and activation of the inflammasome complex39. This complex
comprises a sensor component (NLRP3), an adaptor (ASC, also known as
PYCARD), and an effector (caspase 1)39. Structurally, NLRP3 is a tripartite
protein containing an amino-terminal pyrin domain (PYD), a central
NACHTdomain, and a carboxy-terminal leucine-rich repeat domain (LRR
domain), with the NACHT domain exhibiting ATPase activity crucial for
NLRP3 self-association and function39.Upon activation, the effector caspase
1 cleaves pro-IL-1β, pro-IL-18 and gasdermin D (GSDMD) to their mature
forms, triggering pyroptosis and pro-inflammatory cytokine release39.
While themechanismbywhichNLRP3 senses suchdiverse stimuli has been
extensively investigated and a direct link with mitochondria has long been
established, the precise signalling involved remains unclear40. Billingham
and colleagues utilised pharmacological inhibitors targeting complex I, II,
III, and V to investigate this link and confirmed impairments in NLRP3
inflammasome activation upon inhibition of OxPhos38. This effect was
reversed following functional complementation of complex I and complex
III utilising ectopic expression of Saccharomyces cerevisiae NADH dehy-
drogenase (NDI1) or Ciona intestinalis alternative oxidase (AOX)38.
Mechanistically, the authors found that mitochondrial ATP synthesis via
phosphocreatine (PCr) and cytosolic creatine kinase B (CKB), which gen-
erates cytosolic ATP from PCr, was necessary for NLRP3 activation (Fig.
1C)38. These findings underscore the intricate interplay between OxPhos
and innate immune responses.

While this study firmly connects mitochondrial bioenergetics to
NLRP3, it’s important to note some conflicting reports. NLRP3 inflam-
masome activation can occur in a K+ efflux-dependent and K+ efflux-
independent manner41,42. K+ efflux-dependent activation is reportedly
unrelated to mitochondrial bioenergetics41, while Imiquimod and CL097
trigger K+ efflux-independent NLRP3 activation by inhibiting mitochon-
drial complex I41. However, complex I inhibition or PCr depletion prior to

CL097 treatment still impaired IL-1β release, suggesting additional
mechanisms are involved during CL097 signalling38. Furthermore, treat-
ment of macrophages with the complex II inhibitor malonate increased
intracellular succinate levels but had a modest impact on IL-1β release43.
However, malonate is a negatively charged dicarboxylate with poor mem-
branepermeability44. It is unclear howmalonate enters the cell at neutral pH,
what intracellular concentrations of malonate were achieved, or if it led to a
significant impairment in mitochondrial respiration. As such, the use of
multiple ETC inhibitors alongside measures of respiration by Billingham
et al.38 provides solid evidence for the involvement of mitochondrial
OxPhos. Despite this, important questions remain regarding why ATP
produced by glycolysis or direct ATP export to the cytosol via the adenine
nucleotide transporter (ANT) are insufficient to support NLRP3 activity.
Thedata also suggests that there isno role formtROS inNLRP3activation in
contrast to previous reports40,45–49. This highlights the importance of con-
ducting further research into this complex process in order to clarify
underlyingmechanisms and to aid anypotential therapeutic targeting in the
future.

mtROS
ROS are chemically reactive molecules containing oxygen, traditionally
thought of as agents of cellular damage. Indeed, cytosolic ROS produced by
NADPH oxidase 2 (NOX2) in innate immune cells are known to directly
damage pathogens through the oxidation of lipids and DNA50–53. Beyond
these NOX enzymes, which evolved as anti-microbicidal tools of
phagocytes54, a consequence of the use of mitochondrial OxPhos for energy
transduction is the generation of mtROS55,56. mtROS, notably superoxide
(O2

•−) and, following dismutation, hydrogen peroxide (H2O2), are pre-
dominantly formed at complex I or complex III of theETC55. The significant
contribution ofmtROS to inflammatory redox signalling in innate immune
cells, as well as anti-microbial immunity, has become increasingly promi-
nent over the years57–59.

For instance, stimulation of Toll-like receptors (TLR) 1,2, and 4 on the
surface of innate immune cells andwithin their phagosome initiates various
signalling pathwayswithin the cell60. Among others, it causesmitochondrial
migration towards the phagolysosome through the activation of the serine-
threonine kinases Mst1 and Mst257,61–63. Simultaneously, West et al.57

observed mtROS production in macrophages following cell-surface TLR
stimulation (Fig. 1)57. Interestingly, the production of mtROS that was
induced by TLR binding is specific to antimicrobial defence, as it was not
observed after stimulation of endosomal TLRs that function primarily in
antiviral defence57. In response to a methicillin-resistant Staphylococcus
aureus infection, mtROS production is also stimulated, leading to the for-
mation ofmitochondria-derived vesicles (MDVs)64. TheseMDVs delivered
mitochondrial matrix enzymemanganese superoxide dismutase (SOD2) to
bacteria-filled phagosomes, enhancing bacterial clearance.

Beyond their direct antimicrobial effects, infection-induced mtROS
can trigger the production of pro-inflammatory cytokines. Herb et al.65

demonstrated that Listeria monocytogenes infected murine macrophages
generate mtROS, which enter the cytosol and induce secretion of pro-
inflammatory cytokines65. Likewise, complex I-derived mtROS are impli-
cated in the stabilisation of hypoxia-inducible factor 1 alpha (HIF-1α) and
expression of IL-1β downstream of prolonged TLR4 activation59,66. As
previously mentioned, mtROS have been repeatedly implicated in the
activation of the NLRP3 inflammasome and the subsequent maturation of
IL-1β and IL-18, through an indirect mechanism that will be discussed
further on40,45,46,48,49,67,68. Interestingly, a gain-of-function mutation in
leucine-rich repeat kinase 2 (Lrrk2G2019S), which is associated with familial
Parkinson’s disease, leads to increasedmtROS and a functional switching of
cell death pathways in macrophages69. Specifically, mtROS redirects
GSDMD to mitochondrial membranes triggering a switch to necroptosis
and a hyperinflammatory response to Mycobacterium tuberculosis
infection69. In agreement, ROS-mediated oxidation of cysteine 192 in
GSDMD has also been shown to promote GSDMD oligomerisation and
pyroptotic cell death70. The idea thatmtROSarepro-inflammatory innature
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is further supported by the anti-inflammatory action of mitophagy. Mito-
phagy serves as a protective mechanism against excessive mtROS by
selectively degrading damaged mitochondria, as observed with IL-10
antagonism of LPS triggered inflammation30, while the absence of autop-
hagy also results in ROS-dependent amplification of retinoic acid-inducible
gene I (RIG-I)-like signalling71–73.

Despite the emerging importance of mtROS signalling, the relative
contribution of complex I versus complex III to mtROS generation in
inflammatory macrophages is currently a topic of debate56,59,74. The role of
complex I in OxPhos is to harvest electrons fromNADH and transfer them
to the ubiquinone (CoQ)poolwhile pumping protons across the IMM.This
forward electron transfer (FET) will occur if the difference in reduction
potential between theNAD+/NADHand theCoQ/CoQH2 couples (ΔEh) is
sufficient to pump protons against Δp, which is composed of the mito-
chondrial membrane potential (ΔΨm) and pH gradient (i.e. 2ΔEh > 4Δp)

56.
When 4Δp > 2ΔEh, electrons can also be transferred in the reverse direction,
known as reverse electron transport (RET), from the CoQ pool through
complex I to flavinmononucleotide (FMN), and subsequently passed to O2

to generateO2
•−56. Indeed, current evidence favours thismodel of activation

downstream of TLR4 activation, albeit from indirect measurements58,59,66.
On the other hand, complex III transfers electrons from CoQH2 to cyto-
chrome c (cyt c) via the Q-cycle and can generate O2

•− at the Qo site
56.

However, the physiological relevance of O2
•− production at complex I is

thought to be higher than that of complex III55,56. Despite this, complex III-
derivedmtROS is reported to drive oxidativeDNAdamage inmacrophages
enforcing reliance on NAD+ salvage pathways to sustain aerobic glycolysis
and pro-inflammatory cytokine production74. The evidence for complex III
mtROS derives primarily from the use of Qo site inhibitor myxothiazol,
while showing no impact of rotenone74. However, since RET is dependent
on 4Δp > 2ΔEh, which will be impacted by complex III inhibition, the use of
this compound cannot exclude mtROS production at complex I56.

Mitochondria in neutrophils, historically undervalued due to their
preference for glycolysis, have recently gained recognition for their invol-
vement in neutrophil extracellular traps (NETs), motility, degranulation,
and respiratory burst75. The production of ROS by neutrophils during the
respiratory burst is a key mechanism for regulating infection and
inflammation75. While mtROS do not directly contribute to intracellular
ROSstores, it is implicated in the oxidative burst causedbyNOX2activation
and degranulation76. Notably, production of mtROS regulates neutrophil
motility in vivo, as demonstrated by Zhou et al. using a zebrafish model77.

NETs are complex networks comprised of modified chromatin and
bactericidal proteins, which were initially associated with cell death in a
process termed NETosis. It is now recognised that NETosis exists in two
forms: the prolonged ‘suicidal’ NETosis and the rapid ‘vital’ NETosis that
leaves neutrophils alive78–80. Classically, NETosis was believed to be
dependent on ROS produced by cytosolic NOX281. However, Douda et al.82

and Reithofer et al.83 elucidated the mechanisms behind a second NOX-
independent NETosis type, demonstrating that calcium (Ca2+)-dependent
NETosis requires Ca2+ influx from lysosomes or the extracellular space.
Mitochondria sense these elevated Ca2+ levels, generating mtROS. Both
cytoplasmic Ca2+ and mtROS generated at complex III of the ETC are
required for activation of peptidyl arginine deiminase 4 (PAD4), crucial for
chromatin decondensation and NETosis82–84. However, the evidence for
complex III-derived O2

•− was determined from the use of the Qi site inhi-
bitor antimycin A56. There was no decrease observed with myxothiazol or
the complex III-specific O2

•− suppressor, S3QEL84,85. As such, the source of
mtROS in neutrophils remains to be definitively determined. Finally, NETs
containing mtDNA oxidised by mtROS induce high levels of type I inter-
feron (IFN) signalling and are reported to contribute to systemic lupus
erythematosus (SLE)86,87.

This emerging role for mtROS in inflammation and anti-microbial
activity highlights a critical repurposing of mitochondrial function away
from OxPhos toward redox signalling. However, many open questions
remain about how such signals propagate from mitochondria in the pre-
sence of abundant anti-oxidants to engage their reported targets in different

cellular compartments. One hypothesis posits that mtROS signalling to the
cytosol is achieved by localised redox relays involving peroxiredoxins and
glutathione peroxidases88,89, which remains to be explored in the context of
innate immune signalling. Alternatively, a second proposal is the floodgate
model, which involves the inactivation of scavenging enzymes, enabling the
oxidation of target proteins by H2O2

89. While redox signalling may be
important for cellular and organismal homeostasis, it can also contribute to
disease pathology under certain circumstances59,90 and so identifying the
source of mtROS will be a critical question to address in the future. To
elucidate the source of mtROS in innate immune cells, genetic models will
likely be required.Onemodel, theND6G14600AmtDNAmutation, which
leads to a proline to leucine substitution at position 25 in theND6 subunit of
complex I (ND6-P25L), may be used in the future56,91. Importantly, the
mutant complex I is fully active for NADH oxidation and has little impact
on FET, but cannot generate ROS by RET91. It also protects the heart from
ischaemia-reperfusion (I/R) injury, a process driven by succinate oxidation
and O2

•− production by RET90–92.

Mitochondrial membrane potential (ΔΨm) and Ca2+

In addition to its role inmaintaining cell phosphorylation potential,ΔΨm is
indispensable for multiple aspects of mitochondrial physiology, including
mtROS production and the transport of many proteins, metabolites, and
ions56,93.Mills et al. have highlighted that LPS stimulation augmentsΔΨm in
macrophages, which together with the enhanced oxidation of succinate by
complex II, results in accumulation of mtROS and elevated Il1b gene
expression59. Conversely, alternatively activated IL-4-stimulated macro-
phages exhibit a dissipated ΔΨm when treated with the lipid immunomo-
dulator prostaglandin E2 (PGE2)94. Mechanistically, PGE2-induced
dissipation of ΔΨm was related to the malate-aspartate shuttle and led to
voltage-dependent changes in gene expression, partly regulated by the
transcription factorETS variant 1 (ETV1)94. These studies arenoteworthy as
they provide evidence that external stimuli, in this case LPS and PGE2, can
alter ΔΨm, thereby inducing mitochondria-to-nucleus retrograde commu-
nication and fine-tuning macrophage polarisation states.

Moreover, other roles for ΔΨm have recently emerged in different
innate immune subsets. Efferocytosis, the successful clearance of apoptotic
cells by phagocytes, effectively doubles the content of the engulfing cell,
thereby introducing many more metabolites95. Park and colleagues illu-
strated that the mitochondrial membrane protein uncoupling protein 2
(UCP2), which lowers ΔΨm, is essential for the functional clearance of
apoptotic target cells but not for the clearance of synthetic targets96. Simi-
larly, aged DCs that exhibited lower ΔΨm and coupling efficiency were less
efficient at endocytosing irradiated cells and cross-presenting antigens to
T cells than their younger counterparts97. This effect of reduced ΔΨm on
antigen processing and presentation has also been observed as a result of
physiological carbon monoxide production98. Furthermore, inducing
mitochondrial dysfunction in younger DCs diminished their phagocytic
and cross-presenting capacity, whereas mtROS specifically affected cross-
presentation. This aligns with the work of Oberkampf and colleagues, who
demonstrated thatmtROSregulate cross-presentation to cytotoxicTcells by
plasmacytoid DCs (pDCs)99.

Another important aspect of the ΔΨm is its role as the driving force
behind the uptake of Ca2+ into the mitochondrial matrix. Cytosolic Ca2+

serves as a pivotal intracellular signallingmessenger, implicated in processes
such as exocytosis, cell motility, and apoptosis100. Regulation of cytosolic
Ca2+ primarily occurs throughCa2+ uptake from the extracellular space and
release from organelles, such as the endoplasmic reticulum. Elevated levels
of cytosolic Ca2+ trigger Ca2+ influx into the mitochondrial matrix through
the mitochondrial calcium uniporter complex (MCU), thereby buffering
cytosolic Ca2+ and regulating mitochondrial respiration93. This complex
consists of the channel-forming subunit MCU and its regulators MICU1,
MICU, MCUb, EMRE, MCUR1 and miR-25101.

TheMCUhas been the subject of many studies investigating its role in
macrophage function. For instance, the MCU functions as a regulator of
phagocytosis-dependent NLRP3 inflammasome activation in response to
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bacterial challenges102–105. Mechanistically, mitochondrial Ca2+ uptake
inhibits endosomal sorting complex required for transport (ESCRT)-
mediated phagolysosomal membrane repair, which enables NLRP3
activation105. Additionally, expression of MCU and MICU1 inversely cor-
relate with age, resulting in reduced mitochondrial Ca2+ uptake in aging
macrophages106. This leads to an amplification of cytosolic Ca2+ oscillations,
a major driver of nuclear factor kappa B (NF-κB) activation and inflam-
mation. Interestingly, the abundance of the dominant-negative subunit
MCUb is associated with macrophage polarisation during skeletal muscle
regeneration, indicating that the composition of the MCU complex influ-
ences macrophage phenotypes107. This was underscored by Lu et al.108, who
investigated the role of the MCU in atherosclerosis-mediated efferocytosis
dysfunction. Using an MCU-specific inhibitor, they were able to attenuate
the upregulation of MCU and MCUR1 and the downregulation of MCUb
induced by oxidised low-density lipoprotein, which coincided with reduced
production of ROS and pro-inflammatory cytokine and improved
efferocytosis108. In DCs, circadian changes in mitochondrial Ca2+ have also
been found to regulate antigen processing and T cell activation109. These
rhythmic changes in mitochondrial Ca2+ were driven by the circadian
control of key regulators of the mitochondrial calcium uniporter complex,
including MCUb and EMRE.

Finally, recent work byMonteith et al.110 demonstrated that theMCU,
and the resulting Ca2+ flux, steers neutrophils away from primary degra-
nulation and towards suicidal NETosis110. Murine neutrophils deficient in
MICU1exhibited increased bactericidal activity, particularly in the presence
of macrophages or during systemic S. aureus infection110. Moreover, acti-
vation of the MCU and mitochondrial Ca2+ uptake promotes neutrophil
polarisation and chemotaxis, further emphasizing the critical importance of
mitochondrial Ca2+ dynamics in innate immune cells111. All of these studies
on ΔΨm and Ca2+ together illustrate how virtually all key effector functions
of innate immune cells are governed by mitochondrial physiology and
strongly illustrate the concept ofmitochondria as an informationprocessing
system.

Mitochondrial nucleic acid signalling
mtDNA
Mitochondrial nucleic acids encompass the entire genetic material found
within mitochondria, which includes mtDNA and mitochondrial RNA
(mtRNA). The primary component, mtDNA, exists in multiple copies
within eachmitochondrion, with the number varying depending on the cell
type and energy demand1. In humans, mtDNA consists of a circular,
double-stranded molecule containing approximately 16,500 base pairs1.
Unlike nuclear DNA, mtDNA is only inherited matrilineally, reflecting its
unique evolutionary history and mode of transmission1. Within mtDNA,
there are 37 regions encoding essential genes critical for mitochondrial
function, including 13 subunits of the ETC involved in OxPhos, as well as
transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs) necessary for
mitochondrial translation1. However, this only represents a minor com-
ponent of themitochondrial proteome,with the remaining 99% encoded by
the nuclear genome112. The similarities between eukaryotic mtDNA and
bacterial DNA is a key piece of evidence for the endosymbiotic origin of
mitochondria. However, these properties also allow mitochondrial signals
to act as endogenous danger-associated molecular patterns (DAMPs) to
drive inflammation113–115.

mtDNA, akin to bacterial DNA, possesses a significant proportion of
hypomethylated CpG dinucleotides, which are motifs recognised by TLR9
to trigger an innate immune response116. Tissue injury resulting from
trauma can induce a systemic inflammatory response syndrome (SIRS),
which shares clinical similarities with sepsis115. In SIRS, the release of
mitochondrial DAMPs, includingN-formyl peptides andmtDNA, activate
polymorphonuclear neutrophils (PMNs)115. This activation leads to
degranulation and organ injury following TLR9 sensing of mtDNA (Fig.
2)115. Additionally, mtDNA and TLR9 activation drive NET formation and
lung injury during primary graft dysfunction after lung transplantation117.
Furthermore, previous research by Oka et al.118 demonstrated that mtDNA

escape from autophagy in cardiomyocytes contributes to TLR9-mediated
inflammation and subsequent heart failure118. Collectively, these studies
suggest that TLR9 sensing of mtDNA is essential for driving pathological
sterile inflammation following injury.

In addition toTLR9,mtDNAcanalso bedetectedbyother intracellular
sensors such as the absence in melanoma 2 (AIM2) inflammasome119, the
NLRP3 inflammasome46–49, and the cyclic GMP–AMP synthase (cGAS)-
stimulator of interferon response cGAMP interactor 1 (STING) pathway
(Fig. 2)120. AIM2, a cytosolic DNA sensor, triggers the maturation of IL-1β
and pyroptosis in response to mtDNA release119,121. Research by Dang et
al.119 highlights the role of 25-hydroxycholesterol (25-HC) in limiting
cholesterol-dependent mtDNA release following bacterial infection or LPS
stimulation in macrophages119. This suggests that macrophages employ
mechanisms to preserve mitochondrial integrity and prevent excessive
AIM2-mediated inflammation.

While AIM2 can sense mtDNA, newly synthesized and oxidised
mtDNA (ox-mtDNA) fragments are reported to activate the NLRP3
inflammasome, driving the processing of IL-1β38. Recent in vitro studies
propose that the pyrin domain of NLRP3 shares a protein fold with DNA
glycosylases, potentially enabling recognition of ox-mtDNA122.However, an
unidentified mediator may also be involved. Zhu and colleagues identified
an orphan receptor, Nur77, which binds both intracellular LPS and
mtDNA, leading to non-canonical NLRP3 activation123. This mechanism
was found to be independent of canonical activation and unlikely to serve as
an ox-mtDNA receptor for canonical NLRP3 signalling. Recent findings
have also cast doubt on the role of mtROS production in canonical NLRP3
inflammasome activation38. As such, further research is required to
understand theprecise role ofmtROSandox-mtDNA in this signalling axis.

cGAS functions as both a nuclear and cytosolic protein, responding to
cytosolic double-stranded DNA by catalysing the formation of cGAMP, a

Fig. 2 | Mitochondrial nucleic acid signalling in innate immunity. Infection with
bacteria or viruses, as well as tissue injury, can lead tomitochondrial damage and the
release of mitochondrial nucleic acids, including mtDNA and mt-dsRNA.
mt-dsRNA can be sensed by RIG-I andMDA5, which signal via MAVS, to promote
the expression of type I IFN and pro-inflammatory cytokines. Ox-mtDNA is a
reported ligand for the NLRP3 inflammasome triggering pyroptosis and IL-1β
maturation. mtDNA also activates the AIM2 inflammasome, cGAS-STING path-
way, and TLR9 to drive type I IFN and NETosis. 25-HC can inhibit mtDNA release
and AIM2 activation arising from elevated cholesterol.
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second messenger that initiates an inflammatory response via STING120,124.
The activationof STINGbycGAMPpromotes type I IFNproductionvia the
transcription factor interferon-regulatory factor 3 (IRF3), initiating an
antiviral immune response. The cGAS-STING pathway plays a crucial role
in sensing intracellular pathogens, including M. tuberculosis125,
herpesvirus120, dengue virus126, norovirus127, influenza A virus128, encepha-
lomyocarditis virus128 and severe acute respiratory syndrome coronavirus 2
(SARS-CoV2)129, which all promote the release of mtDNA to enhance
detection and antiviral signalling. Moreover, cGAS is also involved in
detecting extracellular bacteria including Pseudomonas aeruginosa, Kleb-
siella pneumoniae, and Staphylococcus aureus130. These findings indicate
that the surveillance of mitochondrial integrity cooperates with viral and
bacterial sensing mechanisms to fully engage the host innate immune
response. However, in the case of SARS-CoV2 and coronavirus disease
(COVID19), this can lead to severe lung inflammation and pathology,
primarily driven by macrophages129.

mtRNA
The process ofmtDNA transcription and translation occurs primarilywithin
the mitochondria, facilitated by the mtRNA machinery. mtRNA includes
precursor transcripts that undergo processing to produce mature mRNAs,
tRNAs, and rRNAs, which are essential for mitochondrial protein synthesis.
A consequence of the bacterial origin of circularmtDNA is that it is subject to
bidirectional transcription, which generates overlapping transcripts capable
of forming long double-stranded RNA (dsRNA) structures131–133.

Similar to mtDNA, mitochondrial dsRNA (mt-dsRNA) has been
found to trigger a type I IFN response mediated by the cytosolic viral RNA
sensors, RIG-I134 ormelanomadifferentiation-associatedprotein 5 (MDA5)
(Fig. 2)133. Deletion of the autophagy protein IRGM1 in macrophages has
been shown to impair mitophagy and drive inflammation via
TLR7 signalling135. TLR7, an endosomal TLR, senses viral and bacterial
single-stranded RNA (ssRNA)136,137, suggesting it may also sense mtRNA
following mitochondrial damage. Supporting this notion, inhibition of the
TCA cycle enzyme fumarate hydratase (FH) in LPS-stimulated macro-
phages, which impairs mitochondrial respiration, is reported to drive IFNβ
release via the combined action of RIG-I, MDA5 and TLR7138. However,
further work is required to determine if this is the case. Suppression of
inflammatory mitochondrial RNA species also appears crucial to prevent
autoimmunity. Defects in RNA editing by ADAR1139, essential to prevent

dsRNA/MDA5-mediated inflammation, and TLR7 gain-of-function
mutations140, are previously underappreciated mechanisms of common
inflammatory diseases, such as SLE.

Together, these studies provide compelling evidence that mitochon-
drial nucleic acid signalling regulates host innate immune responses to
resolve the infection. However, these signalling events must be tightly con-
trolled in order to prevent immunopathology. This dual role reinforces the
concept of mitochondria as sequestered processors within the cell, high-
lighting the importance of maintaining this endosymbiotic relationship7.

Mitochondrial metabolite and lipid signalling
TCA cycle remodelling, signalling and anti-microbial action
The tricarboxylic acid cycle (TCA cycle), also known as the citric acid cycle
or the Krebs cycle, is a fundamental aspect of cellular metabolism141. Con-
sisting of a series of enzymatic reactions, theTCAcycle plays a crucial role in
extracting energy from carbohydrates, fats, and proteins to produce NADH
and FADH2, which then fuel the ETC for ATP synthesis141–143. Besides its
energy-generating function, the TCA cycle contributes to biosynthetic
processes by providing precursors for the synthesis of amino acids,
nucleotides, and other essential biomolecules143. Recent studies have also
revealed intricate connections between TCA cycle remodelling and innate
immunity, unveiling a novel dimension of immune regulation19,33,142,144–146.
Importantly, metabolic intermediates generated from the TCA cycle, or
TCA cycle metabolites themselves, serve as signalling molecules that
modulate immune responses beyond their roles in bioenergetics or bio-
synthetic pathways, which have been extensively reviewed
elsewhere142,147–150. Here, we will highlight several key findings in this area of
research focusing on the mechanisms and kinetics of TCA cycle remodel-
ling, and the anti-microbial and/or signalling roles of α-ketoglutarate, suc-
cinate, fumarate, and itaconate.

As discussed earlier, inflammatory macrophages and DCs suppress
OxPhos in amannerdependentonNOproduction18,20.However,TCAcycle
remodelling downstream of TLR4 activation occurs in stages eventually
leading to the initial accumulation of succinate and itaconate, followed by
their decrease after prolonged stimulation (Fig. 3A)19,138,145,151. This process is
reported to occur in two stages33, but a case for three stages could also be
made152. In the first stage, LPS stimulation transiently increases mitochon-
drial respiration152. This stage is dependent on the mitochondrial glycerol
3-phosphate dehydrogenase (GPD2), a component of the glycerol

Fig. 3 | Mitochondrial metabolite signalling and
anti-bacterial activity in innate immunity. A TCA
cycle remodelling during early and later phases of
stimulation post LPS and IFN-γ. Early- to mid-
phase changes lead to increased itaconate and suc-
cinate levels that can signal through a variety of
mechanisms before decreasing at a later stage. B IL-
4-mediated increases in glutamine anaplerosis leads
to high levels of α-KG that promotes anti-
inflammatory gene expression via increased PHD
and JMJD3 activity. C Mitochondrial-derived ita-
conate is trafficked into phagolysosomes in a TFEB,
Rab32, Lrrk2-dependent manner where it is directly
anti-bactericidal via inhibition of ICL, PCC, or
MUT. Itaconate also activates TFEB to promote
lysosome biogenesis.
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phosphate shuttle, which enhances glucose oxidation to fuel acetyl-CoA-
mediated histone acetylation of key inflammatory genes152. Importantly,
acetyl-CoA is synthesized by the ATP-citrate lyase in the cytosol from
mitochondrial-derived citrate152–154. After this first stage, two different
breakpoints of the TCA cycle have been proposed. The first metabolic
breakpoint occurs at isocitrate dehydrogenase (IDH), while the second
break point occurs at complex II, also known as succinate dehydrogenase
(SDH) (early)33,144. The breakpoint at IDH has been attributed to the
decreased expression and activity downstream of autocrine type I IFN
signalling155. Conversely, the breakpoint at complex II has been attributed to
immunoresponsive gene 1 (IRG1), also known as cis-aconitate decarbox-
ylase (CAD), mediated itaconate synthesis. Itaconate acts as a weak com-
petitive inhibitor of complex II145,146,151 and is also reported to inhibit
IDH2156, linking itaconate to bothTCA cycle breakpoints. The third stage of
TCA cycle reprogramming (late) is largely driven by the inhibition of
pyruvate dehydrogenase complex (PDHC) and the oxoglutarate dehy-
drogenase complex (OGDC)33. Mechanistically, this is controlled by
dynamic changes in the lipoylation state of both PDHC and OGDC
E2 subunits and phosphorylation of the PDHC E1 subunit33. Additionally,
thismay be linked toNOproduction, which inhibits the TCA cycle enzyme
aconitase 2 (ACO2) and PDHC25,157. These two stages of metabolic repro-
gramming are crucial mechanisms to support acute phase inflammation
and restrict a hyperinflammatory response.

The accumulation and release of succinate has emerged as a crucial
signal influencing innate immune responses in both normal and patholo-
gical states. In macrophages, elevated levels of succinate are reportedly
exported from mitochondria to the cytosol during TCA cycle rewiring,
stabilising HIF-1α and thereby promoting the synthesis of pro-
inflammatory cytokines such as IL-1β19,33. HIF-1α stability is regulated by
prolyl hydroxylases (PHDs), which target it for degradation by the pro-
teasome, requiring α-KG as a substrate. Notably, α-KG has demonstrated
the ability to dampen the activation of pro-inflammatory macrophages,
supporting endotoxin tolerance post-activation (Fig. 3B)158,159. Mechan-
istically, α-KG suppresses IKKβ and NF-κB in a PHD-dependent manner
and impedes the stabilisation of HIF-1α158,159. Thus, a reduced α-KG:suc-
cinate ratio is associatedwith the pro-inflammatory phenotype. In contrast,
glutamine-derived α-KG is also required for alternative macrophage acti-
vation driving FAOand Jmjd3-dependent epigenetic reprogramming of IL-
4 target genes158. Succinate oxidation at complex II within mitochondria is
also proposed to drive mtROS from complex I by RET, thereby stabilising
HIF-1α92. Given the reports of complex II inhibition by itaconate and
dimethylmalonate (DMM),which increase succinate levels, reduceHIF-1α,
and limit IL-1β43,59,145, succinate oxidation is likely a stronger driving force
for HIF-1α stabilisation than succinate accumulation per se and requires
further investigation. InDCs, succinate is associatedwith themobilisationof
intracellular Ca2+, leading to migratory responses and acting synergistically
with TLR ligand stimulation to produce pro-inflammatory cytokines160. In
this instance, succinate drives this response via binding to its G-protein
coupled receptor succinate receptor 1 (SUCNR1), also known asGPR91, on
the cell surface. Strikingly, extracellular liver succinate can drive inflam-
mation and non-alcoholic fatty liver disease (NAFLD), which indicates
succinate can act as a mitochondrial DAMP161. However, succinate-
SUCNR1 can also promote hyperpolarisation of anti-inflammatory
macrophages162 and decrease inflammatory markers in adipose tissue163,
suggesting that succinate signalling is context specific.

Itaconate has emerged as a potent immunoregulatory metabolite pri-
marily synthesized by cells of the myeloid lineage150. In macrophages, ita-
conate plays dual roles as a potent anti-bactericidal metabolite and an
immunomodulator that restricts the production of pro-inflammatory
cytokines (Fig. 3C)145,150,151,164. Previously, the anti-bacterial properties of
itaconate were attributed to its interference with bacterial growth through
the inhibition of enzymes such as isocitrate lyase (ICL) in the glyoxylate
cycle151,165 or propionyl-CoA carboxylase (PCC) in the citramalate cycle166.
More recently, itaconate was reported to undergo conversion into the CoA
derivative itaconyl-CoA167, which limits M. tuberculosis growth by

inhibiting B12-depencent methylmalonyl-CoA mutase (MUT)168. As such,
itaconate can target multiple enzymes of pathogen propionate metabolism
to enforce nutrient stress. To combat intracellular bacteria such as
Legionella169 and Salmonella170,mitochondrial-derived itaconate is delivered
to phagolysosomes. In the case of Salmonella infection, this host defence
mechanism relies on a scaffolding complex involving mitochondria, IRG1/
CAD, the GTPase Rab32, Lrrk2 and Salmonella-containing vacuoles
(SCVs)170,171. This crosstalk between mitochondria and phagolysosomes is
dependent on the lysosomal biogenesis factor transcription factor EB
(TFEB)172. Itaconate, in turn, induces lysosome formation by disrupting
mTOR/14-3-3-mediated cytosolic retention of TFEB173. Therefore, itaco-
nate is both a direct anti-bactericidal agent and co-ordinator of cellular
lysosomal signalling. However, many pathogens have evolved intricate
mechanisms in anattempt to evade the anti-bacterial actionof itaconate. For
instance, Yersinia pestis and Pseudomonas aeruginosa encode the enzymes
itaconateCoA transferase, itaconyl-CoAhydratase, and (S)-citramalyl-CoA
lyase that metabolise itaconate to pyruvate and acetyl-CoA and promote
their survival in macrophages174. Conversely, M. tuberculosis encode the
bifunctional enzyme β-hydroxyacyl-CoA lyase required for itaconate and
leucine catabolism175. This nicely highlights the evolutionary arms races that
occur between primary pathogens and host immune responses.

Beyond its anti-bacterial role, itaconate exhibits immunomodulatory
properties via several mechanisms, for an in-depth analysis this has been
nicely reviewed elsewhere150,176,177. Initially recognised as an anti-
inflammatory metabolite for its ability to inhibit complex II145, itaconate
has since been identified as a mildly electrophilic compound capable of
alkylating protein cysteine thiols164, a process termed 2,3-dicarbox-
ypropylation, and glutathione178. In addition, itaconate has also been
identified as a competitive inhibitor of the TET family of α-KG-dependent
DNA dioxygenases179 and a ligand of the α-KG receptor OXGR1180. The
mild electrophilic nature of itaconate enables derivatives, such as dimethyl
itaconate (DMI) or 4-octyl itaconate (4-OI), to modify various metabolic
enzymes, redox regulators, and immune proteins150,176. Target modification
by itaconate derivatives leads to activation of the anti-oxidant and stress-
responsive transcription factors nuclear factor erythroid 2-related factor 2
(NRF2) andactivating transcription factor 3 (ATF3),which in turn can limit
pro-inflammatory cytokines such as IL-1β and IL-6164,178. NRF2 stabilisation
is also decreased in IRG1-deficient macrophages and Kupffer cells under
certain contexts suggesting a role for endogenous itaconate in
NRF2 stabilisation178,181,182.However, treatmentwithunderivatised itaconate
has mixed results with regard to NRF2, increasing stability in some
instances183, but not in others43 for unclear reasons. Furthermore, itaconate
derivatives also alkylate key enzymes of glycolysis, including fructose-
bisphosphate aldolase A (ALDOA) and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), thereby curbing aerobic glycolysis associated
with pro-inflammatory macrophage activation184,185. The list of targets
modified by itaconate derivatives continues to grow and current data
indicates theymay represent a novel class of anti-inflammatory agents with
clinical potential during infection and inflammatory disease176,177. Itaconate
accumulation, in combination with NO, is also an important mediator of
innate immune tolerance limiting NLRP3 inflammasome activation and
pyroptosis through mechanisms dependent on complex II inhibition or it’s
electrophilic properties186–188. Furthermore,myeloid-derived IRG1dampens
neutrophil-mediated lung inflammation followingM. tuberculosis infection,
underscoring the importance of itaconate in vivo189. However, following
trauma, itaconate-producing neutrophils play an important role in tissue
inflammation and the wound healing process following tendon injury190. In
contrast, itaconate production in DCs impairs anti-parasitic immune
responses by promoting mtDNA-dependent PD-L1 expression following
Plasmodium chabaudi infection, which limits CD8+ T cells191. This suggests
that the beneficial effects of itaconate synthesis may vary depending on the
pathogen involved. In summary, these studies highlight the importance of
the mitochondrial IRG1-itaconate axis in regulating the innate immune
response to pathogens, and for the most part, in restricting hyperin-
flammatory responses. However, the relative importance of endogenous
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itaconate cysteine reactivity versus metabolic perturbations during an
immune response remains to be determined and requires further
investigation.

Similarly to itaconate, fumarate is a mildly electrophilic metabolite
that canmodify protein cysteine thiols and glutathione, a process termed
succination138. Fumarate levels increase following inflammatory mac-
rophage activation in a mechanism dependent on glutamine anaplerosis
and induction of aspartate-arginosuccinate shunt138,144. Inhibiting this
shunt limits arginine synthesis and leads to a reduction in pro-
inflammatory mediators, including NO and IL-6144. Fumarate accu-
mulation can also enhance TNF-α production by inhibiting autocrine
IL-10 signalling in macrophages138 and inhibiting lysine demethylase 5
(KDM5) histone demethylases in monocytes192. Furthermore, fumarate
accumulation has also been implicated in anti-bacterial defence owing to
its cysteine reactivity35, which can intoxicate pathogens including
Mycobacterium tuberculosis193. The intricate interactions between the
TCA cycle and innate immunity underscore the significance of meta-
bolic reprogramming in shaping immune responses. Understanding the
regulatory roles of TCA cycle intermediates, such as succinate and ita-
conate, opens new avenues for therapeutic interventions using immu-
nomodulatory metabolite derivatives.

Cardiolipin signalling
Cardiolipin is a unique phospholipid found predominantly in the IMM of
eukaryotic cells and can be found inmost bacterial species194. Structurally, it
consists of two phosphatidyl groups linked by a glycerol backbone, resulting
in a dimeric structure. The presence of four acyl chains contributes to its
distinctive conical shape, which promotes curvature of the membrane and
cristae morphology194. Approximately 10-15% of all mitochondrial phos-
pholipid content is cardiolipin194. Cardiolipin stabilises the respiratory chain
complexes to support mitochondrial bioenergetics, whilst also being
implicated in protein import, mitophagy, apoptosis and mitochondrial
dynamics194. In addition to these identified functions, cardiolipin is emer-
ging as a regulator of innate immune signalling and inflammatory cell death.

Cardiolipin found in human serum has been observed to have an
interesting role in immune regulation195. It has been reported to promote the
surface expression of the non-polymorphic major histocompatibility
complex (MHC) class I-likemolecule CD1d in DCs, a process that relies on
peroxisome proliferator-activated receptor (PPAR) nuclear hormone
receptors195. Furthermore, CD1d is capable of binding to bacterial and
eukaryotic cardiolipin andwhen presented byDCs, can activate splenic and
hepatic γδ T cells in vivo196. These findings suggest that DCs play a crucial
role in antigen presentation of bacterial cardiolipin following infection or

mitochondrial cardiolipin following tissue injury, which may represent a
key immunosurveillance mechanism.

Inmacrophages, cardiolipin has been implicated in supportingNLRP3
inflammasome activation (Fig. 4)197. Research suggests that cardiolipin
interacts with NLRP3 after translocation toOMM, indicating that the outer
membrane is a critical site for co-ordinating NLRP3 signalling197. Notably,
NLRP3 activation was hindered when cardiolipin synthase (CSL) was
genetically silenced197. Recent findings also indicate that GSDMD causes
mitochondrial damage by permeabilising both the IMM and OMM69,198,199.
Mechanistically, impairing cardiolipin biosynthesis or the transfer of car-
diolipin to the OMM by the scramblase PLSCR3 prevented GSDMD
recruitment and subsequent pyroptosis198. However, high-resolution
structures of NLRP3-activated ASC complexes using cryo-electron tomo-
graphy do not show co-localisation with mitochondria, despite supporting
GSDMD-mediatedmitochondrial pore formation199. This data suggests that
NLRP3 signalling at the OMM may not occur as previously suggested.
However, it’s important to note that an earlier interaction between NLRP3
and the OMM, whichmay not have been captured in the structure, cannot
be conclusively ruled out.

Furthermore, Reynolds et al. (2023) reported that loss of cardiolipin
biosynthesis, achieved by silencing CSL in macrophages, also impaired Il1b
expression via a complex II-dependent mechanism26. This indicates that a
loss of cardiolipin could more broadly impact the pro-inflammatory
response and limit NLRP3-mediated IL-β release by reducing pro-IL-1β
levels. Indeed, the importance of cardiolipin in mitochondrial respiration
and cristae architecture presents a challenge in distinguishing its role in
bioenergetics from its involvement inOMMsignallingwhen its biosynthesis
is disrupted. Mitochondrial respiration relies on the proper functioning of
respiratory chain complexes embedded within the IMM, where cardiolipin
plays a crucial role in stabilising and optimising their activity. Disruption of
cardiolipin biosynthesis can impair mitochondrial respiration, affecting
cellularATPproduction and potentially influencingNLRP3 inflammasome
activation, as bioenergetics status is a known regulator of this process38. As
such, the precise role of cardiolipin is unclear and will require sophisticated
experimental approaches to disentangle.

Mitochondria as a signalling platform
A key facet of mitochondrial signal transduction is found in the organelles
ability to function as a scaffold, thereby facilitating cellular signalling cas-
cades. Central to this paradigm ismitochondrial antiviral signalling protein
(MAVS), also known as IFNβpromoter stimulator 1 (IPS1), CARDadaptor
inducing IFNβ (CARDIF) and virus-induced signalling adaptor (VISA), a
key mediator that interfaces with RIG-I-like receptors (RLRs)200. As such,

Fig. 4 | Mitochondrial signalling platform in
innate immunity.MAVS localized to the OMM
integrates the sensing of viral RNA by RIG-I or
MDA5 to trigger a type I IFN response and recruit
NLRP3 to mitochondria, an event also attributed to
cardiolipin. HK2 association with MAVS and
mitochondria promotes its enzymatic activity,
which can lead to increased lactate and MAVS
inhibition. An inhibition that’s relieved when HK2
dissociates from mitochondria. HK2 can also
associate with VDAC and sense NAG, a breakdown
product of bacterial peptidoglycan. HK2 dissocia-
tion from VDAC promotes mitochondrial Ca2+

uptake, VDAColigomerisation, andmtDNA release
to activate the NLRP3 inflammasome.
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MAVS serves as a critical nexus for the integration of intracellular antiviral
signalling (Fig. 4)201. Structurally, MAVS is a 540-amino acid protein
comprising three distinct functional domains: an N-terminal CARD
domain, a proline-rich region, and a C-terminal transmembrane domain.
The N-terminal CARD domain of MAVS facilitates interaction with the
CARD domains of RLRs, including RNA helicases RIG-I and MDA5202.
This interaction is pivotal for initiating signalling events leading to the
release of type I IFNand the activation of theNF-κBand IRFpathways203–205.
The subcellular localisation ofMAVSadds an additional layer of complexity
to its function. MAVS dynamically associates with the OMM, endoplasmic
reticulum, and peroxisomes, suggesting a versatile role in coordinating
antiviral responses across distinct cellular compartments206. Upon viral
infection, peroxisomal MAVS induces the rapid IFN-independent expres-
sion of defence factors that provide short-term protection, whereas mito-
chondrial MAVS activates a delayed IFN-dependent signalling pathway,
which amplifies and stabilises the antiviral response206.

Upon activation, MAVS undergoes oligomerisation, thereby forming
fibrils that induce membrane remodelling and signalling complex
assembly207,208. Independent of RLR sensing of RNA, mtROS can promote
MAVS oligomerisation and type I IFN production in SLE patients207, which
suggest MAVS may act as a mitochondrial redox sensor. Like cardiolipin,
MAVS is also reported to recruit the NLRP3 inflammasome to mitochon-
dria, thereby triggering its activation209,210. This appears to occur whenusing
standard NLRP3 stimuli209 and in response to Sendai Virus, also known as
murine respirovirus, infection210. Notably, while a structural study failed to
capture an interaction between NLRP3 and mitochondria using cryo-
electron ET199, this studywas not conducted in the context of viral infection.
Therefore, it remains possible that NLRP3 interacts with mitochondria
following viral sensing andMAVS oligomerisation, an aspect that warrants
further investigation.

The localisation of MAVS to the mitochondrial membrane suggests a
potential interplay with mitochondrial dynamics within macrophages.
Recent studies propose that MAVS may influence mitochondrial mor-
phology and function, thereby modulating the metabolic profile of mac-
rophages during the course of an antiviral response. Specifically, the fusion
mechanisms of the OMM are rigorously governed by Mitofusin 1 (Mfn1)
andMitofusin 2 (Mfn2), exerting regulatory control over MAVS activity211.
Surprisingly, while Mfn1 positively regulates MAVS-mediated antiviral
responses, its close homolog Mfn2 directly inhibits MAVS, possibly unre-
lated to its function in mitochondrial dynamics212,213. Thus, although Mfn1
and Mfn2 share the function of inducing mitochondrial fusion, they play
opposing roles in viral innate immunity. Mitochondrial dynamics, espe-
ciallymitochondrial fusion, appears crucial for the innate immune response.
Conversely, promoting mitochondrial fission, via dynamin-related protein
1 (DRP1), inhibits MAVS activity during viral infection214,215.

Hexokinase 2 (HK2), a key enzyme in glucosemetabolism has recently
been identified as a novel interactor withMAVS (Fig. 4)216,217.WhenMAVS
is inactive, it forms a complex with HK2, inducing its localisation to the
mitochondria, where it associates with the OMM through its interaction
with the voltage-dependent anion channel (VDAC), and maintaining its
enzymatic activity216. RLR signallingdisrupts glucosemetabolism, leading to
the downregulation of glycolysis. Mechanistically, MAVS, in its active state,
binds to RIG-I, releasingHK2 into the cytoplasm, impairing its activity and
subsequent glucose metabolism. HK2 inactivation leads to the decrease of
intracellular lactate levels, which can inhibit RLR/MAVS signalling216. This
intricate regulation suggests a role for the MAVS-HK2 axis in connecting
the innate immune response with cellular bioenergetics during viral chal-
lenges. In macrophages, HK2 is also reported to associate with VDAC on
mitochondria to act as an innate immune sensor for bacterial
peptidoglycan218. Phagosomal processing of peptidoglycan leads to the
release of N-acetylglucosamine (NAG) that inhibits HK2 triggering its
dissociation from the OMM and activates NLRP3218. Mechanistically, HK2
dissociation from the OMM promotes mitochondrial Ca2+ uptake, VDAC
oligomerisation and the release of mtDNA219. Finally, in DCs, TLR

activation promotes HK2 association with mitochondria to facilitate the
rapid induction of glycolysis, which was essential for DC activation32.

In summary, the mitochondrial signalling platform, often centred
around MAVS, HK2 and VDAC, serve as a crucial nexus orchestrating
innate immune responses against bacterial and viral infections. The con-
vergence of mitochondrial dynamics and antiviral signalling pathways
underscores the intricate cellular mechanisms deployed to counteract
pathogenic threats. Future research endeavours focused on unravelling the
complexities of RLR recruitment tomitochondria are poised to enhance our
comprehensionof this vital axis in innate immunity.Collectively, the studies
on NLRP3 also highlight how all facets of mitochondrial physiology are
intertwined and work together to drive activation of this complicated sig-
nalling complex.

Future outlook and concluding remarks
Much of the research conducted thus far has involved extensive in vitro
stimulations of bone marrow- or monocyte-derived macrophages, DCs,
and neutrophils to model in vivo cell populations. While these model
systems are valuable for studying innate immune cell biology, they do
not precisely replicate tissue-resident or infiltrating in vivo cell popu-
lations. The latter are often shaped by a complex and dynamic micro-
environment that is difficult to reproduce in vitro220. However, there are
now expanding toolkits emerging that will facilitate the measurement of
metabolic genes and metabolism in immune cells in vitro and in vivo.
Experimental changes to the medium composition and cell culture
geometry can now more closely reproduce in vivo conditions without
over complicating experimental methodologies221–223. Significant pro-
gress has beenmade in single-cell techniques, including single-cell RNA
sequencing (scRNA-seq), which has been used to identify OxPhos as a
distinguishing feature of tissue-resident macrophages across different
organs under steady state and obesogenic conditions224. High-
dimensional spectral flow cytometry has also identified tissue-resident
macrophage metabolic heterogeneity during helminth infection225.
Other emerging techniques, such as single-cell energetic metabolism by
profiling translation inhibition (SCENITH), allow the study of energy
metabolism using flow cytometry and have been applied to in vitro and
ex vivo human andmurinemyeloid populations226,227. Finally, progress is
also being made in mass spectrometry imaging (MSI), which has been
applied for joint protein-metabolite profiling of single immune and
cancer cells228. These expanding metabolic toolkits will enable greater
investigations of mitochondrial metabolism and signalling in innate
immune cell populations and beyond.

Since the designation of mitochondria as the ‘powerhouse of the cell’,
further research has revealed, as discussed here, their role as centrally
positioned signalling hubs essential for innate immune signalling.However,
while the importance ofmitochondria cannotbeoverstated,manyaspectsof
how they influence innate immune function remain unclear. There remain
many outstanding questions to be addressed in future work to better
understand the role of mitochondria in innate immunity. This is exempli-
fied by the NLRP3 inflammasome, which is evidently regulated by mito-
chondrial function (Table 1). What is the precise role of specific
mitochondrial signals such as mtROS, cardiolipin, and ATP synthesis for
the activation of this inflammatory signalling complex during bacterial and
viral infection?And are these involved inNLRP3 activation in vivo?What is
the source of mtROS and is it dependent on RET?56 The answer to these
outstanding questions may aid with therapeutic targeting of this process
during infection or inflammatory disease. Finally, given the importance of
mitochondria to innate immune cell biology, to what extent are mito-
chondrial diseases amanifestation of innate immune cell dysfunction?229 Or
what proportion of more common autoimmune disorders are driven by a
break in mitochondrial endosymbiosis?7 We hope this review will inspire
research into these andmanyotherquestions that remain tobe explored and
will promote a clearer comprehension of the extensive role of mitochondria
in innate immunity.
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