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A deep learning model of tumor cell 
architecture elucidates response and 
resistance to CDK4/6 inhibitors

Sungjoon Park    1,6, Erica Silva2,6, Akshat Singhal    3,6, Marcus R. Kelly1,4, 
Kate Licon1, Isabella Panagiotou1, Catalina Fogg1, Samson Fong5, John J. Y. Lee1, 
Xiaoyu Zhao1, Robin Bachelder    1, Barbara A. Parker1,4, Kay T. Yeung1,4 & 
Trey Ideker    1,3,4,5 

Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6is) have revolutionized 
breast cancer therapy. However, <50% of patients have an objective 
response, and nearly all patients develop resistance during therapy.  
To elucidate the underlying mechanisms, we constructed an interpretable 
deep learning model of the response to palbociclib, a CDK4/6i, based on a 
reference map of multiprotein assemblies in cancer. The model identifies 
eight core assemblies that integrate rare and common alterations across  
90 genes to stratify palbociclib-sensitive versus palbociclib-resistant cell 
lines. Predictions translate to patients and patient-derived xenografts, 
whereas single-gene biomarkers do not. Most predictive assemblies can 
be shown by CRISPR–Cas9 genetic disruption to regulate the CDK4/6i 
response. Validated assemblies relate to cell-cycle control, growth factor 
signaling and a histone regulatory complex that we show promotes S-phase 
entry through the activation of the histone modifiers KAT6A and TBL1XR1 
and the transcription factor RUNX1. This study enables an integrated 
assessment of how a tumor’s genetic profile modulates CDK4/6i resistance.

Cell-cycle activation and sustained proliferation are hallmarks of can-
cer1. Cyclin-dependent kinases 4 and 6 (CDK4/6) trigger cells to pass 
the G1/S cell-cycle restriction point by phosphorylating the retinoblas-
toma (RB) transcriptional repressor and its paralogs. Inhibiting these 
kinases has been of high interest in cancer drug development2,3. Thus 
far, three CDK4/6 inhibitors (CDK4/6is) (palbociclib, ribociclib and abe-
maciclib) have been approved in combination with endocrine therapy 
for the treatment of hormone receptor-positive, human epidermal 
growth factor (EGF) receptor 2-negative (HR+, HER2−) breast cancer, 
and clinical trials are underway in a spectrum of other tissue types4. 
In metastatic breast cancer, these agents have appreciably improved 

treatment outcomes, increasing progression-free and overall sur-
vival with manageable adverse effects4,5. However, objective tumor 
response is observed in <50% of patients who receive CDK4/6 inhibitors 
as first-line therapy, and nearly all initially responsive patients develop 
drug resistance with subsequent mortality6,7.

Studies of resistance to these drugs have largely defined two 
groups of molecular biomarkers: loss-of-function alterations to anti-
proliferative CDK pathway genes (for example, CDKN2A/B/C or RB1) or 
gain-of-function alterations to progrowth genes (for example, CDK2, 
CDK4/6, CCND1, CCNE1, E2F or PIK3CA). These markers have been char-
acterized predominantly in preclinical in vitro studies, with clinical 
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bank of artificial neurons, reflecting its biological state or ‘in silico 
activity’ (Extended Data Fig. 1a). Connections were also established 
between the neurons of an assembly and those of larger assemblies 
that contain it (Extended Data Fig. 1b), allowing for the flow of genetic 
information from small focal assemblies (for example, ‘CDK holoen-
zyme complex’) to larger-scale assemblies and superassemblies (for 
example, ‘cell cycle’). The final protein assembly at the root of the hier-
archy represented the model output—the predicted drug response 
of a tumor sample given the input set of genetic alterations (Fig. 1b).

To train NeST-VNN, we leveraged drug response data for 1,244 
genomically characterized tumor cell lines23, obtained by harmonizing 
the Cancer Therapeutics Response Portal (CTRP)24,25 and Genomics of 
Drug Sensitivity in Cancer (GDSC)26,27 databases (Methods). These data 
included the response to the CDK4/6i palbociclib, which had been well 
characterized in 947 cell lines. For comparative benchmarking, we also 
examined 50 non-CDK-related drugs investigated in at least 200 cell 
lines, for which the cellular responses displayed sufficient variability, 
with many examples of sensitivity and resistance (Methods).

Evaluation of prediction performance
We constructed NeST-VNN drug response models for palbociclib and 
separately for each of the 50 benchmark drugs, using standard neural 
network learning procedures based on backpropagation (Methods). 
Each model was trained to use the gene alteration profile of a cell line to 
predict the corresponding area under the dose–response curve (AUC). 
Training and performance assessment was conducted using nested five-
fold cross-validation (Methods), with each fold setting aside 64% of cell 
lines for training, 16% for validation (used for tuning hyperparameters) 
and 20% for testing. Although nested cross-validation is computation-
ally intensive, it fully insulates model testing from parameter tuning 
while maximizing the amount of testing that can be performed. We com-
pared the NeST-VNN approach to three state-of-the-art alternatives: 
ElasticNet, random forest (RF) and a conventional black-box artificial 
neural network (ANN) (Extended Data Fig. 2a,b and Supplementary 
Table 1). The overall performance of NeST-VNN was generally compa-
rable to that of the state-of-art models and often better, with NeST-VNN 
achieving the best performance for more than half of the tested drugs 
(62.7%; Extended Data Fig. 2a,b). NeST-VNN trained for palbociclib 
was one of the top-performing models, significantly outperforming 
the ElasticNet and ANN models and slightly, but not significantly, out-
performing RF (Extended Data Fig. 2c and Supplementary Table 1).

To translate predictions to discrete tumor response outcomes, 
we thresholded the AUC such that predictions below a value tlow were 
labeled ‘sensitive’, those above a value thigh were labeled ‘resistant’ and 
those between these two thresholds were labeled ‘undefined’ (Fig. 2a).  
At the most inclusive setting, tlow = thigh = median(AUC), NeST-VNN 
could accurately discriminate between actual sensitive and resistant 
cell lines in heldout test data, with a diagnostic odds ratio (OR) of 6.0. 
Discriminative power increased substantially with more stringent 
thresholds. For instance, setting the thresholds 1 s.d. from the median 
(tlow, thigh = median(AUC) ± s.d.(AUC)) yielded a very high OR of 40.1, 
indicating that samples predicted as resistant were approximately 40 
times more likely to test as resistant than samples predicted as sensi-
tive (Fig. 2b). The trade-off for higher accuracy was that samples were 
left undefined (66%), increasing specificity but decreasing sensitivity 
(Extended Data Fig. 2d).

Translation to patient-derived xenografts and patients
Next, we examined the performance of NeST-VNN in a study of 
patient-derived xenografts (PDXs)28, including n = 172 samples 
treated with a CDK4/6i (ribociclib). Each PDX sample was classified 
as sensitive, resistant or undefined using thresholds at 1 s.d. from 
the median (tlow, thigh = median(AUC) ± s.d.(AUC)). PDX samples pre-
dicted to be sensitive exhibited significantly longer progression-free 
survival (duration from the start of treatment to the doubling of 

assessments obtained primarily through retrospective analyses4,5. RB1 
mutation bears the strongest burden of evidence, as it has been exten-
sively associated with CDK4/6 drug resistance in cell lines and patient 
cohorts8. However, it and other markers have met with inconsistent 
results in prospective clinical trials8, suggesting that our understand-
ing of this drug response is still incomplete.

Deep learning is a powerful general methodology in precision 
medicine, including the use of molecular profiles to predict drug 
responses9. Such models are typically trained to maximize the accuracy 
of outcome prediction (for example, whether a patient will respond to 
a drug) without attempting to reveal the internal cellular and molecular 
mechanisms by which that outcome is achieved. In this regard, it is 
notoriously difficult to interpret which molecular features are relevant 
and even more difficult to describe how these features integrate with 
one another in the logic of molecular pathways10. To create models that 
are both predictive and interpretable11,12, we and others have advanced 
a series of ‘visible’ neural network (VNN) architectures13–16 that are 
guided by knowledge maps of cellular components and functions. For 
example, using such a model, Elmarakeby et al. found that metastatic 
outcomes in prostate cancer were well predicted by convergent genetic 
alterations within a mouse double minute (MDM)–tumor protein 53 
(TP53) inhibition pathway, implicating MDM4 in resistance to antian-
drogen therapy15.

Thus far, VNN models have been structured using Gene Ontol-
ogy17 or Reactome18, two general human expert-curated databases of 
known cellular components and functions that have not been explicitly 
designed to capture the molecular pathways of cancer. To define and 
discover cancer mechanisms systematically, we recently developed 
a hierarchical map of multiprotein assemblies called NeST (Nested 
Systems in Tumors)19. To build this map, we used affinity purification–
mass spectrometry (AP–MS) to interrogate the physical interactions 
of a broad set of frequently altered cancer proteins. These data were 
integrated with other systematic omics datasets to create a large can-
cer protein–protein association network. Structural analysis of this 
network revealed a hierarchy of protein assemblies in which small, 
specific complexes nest within larger communities corresponding to 
broad processes and organelles. NeST was defined as the final hierarchy 
of 395 assemblies found to be under significant selection pressure for 
somatic mutations in one or more adult tumor types (Fig. 1a)19. Beyond 
the identification of the mutated protein assemblies, NeST has not yet 
been used to inform drug response models.

Here, we use this experimentally derived NeST map as the founda-
tion for a visible deep learning approach to understand how patterns 
of genetic alterations govern the tumor response to CDK4/6 inhibi-
tion. This model is functionally predictive of palbociclib treatment 
outcomes and can be structurally interpreted, revealing a focal set 
of protein assemblies on which common and rare cancer mutations 
converge to affect drug resistance or sensitivity (Fig. 1b).

Results
Implementation of a cancer-oriented VNN
We defined a set of 718 genes assessed by one or more clinical cancer 
gene panels and studies, including the FoundationOne CDx panel20, 
Tempus xT21 and Project GENIE (Genomics Evidence Neoplasia Infor-
mation Exchange)22. We then queried NeST to extract a hierarchy of 
131 protein assemblies containing proteins encoded by the clinically 
assessed genes. This hierarchy was used to guide the architecture of 
a VNN following a previously described approach13 (Fig. 1b, Extended 
Data Fig. 1a and Methods). This model of cancer cell structure and 
response, which we call NeST-VNN, allowed for three binary input fea-
tures per gene, describing the presence or absence of point mutation/
insertion/deletion, copy number amplification (CNA) or copy number 
deletion (CND) (Fig. 1b and Methods). These gene-level input features 
were integrated within their respective protein assemblies in subse-
quent layers of the NeST-VNN, with each assembly represented by a 
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tumor volume) than those predicted to be resistant, suggesting 
that predicted sensitivity was associated with impaired tumor 
growth (log-rank P = 0.04, hazard ratio 0.53, 95% confidence interval  
0.30–0.97; Fig. 2c and Methods).

After this analysis in xenografts, we evaluated model performance 
in predicting treatment outcomes for 226 patients with breast cancer 
from the GENIE metastatic breast cancer cohort22. These patients 
had been treated with baseline endocrine therapy with (n = 67) or 
without (n = 159) a CDK4/6i. Each patient was classified as ‘sensitive’ 
or ‘resistant’ using the threshold tlow = thigh = median(AUC) (no ‘unde-
fined’ category was used because the number of treated samples was 
less than that for the earlier PDX or cell line analysis). The resistant 
category was further equally split to denote ‘partially resistant’ and 
‘strongly resistant’ subgroups. For patients treated with a CDK4/6i, 
those predicted to be sensitive had significantly longer survival than 
those predicted to be strongly resistant (log-rank P = 0.02, hazard 
ratio 0.21, 95% confidence interval 0.05–0.91; Fig. 2d). Moreover, for 
the strongly resistant subgroup, the addition of the CDK4/6i failed to 
produce a significant increase in overall survival compared to base-
line therapy (P = 0.37). These predictions outperformed single-gene 
markers of palbociclib resistance29 (RB1 mutation) or sensitivity30,31 
(CCND1 CNA) that had been previously suggested, consistent with 
the mixed results of these markers in clinical trials8 (Extended Data 
Fig. 2e,f). In patients who did not receive a CDK4/6i, no significant 
survival differences were observed among the predicted sensitive/
resistant/strongly resistant class labels (all comparisons with log-rank 
P > 0.1; Fig. 2d). These results indicate that the NeST-VNN palbociclib 
model translates to the population of patients with breast cancer and 
is specifically predictive of response rather than generally prognostic 
of patient survival.

Interpreting the model to identify important protein 
assemblies
Having seen that the NeST-VNN model was predictive of drug response 
in tumor cell lines, PDX samples and patients, we sought to interpret 
which protein assemblies were important to this process. Following a 
previous method13, we computed a quantitative importance score for 
each assembly according to how well its in silico activity was associated 
with the final drug response prediction (Fig. 3a, Supplementary Table 2  
and Methods). Assemblies containing the primary CDK4 and CDK6 
drug targets were of significantly higher importance than expected 
by chance, serving as positive controls (P = 5 × 10–5; Fig. 3a and Sup-
plementary Table 2). For example, one of the important CDK assem-
blies was NeST:110 (CDK holoenzyme complex I; Fig. 3b,c), comprising 
the cyclin D–CDK4–CDK6 complex along with upstream inhibitors 
(CDKN1/2 protein families) and downstream targets (RB1). Positive 
control assemblies were also observed for other top-performing drug 
models; the model for the drug nutlin-3a, which targets TP53 activity 
through MDM2, placed high importance on assemblies containing 
these proteins (P = 6.8 × 10–10; Extended Data Figs. 2a and 3a).

For all drug models, assembly importance tended to increase with 
size and depth in the hierarchy, reflecting the progressive integration 
of genetic information. Assembly importance was similar between cell 
lines and patient tumors (Fig. 3d) or PDX samples (Fig. 3e). In contrast, 
little correlation was observed between cell lines and clinical samples 
when examining the importance of individual gene mutations (Fig. 3f) 
or copy number aberrations (Extended Data Fig. 3b,c). These results 
are consistent with the premise that most individual genetic altera-
tions are rare, with variable incidence across contexts32, and suggest 
that the effects of genetic alterations on protein assemblies can be 
substantially more stable.
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Fig. 1 | Architecture and features of the visible deep learning model.  
a, Workflow depicting the construction of the NeST hierarchy of cancer 
protein assemblies by Zheng et al.19. AP–MS data for 61 cancer protein baits 
were combined with a compendium of other systematic proteomics and omics 
datasets to produce an integrated protein network. This network was analyzed 
by multiscale community detection to identify a hierarchy of nested protein 

assemblies. Those assemblies under mutational selection pressure in different 
tumor types were then identified, yielding the NeST map. b, VNN architecture 
for translating tumor genetic alterations (top) to drug responses (bottom) 
by genetic flow through the NeST map (middle). NeST is reduced to the 131 
assemblies that involve genes measured by clinical gene panels (see text).
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Of 33 assemblies that were of high importance for palbociclib 
response prediction in cell lines (importance ≥ 0.5), we focused on eight 
distinct minimally overlapping assemblies whose importance scores 
remained significant under multiple-hypothesis correction (hereafter 
referred to as ‘core assemblies’; Methods). Beyond regulation of CDK 
activity, core assemblies spanned histone and chromatin regulation, 
DNA damage response and growth factor signaling (Fig. 3a), integrat-
ing rare and common genetic alterations across 90 genes (Extended 
Data Fig. 3d). Most core assemblies were also important for predicting 
outcomes in clinical and PDX samples (Fig. 3d,e).

Systematic validation of core assemblies by loss-of-function 
screens
We next sought to validate the palbociclib core assemblies using two 
CRISPR (clustered regularly interspaced short palindromic repeat) 
loss-of-function screens (Fig. 4a): a published chemogenetic screen 
involving genome-wide knockout (KO) of single genes in combination 
with palbociclib treatment33 and a de novo dual CRISPR screen in which 
we paired gene KOs in selected NeST-VNN assemblies with a second gene 
KO targeting CDK4 or CDK6 (Fig. 4a and Methods). For the chemoge-
netic screen, we assessed each assembly in NeST for the enrichment 
of genes whose KOs modulate cell fitness in the context of palbociclib 
treatment (Methods). The enrichments of the eight core assemblies 
tended to be significantly higher than those of nonimportant controls 
(P = 0.005, Mann–Whitney U test), with four of these assemblies in 
particular (regulation of CDK activity, histone-mediated transcription 
regulation, DNA damage response, promyelocytic leukemia (PML) 
body) showing stronger effects than any assembly in the control set 
(Fig. 4b and Supplementary Table 3). Such enrichment was due to 

KOs in a diversity of genes, including roughly a dozen with extreme 
loss-of-fitness phenotypes (Fig. 4c; for example, BCL6, CCND3, CDK4, 
CDK5, RAD51C, TOP2A, BARD, AURKA, AURKB) and several causing gain 
of fitness (for example, BRCA2, CTNNB1, CDKN2B, MSH6, MLH3). Enrich-
ment was not observed for a genome-wide KO screen without palbo-
ciclib treatment34, indicating that at least some of the effect was due 
to gene–drug interactions rather than independent gene essentiality 
(Methods and Fig. 4d). We then moved on to our de novo dual CRISPR KO 
screen and noted that this screen and the earlier chemogenetic screen 
were reasonably consistent with respect to gene KO fitness effects 
(Pearson ρ = 0.48; Fig. 4e). Disruptions in all six of the core assem-
blies with sufficient coverage in our gene KO panel displayed a trend 
toward increased cell fitness (Fig. 4f,g and Supplementary Table 3).  
Taken together, these results indicate that engineered genetic disrup-
tions in protein assemblies identified by NeST-VNN can influence tumor 
cell growth in the setting of CDK4/6 inhibition, whether such inhibition 
is induced by a drug (Fig. 4b) or CDK4/6 KO (Fig. 4f,g).

Exploration of gain-of-function alterations in a histone 
transcriptional assembly
An open question is how CDK4/6 and the G1/S transcriptional program 
interact with other cell functions, including upstream modulators and 
downstream effectors. A notable assembly in this regard was NeST:85 
(histone-mediated transcription regulation), a densely connected 
complex of 15 proteins with roles in histone acetylation, deacetylation 
and transcriptional activation (Fig. 5a). This assembly was important 
for the CDK4/6i response in cell lines (Fig. 3a), PDX samples (Fig. 3e 
and Extended Data Fig. 4b) and patients (Fig. 3d). It had also been vali-
dated by CRISPR loss-of-function analysis (Fig. 4b and Supplementary 
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Table 3). However, most of the frequent genetic alterations affecting 
this assembly in tumor cell lines or patients were not loss-of-function 
events but gene CNAs (Fig. 5b), which were especially prevalent in 
lung, oropharyngeal and gynecologic tumors (frequencies 15–35%; 
Extended Data Fig. 4a). CNAs also accounted for the top five genetic 
alterations in this assembly that were most predictive of palbociclib 
resistance, in particular those of MYC, TERT, KAT6A, TBL1XR1 and RUNX1 
(Fig. 5c and Methods). Each of these amplifications had a resistance 
OR of approximately 2.0, indicating that cells harboring CNAs are 

twice as likely to exhibit resistance to palbociclib than cells without 
CNAs (Fig. 5c).

Motivated by these findings, we turned to the technique of CRISPR 
activation (CRISPRa), which uses the dCas9 (dead Cas9 endonuclease)–
VPR (VP64–p65–Rta) transcriptional activator to increase expression 
from gene promoters targeted with CRISPR single guide RNAs (Fig. 5d). 
For these experiments, we selected A549 lung carcinoma epithelial 
cells, which harbor few genetic alterations in the NeST:85 assembly 
compared to many other common tumor cell models for which multiple 
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The cyclin D–CDK complex inhibits RB1 by phosphorylation, such that it 
no longer transcriptionally represses genes required for S-phase entry and 
subsequent DNA replication. d, Scatterplot of assembly importance in the 
clinical versus cell line contexts (x axis versus y axis). e, Scatterplot of assembly 
importance in the PDX versus cell line contexts (x axis versus y axis). f, Scatterplot 
of gene mutation importance in the clinical versus cell line contexts (x axis 
versus y axis). DREAM, dimerization partner, RB-like, E2F and multivulval class 
B; MAPK, mitogen-activated protein kinase; RTK, receptor tyrosine kinase; Reg., 
regulation; tx, transcription; med., mediated; stim., stimulation.
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Fig. 4 | Systematic validation of palbociclib response mechanisms.  
a, Schematic overview of CRISPR screens in MCF7 breast tumor cells. Individual 
sgRNAs targeting genes in protein assemblies were combined with palbociclib 
(CDK4/6i) or a second sgRNA targeting CDK4 or CDK6. Cells harboring the Cas9 
nuclease were infected with lentiviral-packaged sgRNAs and propagated under 
selection. The palbociclib screen was from Carpintero-Fernández et al.33;  
CDK4 and CDK6 KO screens were newly generated in the present study.  
b, Violin plots illustrating the enrichment of assemblies for gene KOs modulating 
cell fitness in the context of palbociclib treatment, comparing core assemblies 
defined by NeST-VNN versus the same number of nonimportant assemblies 
(randomly selected among those with importance < 0.5). **P < 0.01 by one-tailed 
Mann–Whitney U test. GSEA76 was conducted to calculate enrichment scores. 
c, Left, violin plot illustrating the effects on cell fitness due to CRISPR KO of 
each gene in the top four enriched assemblies shown in b. Point color indicates 
the assembly relevant to each gene. Right, similar plot showing the effects for 

gene KOs in nonimportant assemblies (negative control). Cell fitness is z score 
normalized across all tested gene KOs, with z > 0 indicating increased fitness 
relative to average and z < 0 indicating decreased fitness. *P < 0.05 by two-tailed 
Mann–Whitney U test. d, Violin plots illustrating the enrichment of assemblies 
for gene KOs modulating cell fitness without palbociclib treatment, comparing 
the core assemblies versus the same number of nonimportant assemblies. NS, 
not significant by one-tailed Mann–Whitney U test. e, Scatterplot of cell fitness 
of gene KOs in the context of CDK4/6i (x axis) versus CDK6 KO (y axis). Genes 
shown are from the top four assemblies in b (n = 18). f, Violin plots illustrating the 
mean fitness across gene KOs in core assemblies versus the same number of gene 
KOs from nonimportant assemblies in combination with CDK4 KO. **P < 0.01 by 
two-tailed Mann–Whitney U test. g, Same as f, except gene KOs are combined 
with CDK6 KO. *P < 0.05 by two-tailed Mann–Whitney U test. In f and g, two core 
assemblies did not have sufficient coverage in the gene panel; thus, six of the 
eight core assemblies were tested.
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genes are already amplified (Fig. 5b). We transfected short guide RNAs 
(sgRNAs) targeting KAT6A, TBL1XR1, RUNX1, TERT or MYC into A549 
cells expressing dCas9–VPR and confirmed by qPCR that constructs 
exhibited substantial overexpression of the target gene compared to 
nontargeting control (NTC) sgRNAs (all except for MYC; Extended Data 
Fig. 4c). sgRNAs targeting MYC did not have a significant effect, consist-
ent with prior reports that this gene is already highly expressed in A549 
cells35. We used the thymidine analog 5-ethynyl-2′-deoxyuridine (EdU) 
to count the fraction of cells undergoing active DNA replication in the 
S phase. Overexpression of the histone modifiers KAT6A and TBL1XR1 
produced significant increases in the proportion of cells entering 
the S phase under palbociclib treatment compared to the untreated 
group (Fig. 5e,f; approximately 2.5-fold; P < 0.05); the transcription 
factor RUNX1 also led to significant increases, albeit to a lesser degree 
(1.5-fold). We also examined the effects of KAT6A or TBL1XR1 overex-
pression on the phosphorylation status of RB1, the direct target of 
the CDK4–CDK6–cyclin D complex. Capillary western blot analysis 
demonstrated that overexpression of these factors is indeed associ-
ated with a more than twofold increase in phospho-RB levels (Fig. 5g,h, 
Extended Data Fig. 4d and Methods). Together, these results indicate 
several NeST:85 genes whose overexpression serves to promote the cell 
cycle, supporting our earlier observation (Fig. 5c) that CNAs in these 
genes are predictive of palbociclib resistance.

Discussion
CDK4/6 inhibitors are a well-studied class of drugs for which numer-
ous candidate biomarkers have been identified8. Why has the predic-
tion of CDK4/6i responses remained challenging? One reason is that 
markers with promise in cell lines (for example, CCND1 amplification) 
do not consistently translate to patient populations30,31. Another is 
that individual genetic alterations that are clinically predictive may 
occur too rarely to have broad utility (for example, RB1 deletion or 
mutation). A wider, more integrative analysis is needed to understand 
CDKi resistance fully5,8.

Toward this goal, NeST-VNN synthesizes both rare and common 
genetic events across a repertoire of drug response pathways, with 
the aim of facilitating a quantitative, integrated assessment of drug 
response. The modeling process begins with a map of tumor cell com-
ponents, which is used to guide the topology of deep neural network 
models as they learn to translate genetic alterations to drug responses 
(Extended Data Fig. 1). The key subcellular assemblies of models that 
accurately capture drug responses in vitro and that translate to in vivo 
(for example, PDX) and clinical settings (Fig. 2) can be validated through 
directed CRISPR loss-of-function and/or activation screens (Figs. 4 
and 5). Assemblies that pass this validation pipeline are a source of 

candidate biomarkers in downstream precision medicine applications. 
Alternatively, a model can be used in its entirety to produce a single 
resistance score integrating the mutational status of all proteins and 
assemblies.

NeST-VNN is based on NeST, a whole-cell map of cancer protein 
complexes derived from systematic proteomics data (see the ‘Struc-
tural architecture of the NeST-VNN model’ section in Methods). Previ-
ous drug response models have generally not incorporated outside 
knowledge of cell structure (many approaches, reviewed here9,36) 
or have modeled structure using databases of cellular components 
or pathways drawn from literature curation9,14,15. Biological insights 
informed by NeST-VNN are uniquely dependent on the composition 
of NeST, generating both strengths and limitations. One strength 
is that the model can incorporate information from numerous rare 
mutations in predicting a drug response insofar as these rare altera-
tions aggregate to affect the activity of commonly altered protein 
assemblies with documented cancer relevance. A limitation is that 
NeST almost certainly does not include all relevant protein assem-
blies (false negatives), and some assemblies that are included may be 
imperfect or irrelevant to a given tumor population (false positives). 
Regardless, the NeST knowledgebase positions the precision medicine 
model as a dynamic entity, which can be updated either functionally 
with new incoming drug response data or structurally as NeST (or 
another future map) is improved by additional data. These new data 
need not be limited to AP–MS experiments (the primary source inform-
ing NeST thus far37) but, in the future, might incorporate information 
from complementary proteomics technologies such as proximity liga-
tion38, size-exclusion chromatography39,40 or spatial imaging41. While 
pathway databases are sometimes treated as gold standards (especially 
literature-curated databases such as Gene Ontology and Reactome), 
knowledge of molecular pathways remains incomplete, particularly 
as it relates to specific tumor states and subtypes.

Using this platform, we identified a set of eight core assemblies for 
which genetic alterations are associated with anti-CDK4/6 response, 
seven of which were validated by one or more CRISPR screens (Figs. 4 
and 5). These assemblies are not focused solely on cyclin-dependent 
control of the cell cycle (Fig. 3a). Nonetheless, ample literature support 
can be found for the involvement of many of these other assemblies 
in anti-CDK responses, such as those related to androgen receptor 
(AR) signaling42, EGF/fibroblast growth factor (FGF) signaling43, DNA 
damage response44 and the MDM2–p53 pathway45. Regarding the iden-
tification of an EGF/FGF signaling assembly, recent studies have found 
that the EGF receptors EGFR and ERBB2 are associated with palbociclib 
response46 and that the genetic alteration status of FGFR1/2 and their 
associated FGF ligands has promise as a marker of acquired resistance43. 

Fig. 5 | Exploring the NeST:85 histone-related assembly in the palbociclib 
response. a, Network diagram of NeST:85 depicting the histone-mediated 
transcription regulation assembly. Edges show protein–protein biophysical 
associations, with the edge thickness corresponding to the strength of the 
evidence for association. Three subgroups of protein functions are indicated in 
boxes. b, OncoPrint illustrating the genetic alteration patterns of NeST:85 genes 
(rows) in patient tumors from the TCGA/ICGC (International Cancer Genome 
Consortium) pan-cancer cohort (columns) along with representative cell lines 
(far right columns). Genes are sorted based on relative importance for drug 
resistance and then by alteration frequency (Freq) within each important or 
nonimportant group. c, ORs of important gene amplifications (amp) in NeST:85 
with respect to palbociclib resistance in the TCGA/ICGC pan-cancer cohort. Error 
bars indicate the 95% confidence interval. d, Schematic overview of the CRISPRa 
gene overexpression screen. sgRNAs targeting the promoter regions of target 
genes were transfected into cells expressing the dCas9–VPR transcriptional 
activator. Effects were characterized by an EdU assay, which quantifies the 
number of cells undergoing active DNA synthesis, and by the phosphorylation 
status of RB, the molecular target of CDK4/6. Both palbociclib-treated and 
palbociclib-untreated conditions were examined. Created with BioRender.com.  

e, Cell microscopy images from an EdU incorporation assay for NTC (left), 
TBL1XR1 overexpression (middle) or KAT6A overexpression (right). EdU-positive 
cells indicating active DNA synthesis are stained in green versus nuclei stained 
in blue with DAPI. Images are shown for palbociclib-untreated (top) versus 
palbociclib-treated (bottom) cells. f, Bar plot depicting the fold increase in cells 
undergoing active DNA synthesis (S phase) due to overexpression of specific 
target genes (x axis) relative to NTC. *P < 0.05 by two-tailed Welch’s t test. Bars 
indicate mean; error bars indicate ±standard error; individual replicates are 
shown. Circle points indicate biological replicate 1 (n technical replicates = 3), 
and square points indicate biological replicate 2 (n technical replicates = 3). 
g, Capillary western blot analysis of phospho-RB levels for NTC, TBL1XR1 
overexpression or KAT6A overexpression in palbociclib-treated or palbociclib-
untreated (DMSO) conditions. A representative image from two independent 
experiments is shown. h, Bar plot depicting the fold increase in relative phospho-
RB level (phospho-RB/actin) for the overexpression of specific target genes  
(x axis) relative to NTC. *P < 0.05 by two-tailed Welch’s t test. Bars indicate mean; 
error bars indicate ±standard error; individual replicates are shown. Circle points 
indicate biological replicate 1 (n technical replicates = 3), and square points 
indicate biological replicate 2 (n technical replicates = 4).
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Furthermore, ongoing clinical trials are assessing the combination of 
anti-CDK4/6 treatments with insulin-like growth factor inhibition (trial 
no. NCT03099174) or with EGFR inhibition (trial no. NCT03065387) 
in various tumor types. In NeST-VNN, the EGF/FGF complex combines 
each of these alterations, which have largely been reported separately, 
into a single integrated effect including alterations in yet additional 
receptor tyrosine kinases (for example, ERBB3/4).

The model also highlights a notable role for NeST:85 (histone- 
mediated transcription regulation), which integrates both well-known 
and understudied factors. Treatment with CDK4/6 inhibitors 
induces chromatin structure remodeling mediated by histone 
acetyltransferases and histone deacetylases (HDACs), leading to 
the expression signatures of senescence and cell differentiation3. 

Accordingly, genetic alterations affecting proteins of the NeST:85 
assembly, including the histone acetylases CREBBP and EP300 (ref. 47),  
the HDACs HDAC1 and HDAC2 (ref. 48), and transcription factors such 
as TP53 (ref. 49) and MYC50, have been previously documented to modu-
late the anti-CDK4/6 drug response. Using CRISPRa to model the effects 
of CNAs, we observed that increased expression of KAT6A and TBL1XR1, 
which are also components of the NeST:85 assembly, leads to increased 
S-phase entry (Fig. 5). KAT6A, also known as MYST3/MOZ, encodes 
a histone lysine acetyltransferase that is amplified in many cancer 
types51 (Fig. 5b). Relevant to the NeST:85 assembly, KAT6A has been 
previously documented to regulate cell-cycle arrest and differentia-
tion through the transcription factors p53 (ref. 52) and RUNX1 (ref. 53);  
it is a frequent translocation partner of other assembly members such 
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as EP300 and CREBBP54. TBL1XR1, also known as TBLR1, is an F-box-like 
protein involved in the recruitment of the ubiquitin conjugation sys-
tem to histone modifier and transcriptional repression complexes55,56. 
Subsequent proteasomal degradation of these complexes is essen-
tial for transcriptional activation by AR, as captured by the NeST:85 
assembly, as well as other transcription factors such as the estrogen 
receptor (ER)57. Notably, increases in KAT6A and TBL1XR1 expression 
were associated with higher phosphorylation levels of RB, the central 
transcriptional repressor targeted by CDK cell-cycle control (Fig. 5g,h), 
suggesting that they may promote drug resistance by increasing the 
transcription, abundance or activity of the upstream CDK4–CDK6–cyc-
lin D regulatory complex. The possible combination of HDAC inhibitor 
therapies with cell-cycle inhibitors has been previously proposed48; 
this study further underscores this potential and delineates alternative 
targets. Indeed, KAT6A inhibitors are under development and have 
demonstrated promising effectiveness for inducing cellular senes-
cence58–60 (clinical trial NCT04606446). In the tumor cells character-
ized here (A549; Fig. 5), TBL1XR1 has a T290A missense mutation of 
unknown significance whose impact will require further investigation.

In summary, the predictive models presented in this study build 
from and substantially develop the concept of an integrated response 
to therapy. In such an integrated response, diverse effects converge on 
biological machinery at multiple levels to produce an overall treatment 
outcome. This concept may explain the difficulty in identifying indi-
vidual genetic biomarkers of palbociclib drug response. It also speaks 
to the challenge of patient-to-patient heterogeneity and illustrates one 
means by which knowledge of cellular machinery can be used to score 
a diverse population of cancer patients presenting unique patterns 
of mutational aberrations. Such an integrated model may provide a 
worthwhile asset in achieving improved outcomes for patients and in 
efforts to evaluate novel therapeutics to overcome resistance.

Methods
Drug response data for model training
Drug response data were retrieved from the GDSC and CTRP data-
bases24–27, covering a total of 692,859 cell line–drug pairs comprising 
1,244 cell lines and 888 drugs. The data from the two datasets were 
harmonized as follows. Drug information: each molecule’s published 
name, synonym or SMILES (Simplified Molecular Input Line Entry Sys-
tem) string was queried using PubChemPy. The associated InChIKey 
was extracted and used to identify duplicate drugs (within or between 
datasets). Cell viability data: for CTRP, the vehicle control-normalized 
average percent viability files were used. For GDSC1 and GDSC2, data 
were normalized to ‘cells-only’ and ‘dimethyl sulfoxide (DMSO) control’ 
wells, respectively, on a per-plate basis. Data were averaged across rep-
licates within each dataset. For drug response measurement, we used 
AUC, in which AUC = 0 corresponds to complete cell killing and AUC = 1 
corresponds to no cell killing; AUC > 1 represents a growth advantage 
conferred by the drug. AUCs calculated in this study agreed with AUCs 
reported by the original consortia (Pearson correlations of 0.92, 0.83, 
0.91 and 0.91 for CTRP1, CTRP2, GDSC1 and GDSC2, respectively). For 
multiple AUCs for the same drug across different consortia, we used 
each replicate sample as a separate training instance. Genetic altera-
tion data: a panel of 718 clinical genes was assembled from the union of 
genes assessed by FoundationOne CDx20, Tempus xT21, PALOMA-3 trial61 
or Project GENIE22, each of which assesses mutations and/or copy num-
ber aberrations. To compile genotypes for all cell lines, we extracted 
nonsynonymous coding mutations and copy number alterations for the 
718 clinical panel genes from the Cancer Cell Line Encyclopedia (CCLE, 
release 22Q1)23. Genes were marked as either mutated (‘1’) or unmu-
tated (‘0’), with mutations filtered for the following types: missense/
nonsense/nonstop mutations, frameshift insertions/deletions, splice 
site/region variations and in-frame insertions/deletions. Similarly, 
genes were marked as amplified (‘1’) or unamplified (‘0’) and deleted 
(‘1’) or undeleted (‘0’). Together, mutations, CNAs and CNDs served as 

features for each of the clinical panel genes. Of the 888 drugs available 
from the CCLE and/or GDSC, we selected the 51 drugs (palbociclib and 
50 others) with the highest variation in the observed drug responses 
across cell lines (corresponding to s.d. ≥ 0.3).

Structural architecture of the NeST-VNN model
Construction of the NeST hierarchy of cancer protein assemblies 
has been thoroughly detailed elsewhere19. Briefly, AP–MS protein 
interaction data for 61 known cancer proteins were integrated with a 
compendium of other systematically generated datasets informing 
protein–protein associations, including protein–protein interaction, 
mRNA coexpression, protein coexpression, genetic codependency 
and sequence similarity. Such integration resulted in a large network 
of approximately 1.8 × 108 protein–protein interactions among 19,035 
proteins. Multiscale community detection was performed to detect 
approximately 2,300 densely connected sets of proteins, herein called 
protein assemblies. Assemblies were nested (that is, organized hierar-
chically), with larger assemblies containing smaller ones, forming ‘par-
ent–child’ assembly relations. This hierarchy has been used earlier19 to 
perform a comprehensive analysis of somatic coding mutations in The 
Cancer Genome Atlas (TCGA)62, identifying significant convergence of 
mutations on a set of 395 protein assemblies, named NeST19. Here, we 
filtered the NeST hierarchy to identify the subset of assemblies encoded 
by at least five genes represented on the 718-gene clinical panel, pro-
ducing a final hierarchy of 131 assemblies distributed over seven layers.

Model training
The filtered NeST hierarchy was used to embed a deep neural network 
for drug response prediction, which we refer to as NeST-VNN (Extended 
Data Fig. 1a). We define an m × 3 input matrix as I, where Ii,j ∈ {0,1}, with m 
denoting the number of genes and 3 the number of gene alteration types 
(mutation, CNA and CND). For any input sample (tumor cell line, PDX or 
patient tumor), somatic genetic alterations for each gene and type are 
marked by 1 and otherwise 0. The first layer in NeST-VNN converts these 
input features to gene-level representations, Ig ∈ ℝm, as follows:

Ig = BatchNorm(tanh(Linear(I)))

‘BatchNorm’ indicates batch normalization63; ‘tanh’ indicates a 
hyperbolic tangent function; and ‘Linear’ indicates a linear transfor-
mation. Here, the linear transformation is applied for each row in I so 
that the three gene alteration values for each gene are converted into 
a single value. The remaining seven layers of NeST-VNN follow the 
structure of the NeST protein assembly hierarchy, where each assem-
bly is represented by some number of neurons N, a hyperparameter.  
A dropout64 of 0.3 (selected through hyperparameter optimization) 
was added to the last four layers. Assembly state is defined as a function 
of the states of its K child assemblies and M additional genes (genes 
for which the protein products are not present in any descendant 
assemblies). Denoting an assembly input vector as Is and an output 
vector as Os, we have

Os = BatchNorm(tanh(Linear(Dropout(Is))))

Here, Is has dimension N × (N × K + M) and Os has dimension N. We 
define ‘in silico activity’, a representative singular value for assembly 
state, as the first principal component65. The NeST-VNN objective 
function (Loss) aggregates the mean squared error (MSE) across every 
assembly in the hierarchy:

Loss = MSE (Linear(Oroot), y) + α ∑
s≠root

MSE(Linear(Os), y) + β‖W‖

The parameter α was set to 0.3; β is a tuned hyperparameter. 
 y represents the actual AUC.‘Linear’ denotes the linear function used 
for transforming the vector Oi to a scalar. W denotes the weights of the 
neural network. Weight optimization was performed using AdamW66.
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Model benchmarking
For baseline benchmarking, we trained the RF67, ElasticNet68 and 
black-box ANN69 (allotted the same number of neurons and layers 
as the NeST-VNN model) models using the Python scikit-learn pack-
age70. For all models, including NeST-VNN, we used nested fivefold 
cross-validation71, producing five models for each drug. For each fold 
setting, we split 64% of cell lines as a training set, 16% as a validation set 
(used for hyperparameter tuning) and 20% as a test set, ensuring that 
cell line replicate measurements (for example, from different datasets) 
were not split between the test and training sets. Hyperparameters were 
optimized with Optuna72. NeST-VNN was implemented in PyTorch and 
trained using five GPU (graphics processing unit) servers containing 
four NVIDIA Tesla V100s, each with 5,120 CUDA (Compute Unified 
Device Architecture) cores and 32-GB GDDR6 random access memory. 
All five NeST-VNN models were evaluated in downstream analyses.

Translation to cancer patients
Data from the American Association for Cancer Research Project GENIE 
metastatic breast cohort22 were used to validate the performance of the 
NeST-VNN model in retrospective clinical application. We extracted 
nonsynonymous coding mutations, CNAs and CNDs across 360 genes 
for 226 patients with ER+, HER2– metastatic breast cancer along with 
their overall survival (months) and censorship information. We did 
not consider gender or sex. Of these patients, 67 had been treated 
with CDK4/6i plus endocrine therapy. The remaining 159 patients 
were treated with endocrine therapy alone. Patients were excluded 
if they had been treated with additional targeted therapies, such as 
mammalian target of rapamycin (mTOR) or AKT inhibitors. Tumor 
genomic data were converted to calls (0 = unaltered, 1 = altered) for 
all gene mutation, CNA and CND features. Features used by NeST-VNN 
that were not assessed in the clinical trial were represented as unaltered. 
We predicted patient response to CDK4/6 inhibition using the average 
AUC over the five pretrained palbociclib models and then thresholded 
this value as described in the main text (Fig. 2d). Patients whose status 
label was ‘living’ at 120 months were censored.

Translation to PDXs
We analyzed a PDX dataset28, which contained 172 tumor samples 
treated with a CDK4/6i (ribociclib) across five tumor types (breast 
carcinoma, non-small cell lung carcinoma, cutaneous melanoma, colo-
rectal cancer and pancreatic ductal carcinoma). Treatment responses 
had been measured by changes in the volume of the tumor xenograft 
over time, with an accompanying determination of treatment time and 
a classification according to the RECIST (Response Evaluation Criteria 
in Solid Tumors) standard (including categories of progressive disease, 
stable disease, partial response and complete response). PDX samples 
had been genomically characterized, covering 660 of the 718 genes 
in the NeST-VNN gene set. Similar to the procedure for cell lines and 
patients, tumor genomic data were converted to calls (0 = unaltered, 
1 = altered) for all gene mutation, CNA and CND features. Features used 
by NeST-VNN that were not assessed in the PDX data were represented 
as unaltered. We predicted the responses of PDX tumors to CDK4/6 
inhibition as the average AUC over the five pretrained NeST-VNN mod-
els for palbociclib and then thresholded this score as described in the 
main text (Fig. 2c).

Model dependence on the number of genes used for 
prediction
Given the difference in the number of genes used for prediction in cell 
lines (n = 718) versus GENIE analysis (n = 360) or PDX analysis (n = 660), 
we systematically studied the dependence of model performance on 
the number of genes for which genetic alteration data are provided. 
We computed the average predictive performance of the pretrained 
NeST-VNN model when it is supplied with data for diminishing numbers 
of genes (Extended Data Fig. 5a). We found that, at a gene set size of 

350 (similar to the number of genes characterized in the GENIE study), 
the average performance is only slightly less than that obtained when 
using all genes (ρ = 0.30 versus ρ = 0.33), with a more precipitous fall 
in performance seen for 200 genes or fewer. A similar pattern was 
observed when we compared the assembly importance scores with 
their enrichments for gene KOs that modulate the response to palboci-
clib treatment (Extended Data Fig. 5b). Notably, we also found that the 
precise panel of genes used by GENIE performs better than expected 
compared to a random subsampling (Extended Data Fig. 5).

Identifying important assemblies and genes (model 
interpretation)
To determine which assemblies were important for drug response 
prediction in cell lines, PDX or clinical samples, we adopted a variation 
of the ‘relative local improvement in predictive power’ method as previ-
ously reported13. Each assembly was modeled using linear regression, 
with the aim of evaluating how well its NeST-VNN neuron values capture 
the NeST-VNN overall drug response prediction. Each assembly k was 
assigned a g × N matrix Pk, where g is the number of samples and N is 
the number of neurons. Pk was then used in a linear ridge regression73 
model to predict the NeST-VNN drug response D, creating models 
M1, M2, …, Mk. The following function was minimized for each model:

minw||Pkw − D||22 + α||w||
2
2

where w is a vector of the coefficients of length N and α imposes an L2 
penalty on coefficient complexity. Assembly ‘importance’ (Fig. 3 and 
Extended Data Figs. 3 and 5) is the Spearman correlation (ρ) between Mk 
and D. The mean correlation of the five NeST-VNN models was reported. 
A higher score indicates an assembly whose neuron values contrib-
uted more strongly to NeST-VNN predictions and can, therefore, be 
considered important. To assess statistical significance, we gener-
ated a null distribution of assembly importance scores, as follows. We 
randomly rearranged gene assembly memberships in the NeST-VNN 
while preserving the assembly size and parent–child relationships. 
We trained 500 null models with these random rearrangements and 
calculated assembly importance for each null. One-tailed t tests were 
used to evaluate whether the assembly importance scores from the five 
NeST-VNN models were greater than the assembly importance scores 
from the nulls, with a Benjamini–Hochberg control for false discovery 
rate (FDR; Fig. 3a). Finally, we defined ‘core assemblies’ as those with 
an importance score of ≥0.5 and an FDR of ≤0.1, while excluding less 
important redundant assemblies ( Jaccard similarity > 0.5). To identify 
specific genetic alterations in the NeST:85 assembly associated with 
palbociclib resistance (Fig. 5c), we performed L1-norm regularized 
logistic regression74,75. Genetic alterations (mutations, CNAs, CNDs) 
for the 15 assembly genes were used as regression features to predict 
AUCs. AUC values in the top 30% were encoded as 1 to represent resist-
ance, whereas AUC values in the bottom 30% were encoded as 0 to 
represent sensitivity. Nonzero coefficients from the fitted model were 
recognized as important alterations governing drug response, with 
the sign indicating whether the presence of alterations contributed 
to resistance (plus) or sensitivity (minus). We used scikit-learn70 with 
logistic regression settings of penalty = ‘l1’, C = 0.01 (default for other 
parameters).

Comparison of the interpretability of NeST-VNN and RF
We systematically evaluated the assembly importance scores provided 
by NeST-VNN versus RFs67 using the genome-wide loss-of-function 
screen for palbociclib treatment. To determine the assembly impor-
tance score for the RF models, we performed gene set enrichment 
analysis (GSEA76, implemented using GSEApy77) on the gene list ranked 
according to the gene-level feature importance scores derived from 
the RF models. The absolute normalized enrichment scores generated 
from GSEA were used as assembly importance scores for the RF models. 
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Assembly importances in the NeST-VNN versus RF models were mod-
erately but not completely correlated (ρ = 0.31; Extended Data Fig. 6a). 
Relevant to the differences, we found that the NeST-VNN importance 
of an assembly was also moderately correlated with its enrichment 
for gene KOs conferring palbociclib sensitivity or resistance (ρ = 0.33; 
Extended Data Fig. 6b); in contrast, RF assembly importance showed 
a correlation that was substantially weaker (ρ = 0.07; Extended Data  
Fig. 6c). Thus, while RF models can achieve comparable predictive per-
formance by identifying individual gene mutations that are indicative 
of drug response (Extended Data Fig. 2a,c), NeST-VNN demonstrates its 
strength by integrating the effects of such mutations within predictive 
cancer protein assemblies.

Genome-wide CRISPR KO chemogenetic screen
Core protein assemblies were validated using a genome-wide CRISPR–
Cas9 screen in MCF7 cells exposed to palbociclib treatment33 (Fig. 4a) 
(Gene Expression Omnibus accession no. GSE192525). This screen had 
been run previously using the GeCKO (genome-wide CRISPR KO) v2 
library. Gene-level z scores (referred to as ‘normZ’) from that study were 
used to indicate the effects of gene KO on cell fitness in the context of 
CDK4/6 inhibition (Fig. 4b). As a reference, the cell fitnesses of gene KOs 
(provided as Chronos scores78) in the MCF7 cell line in the absence of 
CDK4/6i treatment (Fig. 4c) were obtained from the DepMap (Depend-
ency Map) project34 (https://depmap.org/portal/).

Dual CRISPR KO combinatorial screen
The genome-wide chemogenetic data (above section) were comple-
mented by a de novo dual CRISPR screen performed in-house in MCF7 
(HTB-22), MCF10A (CRL-10317) and MDAMB231 (CRM-HTB-26) cell lines 
from American Type Culture Collection (ATCC) (Fig. 4a). Cells were 
grown in DMEM with 10% FBS, screened for Mycoplasma contamina-
tion by PCR and verified by short tandem repeat (STR) testing (IDEXX 
BioAnalytics). CRISPR–Cas9 nuclease was stably integrated by a lenti-
virus. LentiCas9-Blast (Addgene plasmid no. 52962) and lentiCRISPR 
v2 (Addgene plasmid no. 52961) were gifts from F. Zhang79. Blasticidin 
was used to select Cas9 stable integrants. Cas9 protein expression 
was confirmed by capillary western blot analysis (Wes, ProteinSim-
ple). We constructed a library of double gRNA constructs targeting 
druggable targets (such as CDK4 and CDK6), tumor suppressors and 
oncogenes. Here, we analyzed a subset of data from individual genes 
from core assemblies (sgRNA1) together with CDK4 or CDK6 (sgRNA2) 
(Supplementary Table 3). The library was packaged into lentiviruses, 
and cells were infected to achieve a multiplicity of infection of 0.3. 
Puromycin (2.5 mg ml−1) selection was started 2 days after transduction. 
Selection continued for 7 days, after which puromycin was removed 
for the remainder of the screen. Cells were maintained in exponential 
growth by isolating and removing a fraction of cells every 2–3 days. We 
analyzed data from two time points at approximately 14 and 21 days. 
DNA was extracted from cells with a Blood and Cell Culture DNA Mini 
kit (Qiagen). To assess the relative frequencies of gRNAs before and 
after selection, we amplified gRNA sequences from genomic DNA by 
PCR and prepared them for HiSeq 4000 sequencing (Illumina). Stand-
ard Illumina primers were used for library preparation, and 100-bp 
paired-end reads were collected. Data quality was assessed with FastQC. 
The fitness effects of gene KOs at a time point were determined as the 
fold enrichment of a construct compared to the relative abundance 
of that construct in the plasmid library. Fitness measurements were 
normalized to the median fitness for nontargeting guides. The mean 
z score across two biological replicates, two time points and genes in 
each assembly was then determined and plotted (Fig. 4f,g).

Production of a dCas9-expressing stable cell line
CRISPRa experiments were performed in A549 cells stably express-
ing dCas9 together with the VPR transcriptional activation complex. 
For this purpose, 293T cells (CRL-3216, ATCC) were cotransfected 

with a second-generation packaging plasmid (pCMV-dR8.2, Addgene 
8455), vesicular stomatitis virus-G envelope-expressing plas-
mid (pMD2.G, Addgene 12259) and dCas9–VPR lentiviral plasmid 
(hCMV-Blast-dCas9-VPR, Horizon Discovery) using Lipofectamine 
3000 (Invitrogen, L3000015). Viral supernatant was collected and 
cleared of cell debris by centrifugation and Steriflip column (Millipore, 
SE1M003M00). Lentivirus was concentrated using Amicon Ultra-15 
centrifugal filters (Millipore, Z706345). Viral titer was determined 
through serial dilution. Subsequently, A549 cells (CCL-185, ATCC) were 
grown in a virus-containing medium (DMEM/F12: 10% FBS, 100 IU ml−1 
penicillin/streptomycin) with 8 µg ml−1 polybrene for 72 h, followed 
by medium washout and selection with blasticidin (3.5 µg ml−1) for 
6 days. After selection, cells were cultured with maintenance-dose 
blasticidin (0.35 µg ml−1) every other passage. The identity of stable 
dCas9 A549 cells was confirmed by STR testing (IDEXX BioAnalytics, 
August 31, 2020).

CRISPRa screen
A custom panel of sgRNA expression plasmids targeting genes in the 
NeST:85 assembly was obtained from Horizon Discovery (Fig. 5 and 
Supplementary Table 4). Controls included an NTC sgRNA and an over-
expression (positive control) sgRNA targeting OCT4 (not a component 
of NeST:85). dCas9–VPR stable A549 cells were plated in a complete 
medium and transfected the next day with sgRNA plasmids for 24 h 
using FuGENE HD (Promega). Cells were selected with puromycin 
(0.44 µg ml−1) for 48 h and then lifted onto appropriate plates for fur-
ther experimentation, where they were permitted to recover for 72 h. 
RNA was collected using the TRIzol reagent (Invitrogen, 15596026) 
and the RNeasy Mini kit (Qiagen, 74104). cDNA was synthesized using 
the iScript cDNA kit (Bio-Rad, 1708891). qPCR was performed using 
SYBR green, and cycle threshold (Ct) values were compared for genes 
overexpressed by CRISPRa versus NTC samples (Extended Data Fig. 4c 
and Supplementary Table 4).

EdU assays for S-phase entry
Transfected cells were plated in collagen-coated glass-bottom 96-well 
plates in a complete medium containing palbociclib (4 µM) for 24 h. 
Components of EdU Click-iT (Thermo Fisher Scientific, C10337) 
were prepared as instructed. Cells were labeled for 4 h with 10 µM 
EdU-labeling solution in the medium and then counterstained with 
Hoechst dye (1:10,000) for 10 min. Cells were fixed in 3.75% formalde-
hyde for 10 min at room temperature and then washed, permeabilized 
and stained according to the manufacturer’s instructions. Images 
were collected using a Keyence microscope (BZ-X800) fitted with a 4× 
objective and green fluorescent protein/fluorescein isothiocyanate 
(Chroma, C209879) and DAPI (Chroma, C209877) filters. Images were 
processed in bulk using scikit-image80. Cells were identified using Hoe-
chst counterstain and then assessed for EdU incorporation (Fig. 5e,f).

Capillary western assays for RB status
Transfected cells were treated with palbociclib for 24 h and then 
trypsinized and washed in cold PBS; pellets were frozen at –80 °C. 
Protein was extracted in a hot 1× MES SDS running buffer (Invitrogen, 
NP0002) for 10 min. Cooled samples were vortexed for 2 min with 
glass beads (Sigma, G8772). cOmplete EDTA-free protease inhibitor 
cocktail (Roche, 04693132001) and PhosSTOP (Roche, 4906845001) 
were added to the cleared lysate. Protein was quantified using the 
Pierce 660-nm protein assay reagent (Thermo Fisher Scientific, 22662). 
Protein analysis was performed on a capillary-based western blot 
system (Wes, ProteinSimple, product no. 004-600) according to the 
manufacturer’s instructions using the 12- to 230-kDa separation mod-
ule (ProteinSimple, SM-W001) and either the anti-rabbit detection 
module (ProteinSimple, DM-001) or the anti-mouse detection module 
(ProteinSimple, DM-002). Protein samples were diluted to 1 μg ml−1 
in 0.1× sample buffer (ProteinSimple, 042-195) and then mixed with 

http://www.nature.com/natcancer
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE192525
https://depmap.org/portal/


Nature Cancer | Volume 5 | July 2024 | 996–1009 1007

Article https://doi.org/10.1038/s43018-024-00740-1

fluorescent master mix and heated at 95 °C for 5 min. Anti-phospho-RB 
Ser807/811 (mouse monoclonal antibody, clone D20B12, 1:100, Cell 
Signaling, 8516) or anti-actin (rabbit polyclonal antibody, 2 μM, Novus, 
NB600-532) was used as the primary antibody, whereas a horseradish 
peroxidase-conjugated anti-rabbit antibody (ProteinSimple, DM-001) 
was used as a secondary antibody. Program settings were as follows: 
separation at 375 V, 25 min; blocking reagent, 15 min; 20-s wash (for 
runs with phospho-RB only); primary antibody blocking, 35 min; two 
150-s washes; secondary antibody blocking, 35 min; 150-s wash; chemi-
luminescence detection, from 1 to 512 s. Electropherograms (Fig. 5g,h) 
were inspected to check whether automatic peak detection required 
manual correction.

Statistics and reproducibility
All wet laboratory experiments were performed in biological duplicates 
with three to four technical replicates. No statistical method was used 
to predetermine sample sizes. The experiments were not randomized. 
The investigators were not blinded to allocation during experiments 
or outcome assessments. EdU assays were evaluated computation-
ally with data-quality threshold filters as described above. For the 
survival analysis, patients were excluded if they had been documented 
to receive a targeted therapy other than a CDK4/6i (that is, an mTOR or 
AKT inhibitor), as these other targeted therapies were not the focus of 
our study. Statistical tests were performed as described in each section 
assuming data were normally distributed where appropriate, but this 
was not formally tested.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this study are all publicly available. GDSC version 1:  
https://www.cancerrxgene.org/downloads/bulk_download; GDSC 
version 2: https://www.cancerrxgene.org/downloads/bulk_download; 
CTRP version 1: https://portals.broadinstitute.org/ctrp.v1/; CTRP ver-
sion 2: https://portals.broadinstitute.org/ctrp.v2.1/; DepMap 22Q1: 
https://doi.org/10.6084/m9.figshare.19139906.v1; PDX,: https://www.
nature.com/articles/nm.3954; Project GENIE: https://genie.cbioportal.
org/study/summary?id=brca_akt1_genie_2019; genome-wide CRISPR 
KO chemogenetic screen: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE192525 (Gene Expression Omnibus accession no. 
GSE192525). The Cytoscape session containing the NeST-VNN hier-
archy and the pretrained models are available on GitHub. Cytoscape 
session: https://github.com/idekerlab/nest_vnn/blob/main/misc/
NeST_VNN_Palbociclib.cys; pretrained models: https://github.com/
idekerlab/nest_vnn/tree/main/pretrained_models/palbociclib. Source 
data are provided with this paper.

Code availability
The source code of NeST-VNN is available on GitHub (https://github.
com/idekerlab/nest_vnn). Other supporting software is available as fol-
lows: scikit-learn (http://scikit-learn.org/stable/index.html), PyTorch 
(http://pytorch.org).
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Extended Data Fig. 1 | NeST-VNN schematic. a, The first layer of NeST-VNN 
incorporates gene-level features, including gene mutations, copy number 
amplifications (CNA), and copy number deletions (CND). Subsequent assembly 
layers aggregate gene-level features into assembly-level information, guided 
by the hierarchical relationships defined by the NeST map. The output state of 

each gene (g) and assembly (O) is represented by artificial neurons (one neuron 
per gene, multiple neurons per assembly). b, Position of the assemblies detailed 
in panel a within the greater NeST map. Each node indicates a protein assembly. 
An example path of information flow, from the neurons of CDK holoenzyme 
complex to Cell cycle through to the model Root, is shown in red.
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Extended Data Fig. 2 | Supplemental model performance analysis.  
a, Dot plot of model performance for each of 51 drugs for NeST-VNN (red) versus  
3 alternate models: ElasticNet (green), Random Forest (purple), and a 
conventional Artificial Neural Network (ANN, blue). Palbociclib model 
highlighted in pink. b, Boxplot of performance for all drugs. Box plots show the 
25th, 50th, and 75th percentiles of Pearson correlation. P-values reflect results of 
a one-tailed t-test assessing whether NeST-VNN outperforms baseline models. c, 
Bar chart of performance for palbociclib models. Error bars represent  

95% confidence intervals with mean as the midpoint. P-values reflect results of one-
tailed t-test. d, ROC curves for predicting resistance (yellow) or sensitivity (blue) 
to palbociclib. Marked points indicate cutoffs used to label samples as "resistant" 
or "sensitive" at different stringencies. Values in parenthesis indicate the (x,y) 
coordinate. e, Survival curves for CDK4/6i-treated patients stratified by somatic 
mutations or copy number deletions in RB1. f, Survival curves for CDK4/6i-treated 
patients stratified by somatic copy number amplifications in CCND1.
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Extended Data Fig. 3 | Supplemental model interpretation. a, NeST-VNN 
interpretation of the Nutlin-3a response. Nodes indicate assemblies; node sizes 
indicate assembly sizes in numbers of proteins; node colors indicate degrees of 
importance for response prediction; squares inside the nodes indicate whether 
the assembly contains TP53 and MDM2, drug targets of Nutlin-3a. b, Scatter plots 

of gene importance based on copy number amplifications (CNA) in clinical vs. 
cell line contexts (x vs. y). c, same as panel b except the gene importance is based 
on copy number deletions (CND). d, Alteration frequencies of genes within core 
assemblies. Includes somatic mutations, CNA, and CND observed in the TCGA/
ICGC pan-cancer data.
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Extended Data Fig. 4 | Supplemental analysis of Histone-mediated 
transcription regulation (NeST:85). a, Alteration frequency of NeST:85 genes 
across tumor types. Frequency (y-axis) and type (color) of genetic alterations in 
NeST:85 genes KAT6A, MYC, RUNX1, TBL1XR1, and TERT, displayed across tumor 
cohorts documented by the cBioPortal (x-axis). Downloaded from cbioportal.org 
on 14 July 2023. b, Waterfall plot illustrating NeST:85 prediction (y-axis) in PDX 
samples (x-axis, n = 41). The prediction was determined from the first principal 
component (PC1) of the in-silico activity of the NeST:85 assembly, thresholded 
(median ± stdev) to assign class labels (predicted sensitive/undefined/predicted 

resistant). Bar color represents true response of a PDX sample on a CDK4/6 
inhibitor (ribociclib) based on the RECIST categories (yellow, resistance (PD); 
blue, sensitive (CR, PR, or SD)). c, Bar plot depicting fold increase in mRNA 
expression level due to overexpression of specific gene targets relative to 
non-targeting control (NTC). Bars indicate means of repeat experiments, with 
technical replicate data points shown (n = 2). d, Full capillary western blot image 
of phospho-RB (pRB) level for nominal conditions (non-targeting control, NTC), 
TBL1XR1 overexpression, or KAT6A overexpression. A representative image from 
two independent experiments.
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Extended Data Fig. 5 | Supplemental analysis of NeST-VNN robustness.  
a, Predictive performance of NeST-VNN according to the number of genes used 
for prediction. Predictive performance is defined by the Pearson correlation 
between the predicted and actual drug responses. Each point represents the 
average predictive performance (y-axis) from 10 repeated experiments, with 
each experiment drawing a different random selection of genes of a given set 
size (x-axis). The error bar indicates the standard deviation of the predictive 
performance across these experiments. The orange point indicates the 

predictive performance (Pearson ρ = 0.33) using the GENIE gene panel (n = 360) 
for prediction. b, Correlation (Pearson ρ) between the importance of protein 
assemblies for model prediction and their enrichments for gene KOs that 
modulate palbociclib response (y-axis) as a function of the number of genes used 
for prediction (x-axis). Each point represents the average Pearson correlation 
from 10 repeated experiments, with each experiment drawing a different 
random selection of genes of a given set size. The error bar indicates the standard 
deviation of the Pearson correlation across these experiments.
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Extended Data Fig. 6 | Supplemental comparison of NeST-VNN versus 
Random Forest models. a, Scatter plot of assembly importances from a Random 
forest-GSEA approach (x-axis) versus a NeST-VNN approach (y-axis). b, Scatter 
plot of assembly importance in the NeST-VNN model (y-axis) versus enrichment 

of gene KOs modulating cell fitness under palbociclib treatment (x-axis). Each 
dot represents an assembly (n = 130). Rho (ρ) indicates the Pearson correlation.  
c, Same as panel b except the y-axis indicating Random Forest-GSEA importance.
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