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Monoclonal antibodies have emerged as key therapeutics. In particular, 
nanobodies, small, single-domain antibodies that are naturally expressed in 
camelids, are rapidly gaining momentum following the approval of the first 
nanobody drug in 2019. Nonetheless, the development of these biologics as 
therapeutics remains a challenge. Despite the availability of established in vitro 
directed-evolution technologies that are relatively fast and cheap to deploy, the 
gold standard for generating therapeutic antibodies remains discovery from 
animal immunization or patients. Immune-system-derived antibodies tend 
to have favourable properties in vivo, including long half-life, low reactivity 
with self-antigens and low toxicity. Here we present AbNatiV, a deep learning 
tool for assessing the nativeness of antibodies and nanobodies, that is, their 
likelihood of belonging to the distribution of immune-system-derived human 
antibodies or camelid nanobodies. AbNatiV is a multipurpose tool that 
accurately predicts the nativeness of Fv sequences from any source, including 
synthetic libraries and computational design. It provides an interpretable score 
that predicts the likelihood of immunogenicity, and a residue-level profile that 
can guide the engineering of antibodies and nanobodies indistinguishable 
from immune-system-derived ones. We further introduce an automated 
humanization pipeline, which we applied to two nanobodies. Laboratory 
experiments show that AbNatiV-humanized nanobodies retain binding 
and stability at par or better than their wild type, unlike nanobodies that are 
humanized using conventional structural and residue-frequency analysis. We 
make AbNatiV available as downloadable software and as a webserver.

Antibodies are a class of biomolecules with a remarkable ability to bind 
to molecular targets selectively and tightly. For this reason, they find 
key applications in biological research1 and medicine, where they are 
widely used as both diagnostic2 and therapeutic agents3. Nanobodies 

(Nb) are single-domain antibodies (VHH) naturally expressed in came-
lids4. They have grown in popularity due to their unique structural 
characteristics, which include small size, good stability and solubil-
ity, long third complementarity determining region (CDR3) that can 
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in vivo properties comparable to those of immune-system-derived 
antibodies. AbNatiV consists of a vector-quantized variational 
auto-encoder (VQ-VAE) designed to process aligned Fv sequences and 
trained with masked unsupervised learning on sequences from curated 
native immune repertoires. Four different models are trained on the Fv 
sequences of human heavy chains (VH), kappa light chains (Vκ), lambda 
light chains (Vλ) and camelid heavy-chain single-domains (VHH).

AbNatiV can assess separately the degree of humanness and of 
VHH nativeness of a given Fv sequence. It provides both an interpret-
able overall nativeness score and a residue-level nativeness profile of 
the Fv sequence, which can guide engineering by highlighting sequence 
regions harbouring liabilities. Therefore, AbNatiV can be useful for 
computational antibody design, but also to rank Fv sequences of any 
origin, including from in vitro discovery. The accuracy of AbNatiV in 
evaluating humanness is demonstrated in several benchmarks. In par-
ticular, we show that AbNatiV outperforms alternative methods when 
classifying antibody therapeutics. Moreover, we find that AbNatiV 
learns a representation of natural antibodies that captures high-order 
relationships between positions, which we show to be valuable for CDR 
grafting. We further introduce an automated humanization pipeline 
of antibodies and nanobodies that rely on AbNatiV. For nanobodies, 
this approach monitors concurrently the humanness and the VHH 
nativeness of a sequence. Laboratory experiments on two nanobodies 
binding to distinct targets show that AbNatiV-humanized nanobod-
ies retain binding and stability at par or better than their wild type 
(WT), unlike nanobodies humanized with conventional structural and 
residue-frequency analysis.

Taken together, our results highlight the potential of AbNatiV 
in advancing antibody and nanobody engineering, serving as a valu-
able tool for computational design and ranking of Fv sequences from 
diverse sources, including in vitro discovery and synthetic libraries.

Results
The AbNatiV model
AbNatiV is a deep learning model trained on immune-system-derived 
antibody sequences. It uses an architecture inspired by that of the 
VQ-VAE, originally proposed for image processing (that is, for tensors of 
rank 3)32. The AbNatiV architecture compresses amino acid sequences 
(encoded as tensors of rank 2) into a bottleneck layer, also called embed-
ding, where each latent variable is mapped to the closest code vec-
tor from a learnable codebook before reconstruction with a decoder  
(Fig. 1a). This vector quantization from the codebook leads to a discrete 
latent representation rather than a continuous one as in standard VAE. 
This VQ architecture was chosen because protein sequences are discrete 
objects and thus may favour a discrete representation, and because it 
was shown to circumvent issues of posterior collapse that sometimes 
affect standard VAEs32. Our model contains both patch convolutional 
layers and transformers in the encoder and decoder (Fig. 1b). These are 
more suitable to capture local interactions along the sequence (that is, 
local motifs), and long-range interactions between such local motifs or 
individual residues, respectively, which may be mediated by tertiary 
contacts. High codebook usage (that is, high perplexity) is ensured in 
the bottleneck by a k-means initialization of the codebook and a cosine 
similarity search during the nearest neighbour lookup quantization, as 
it is needed to prevent poor data representation and maintain robust 
training33 (Methods and Supplementary Fig. 1).

The model is trained with masked unsupervised learning. Unsu-
pervised learning works on the assumption that every antibody fol-
lows some set of biophysical and evolutionary rules that allow it to be 
produced by organisms and to carry out its biological function without 
causing toxicity. AbNatiV is built to impose a bottleneck in the network 
that forces a compressed representation of the input sequence, which 
is then reconstructed by the decoder. If the amino acids within the input 
sequences were fully independent from each other, this compression 
and subsequent reconstruction would be impossible. However, if some 

bind to poorly accessible epitopes, and affinity and specificity at par 
to those of full-length antibodies5. Furthermore, their potential as 
therapeutics has gained increased recognition since the approval of 
the first nanobody drug, Caplacizumab, in 2019 (ref. 6).

Established approaches to discover new antibodies or nanobod-
ies for a target of interest can broadly be classified as first-generation 
in vivo approaches, for instance relying on animal immunization7, and 
second-generation in vitro techniques, relying on laboratory library 
construction and screening8,9. More recently, a third generation of 
approaches based on computational design has started to emerge9. 
Since the mid 1990s, in vitro methods such as phage display from naïve 
or synthetic libraries showed promise to replace animal immunization 
or other in vivo techniques to isolate new antibodies. In vitro selec-
tion is faster and cheaper than in vivo counterparts, has fewer ethical 
implications and enables a better control over antigen presentation8,10. 
However, despite the added costs and complexity, an increasing num-
ber of pharmaceutical and biotechnology companies prefer to obtain 
new antibodies by immunizing transgenic animals with a humanized 
immune system11,12 or by isolating them directly from patients13,14. The 
reason for this choice is that, compared with in vitro directed evolu-
tion, antibody selection carried out by immune systems usually yields 
antibodies with higher developability potential and especially better 
in vivo properties, including long half-life, low immunogenicity, no 
toxicity and low cross-reactivity against self-antigens15,16. Up to now, 
most therapeutic antibodies continue to come from animal immu-
nization17. This consideration thus raises the question of whether a 
computational design strategy will ever rise to meet the challenge of 
generating antibodies with such properties.

Computational antibody design is still in its infancy. Yet, impor-
tant advances have been made in the design of antibodies targeting 
predetermined epitopes of interest18–22, which remains extremely 
laborious with laboratory-based approaches, and in the prediction 
and design of biophysical properties that underpin developability23. 
Overall, computational design promises a cheaper and faster route 
for the discovery and optimization of antibodies, while in principle 
affording much better control than in vivo and in vitro techniques 
over other key biophysical properties such as stability and solubility9.

Notwithstanding these advances, the computational prediction of 
in vivo properties remains hugely problematic. These properties, which 
include long half-life, low immunogenicity and no toxicity, are difficult 
to measure accurately and in good throughput, and their molecular 
determinants remain poorly understood. This hurdle broadly affects 
therapeutic antibody development also beyond computational design, 
and a multitude of in vitro assays, referred to as developability screen-
ing assays, have been proposed as proxies for binding specificity or 
in vivo half-life to de-risk antibody development programmes23–25. 
However, these assays typically correlate poorly with each other, and 
have only been shown to correlate with selected in vivo properties in 
limited specific examples16,23,26. While advances have been made in the 
computational predictions of the outcome of some of these assays27–29, 
or even in the number of such assays in which a lead antibody candidate 
is likely to perform poorly30,31, it is clear that progress is hindered by the 
absence of robust well-defined experimental measurements of in vivo 
properties. These challenges are the key reasons behind the fact that 
in vivo antibody discovery from immune systems largely remains the 
gold-standard technology for therapeutic antibody discovery.

In this work, we introduce a new deep learning method to bypass 
these challenges by enabling the computational engineering of anti-
body and nanobody sequences indistinguishable from those obtained 
from immune systems. We call our method AbNatiV, as it provides an 
accurate quantification of the likelihood of a given sequence belonging 
to the distribution of native variable domain (Fv) sequences derived 
from human or camelid immune systems. We define this likelihood 
antibody nativeness, as it reflects the similarity to native antibodies. 
Therefore, Fv sequences with high nativeness can be expected to have 
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structure exists in the input, as is the case for natural antibody sequences, 
this structure should be learnt and consequently leveraged when forc-
ing the input through the network bottleneck. Therefore, the AbNatiV 
architecture is in principle capable of learning a representation of natural 
antibodies that captures high-order relationships between residue 
positions to provide a highly sensitive measure of antibody nativeness.

To ensure that the model learns meaningful high-order rela-
tionships, we also used masked learning. During training, the input 
sequence is masked by removing information on the identity of a 
random subset of residues, and the training task is to reconstruct 
the full sequence, including correctly predicting the identity of the 
masked residues (Methods). This masking procedure is akin to a nois-
ing technique used in denoising auto-encoders34. From a theoretical 

standpoint, the approach is motivated by a manifold learning perspec-
tive, which assumes that the input data exist on a low-dimensional 
manifold embedded in the input space. The noising process, that is 
the masking and/or replacement of individual residues during train-
ing, shifts each training sequence away from the manifold of native 
antibodies, and the network is tasked with moving the data back onto 
the manifold via the output reconstruction of the input sequence. 
Additionally, the fact that the reconstruction loss also accounts for 
unmasked regions of the training sequences ensures that the net-
work does not move data away from the manifold. Reconstruction 
accuracy is quantified with a mean-squared error (m.s.e.) calculated 
between one-hot encoded input sequences and reconstructed output 
sequences. Then, at inference time, the network reconstruction of 
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Fig. 1 | The AbNatiV model. a, Architecture of the VQ-VAE-based AbNatiV model. 
The one-hot encoded input sequence x is encoded into a compressed 
representation ze(x) through an encoder (in yellow). In the latent space (in 
burgundy), ze(x) is discretized with a nearest neighbour lookup on a codebook 
{ek}

N
k=1 of N code vectors. Each of the components of ze(x) is substituted with the 

closest code vector to generate the discrete embedding zq(x) Finally, the output x̂  
is reconstructed through a decoder (in green) from zq(x). During training, residue 
masking is applied to the input x by replacing a portion of its residues with a 

masking vector (in a darker shade). b, Architecture of the encoder (in yellow) and 
decoder (in green) blocks in the AbNatiV model. c, AbNatiV-humanness score 
distributions of the VH human (test set, in purple) and mouse databases (in 
orange). The ROC-AUC between the two distributions is 0.996. d, AbNatiV-
humanness profiles of the VH mouse precursor and of the humanized sequence 
of the refanezumab antibody therapeutic (the corresponding light chain profile 
is in Supplementary Fig. 5).
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unmasked sequences represents a transformation of the input that 
produces an output sequence that lies closer to the manifold on which 
native antibodies exist. This fact establishes a crucial link between the 
m.s.e. of the reconstruction and antibody nativeness, as the m.s.e. can 
be interpreted as the distance of the input sequence from the manifold 
of native antibodies (Methods). Reconstruction through the network 
always introduces some deterioration of the perfect one-hot encoded 
vectors, meaning that the m.s.e. is never exactly zero, even when no 
residue is substituted during inference.

Taken together, AbNatiV architecture and masked unsupervised 
learning strategy drive the model to capture the essential features that 
are common across a database of native antibody sequences.

AbNatiV is trained on aligned sequences of native antibody from 
curated immune repertoires from the Observed Antibody Space (OAS) 
database35 and other sources (Methods). The model is trained for ten 
epochs separately on human VH, Vκ, Vλ and camelid VHH sequences 
(roughly 2 million unique sequences in each training set). The κ and λ 
light chains are treated separately due to their substantial differences. 
AbNatiV takes around 1 hour per epoch to train on a single GPU (NVIDIA 
RTX 8000). For each model, a validation dataset of 50,000 unique 
sequences different from those in the training set monitors the absence 
of overfitting (Supplementary Fig. 2) and is used for hyperparameter 
optimization. Ten thousand further unique sequences, distinct from 
those in training and validation sets, are kept aside for testing. We 
observe a near-perfect overlap between the distributions of the AbNa-
tiV scores of the training and test datasets, which supports the lack of 
overfitting (Supplementary Fig. 3). We further verified that there is no 
correlation between the AbNatiV scores of the test sequences and their 
median or minimum sequence difference to the training sequences 
(R2 ≤ 0.002; Supplementary Fig. 4).

For each input Fv sequence, the trained AbNatiV models return an 
antibody nativeness score and a sequence profile.

The nativeness score quantifies how close the input sequence 
is to the learnt distribution, that is to a native antibody sequence 
derived from the immune system the model was trained on (human 
or camelid in this work). To facilitate the interpretation of this score 
and the comparison of scores from the different trained models, 
the AbNatiV score is defined in such a way that it approaches 1 for 
highly native sequences and 0.8 represents the threshold that best 
separates native and non-native sequences (Methods). In the case of 
AbNatiV trained on VH, Vλ and Vκ human chains, this score is referred 
as to the AbNatiV-humanness score (Fig. 1c). Similarly, for AbNatiV 
trained on VHH camelid sequences, this score is referred to as the 
AbNatiV-VHH-nativeness score.

The sequence profile consists of one number per residue posi-
tion in the aligned input sequence, so it contains a total of 149 entries 
including gaps. Here too, entries approaching 1 denote high native-
ness, and smaller than 1 increasingly lower nativeness. This profile is 
useful to understand which sequence regions or residues contribute 
most to the overall nativeness of the sequence, and which may be 
liabilities. As an example, Fig. 1d shows the humanness profile of 
the VH sequence of a mouse antibody (WT precursor) that contains 
many low-scoring regions that could be immunogenic in humans, 
compared to that of its humanized counterpart: the therapeutic 
antibody refanezumab. The profile of refanezumab contains far 
fewer low-scoring regions, and these are mostly found in the CDR 
loops, which are of mouse origin and were grafted into a human Fv 
framework during humanization (Fig. 1d and Supplementary Fig. 5). 
This example shows that sequence profiles can be powerful tools to 
guide antibody engineering by facilitating the design of mutations 
to improve antibody nativeness.

Overall, AbNatiV predictions are highly interpretable, as native-
ness scores tend to 1.0 with a 0.8 threshold that separates native and 
non-native sequences, and the sequence profile provides single-residue 
resolution on the sequence determinants of nativeness.

Classification of human antibodies. To quantify the performance of 
AbNatiV, we first assessed its ability to discriminate between human 
antibody Fv sequences and antibody Fv sequences from other species. 
The area under the receiver operating characteristic curve (ROC-AUC) 
and that under the precision–recall curve (PR-AUC) are used to quan-
tify the ability of the models to correctly classify sequences (Fig. 2, 
Extended Data Fig. 1 and Supplementary Fig. 6). For example, AbNatiV 
can accurately distinguish the VH human sequences of its test set from 
VH mouse sequences on the basis of their humanness score distribution 
with a PR-AUC of 0.996 (Fig. 2b) and ROC-AUC of 0.995 (Supplementary 
Fig. 6a). Similarly, AbNatiV can successfully discriminate between 
human and rhesus (monkey, Macaca mulatta) sequences. Despite the 
high genetic similarity between these two organisms, the model can 
separate VH sequences very well, with a PR-AUC of 0.965 (Fig. 2b) and 
ROC-AUC of 0.958 (Supplementary Fig. 6a).

We further used two control datasets in our benchmark: one for 
the learning of high-order relationships, and one to confirm the lack 
of overfitting and the ability of the model to generalize to unseen 
sequence space. For the latter, we compiled a dataset of highly diverse 
human Fv sequences that we named diverse greater than 5% (at least 
5% away from any sequence in the training set; Methods). As expected, 
classification performances on the diverse dataset slightly decrease, 
but overall remain very high. For the VH model, the biggest drop is 
found with rhesus sequences from a PR-AUC of 0.965 with the test set 
down to 0.923 with the diverse greater than 5% set (Fig. 2b,c). However, 
the VH model is still able to classify most of the diverse greater than 5% 
sequences as human. Only 5.5% of these sequences have a score below 
the nativeness threshold of 0.8, compared with 1.9% for the test VH 
sequences. For the light-chain models, the performances are even more 
comparable (Extended Data Fig. 1 and Supplementary Fig. 6), perhaps 
because the diverse greater than 2.5% set is less distant from the training 
set since diversity is more limited in light chains than in heavy chains. 
This performance on the control dataset is in line with our assessment 
of lack of overfitting (Supplementary Fig. 2), and it makes us confident 
in the ability of the model to generalize to sequences distant from those 
it was trained on.

As a control for the learning of high-order relationships, we gener-
ated datasets of artificial Fv sequences constructed by picking residues 
at random following the positional residue frequencies observed in 
human Fv sequences (Methods and Supplementary Fig. 7). We call these 
datasets position-specific scoring matrix (PSSM)-generated sets. If one 
looks at each residue position individually, these artificial sequences 
are indistinguishable from real human sequences, as they are con-
structed only using residues observed in human sequences at each 
position (with log-likelihood greater than 0 and following the observed 
residue-frequency distribution; Methods). However, as residues at each 
position of the artificial sequences have been chosen independently 
of residues at other positions, any high-order relationship observed 
in these sequences should be compatible with random expectation. 
We find that AbNatiV can perfectly separate real VH human sequences 
from PSSM-generated ones (PR-AUC of 1.000 and 0.998, respectively, 
for the VH human test and diverse greater than 5% datasets; Fig. 2), and 
that the separation is also excellent for Vκ (PR-AUC of 0.992 and 0.988, 
respectively; Supplementary Fig. 6a–c) and Vλ (PR-AUC of 0.990 and 
0.980, respectively; Supplementary Fig. 6d–f). This performance 
attests the ability of AbNatiV to learn complex high-order relationships 
observed within native human Fv sequences beyond their simple amino 
acid composition.

We then compared the performances of AbNatiV with those of 
other computational methods developed for the humanization of 
antibody sequences (Table 1, Extended Data Tables 1 and 2, Supplemen-
tary Tables 1–3 and Supplementary Figs. 8 and 9). More specifically, 
we focus on the recently introduced OASis 9-mer peptide similarity 
score36, the Sapiens transformer model36 and the long short-term 
memory network AbLSTM model37, as these approaches were shown 
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to outperform older methods. Our results show that AbNatiV out-
performs all alternative approaches on all classification tasks over-
all (Table 1 and Supplementary Table 1). The biggest difference is 
observed in the human test versus rhesus classification, where for 
VH sequences the AbNatiV PR-AUC is 0.965, whereas that of the best 
alternative method, AbLSTM, is 0.721, which increases to 0.777 once 
the AbLSTM architecture is retrained on our training set (Table 1). 
Lower performances of the alternative models are also observed for 
the human test versus mouse and versus PSSM-generated classifica-
tion tasks. We have not included in this benchmark the recently intro-
duced Hu-mAb method38, since we could only access it as a webserver 
that processes a single sequence per run. However, as Hu-mAb is 
trained with supervised learning for the specific task of distinguish-
ing between human and mouse sequences, we would expect it to do 
extremely well at the mouse versus human classification task and 
perhaps not as well on other tasks.

We further carried out the same benchmarks by replacing the 
human test set with the human diverse greater than 5% dataset, which 
contains sequences that are at least 5% different from any sequence 
in our training set. AbNatiV remains the best performing model over-
all. However, Sapiens marginally outperforms AbNatiV in one task: 
the classification of mouse sequences (by 0.006 in PR-AUC; Table 1).  

This result is hardly surprising, as the human diverse greater than 5% 
databases were built using sequences from the training sets of Sapiens 
and OASis36, and hence are overclassified with respect to our human test 
set. In addition, amino acid reconstruction accuracies were computed 
for all methods (except OASis as the method is not reconstruction 
based). The reconstruction accuracy quantifies the ability of a model 
to reconstruct the initial input from the embedding in the latent space. 
Both AbNatiV and Sapiens rely on masked learning, while AbLSTM relies 
on standard unsupervised learning. We find that the former models 
have higher reconstruction accuracies than the AbLSTM model (96, 
92 and 81% on the human test set for AbNatiV, Sapiens and AbLSTM, 
respectively). Sapiens reconstructs the VH sequences in the human 
diverse dataset slightly better than AbNatiV (94 and 95%, respectively). 
However, it should be noted again that the human diverse greater than 
5% dataset is contained in the training set of Sapiens36.

Similar results are found for Vκ and Vλ light chains, when com-
paring AbNatiV with the OASis and Sapiens methods (Extended Data 
Tables 1 and 2 and Supplementary Tables 2 and 3), while the AbLSTM 
humanness score is not defined for light chains37. AbNatiV exhibits 
higher reconstruction accuracy than Sapiens also for the light chains 
variable domains (VL) in the human diverse greater than 2.5% datasets 
(98 versus 94% for Vκ and 98 versus 93% for Vλ, respectively).
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Fig. 2 | Performance on VH sequence classification. a, The AbNatiV-humanness 
score distributions of the human test (purple), human diverse greater than 5% 
(red), rhesus (green), PSSM-generated (blue) and mouse (orange) VH antibody 
datasets. The PSSM-generated database is made of artificial sequences randomly 
generated using residue positional frequencies from the PSSM of human VH 
sequences. The human diverse >5% dataset is made of VH sequences at least 5% 

different from their closest sequence in the VH training set (Methods). b,c, Plots 
of the PR curves of the ability of AbNatiV to distinguish the VH human test set 
(b) or human diverse >5% set (c) from the other datasets (see legend, which also 
reports the AUC). The baseline (dashed line) corresponds to the performance of 
a random classifier. The corresponding ROC curves are given in Supplementary 
Fig. 6a,b.

Table 1 | Evaluation of the PR classification and reconstruction tasks for human VH sequences

VH Classification (PR-AUC) Reconstruction accuracy

Rhesus versus Mouse versus PSSM-generated versus T D

T D T D T D

AbNatiV 0.965 0.923 0.996 0.988 1.000 0.998 0.960 0.935

OASis (relaxed) 0.570 0.829 0.897 0.965 0.982 0.992 N/A N/A

Sapiens 0.626 0.883 0.982 0.994 0.993 0.997 0.918 0.949

AbLSTM 0.721 0.892 0.963 0.986 0.998 0.998 0.807 0.856

AbLSTM retrained 0.777 0.866 0.967 0.979 0.997 0.996 0.822 0.849

The assessment is carried out for AbNatiV trained on human VH sequences (first row) and other computational approaches that can assess humanness (other rows). AbLSTM retrained 
corresponds to the AbLSTM model retrained on the same training set of AbNatiV (Methods). The first six columns report the area under the PR curve (shown in Fig. 2 and Supplementary  
Fig. 8), assessing the ability of the models to separate sequences in the human test (T) or the human diverse >5% (D) sets from those from mouse, rhesus and PSSM-generated (column 
headers). The human diverse >5% dataset is used here as a control to specifically assess the ability of the AbNatiV to generalize to sequences distant from those in its training set. The last two 
columns quantify the ability of each model to reconstruct human sequences in each dataset (column header). The OASis method does not carry out reconstruction (N/A, not applicable). Many 
sequences of the D datasets belong to the Sapiens training set. Corresponding ROC results are in Supplementary Table 1.
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Taken together, these results demonstrate that AbNatiV is a precise 
humanness assessment method that has learnt high-order relation-
ships between residues to identify antibody sequences derived from 
human immune systems.

Application to antibody therapeutics. The assessment of human-
ness is a critical step of antibody drug development, with the goal of 
ensuring that drug candidates have minimal risk for administration to 
patients. Therefore, we ran AbNatiV on therapeutic antibody sequences 
and averaged the humanness score of the heavy and light chains from 
the relevant AbNatiV model (that is, trained either on VH, Vκ or Vλ; 
Methods). More specifically, we evaluated the performance of the 
method on distinguishing 196 human therapeutics from 353 antibodies 
therapeutics of non-human origin (mouse, chimeric and humanized). 
The PR curve (Fig. 3a) and ROC curve (Supplementary Fig. 10) are 
computed for AbNatiV and seven other computational approaches 
(Methods and Extended Data Table 3). AbNatiV outperforms all other 
methods when considering both AUCs with a PR-AUC of 0.971 and a 
ROC-AUC of 0.979. The second-best methods after AbNatiV are OASis 

with a PR-AUC of 0.963 and a ROC-AUC of 0.975 and Hu-mAb with a 
ROC-AUC of 0.979 and a PR-AUC of 0.956.

Α central interest in humanization of antibodies is to reduce their 
immunogenicity in human immune systems. One way to assess immu-
nogenicity in early-stage clinical trials is to assess the number of patients 
who develop anti-drug antibodies (ADAs) in response to the administra-
tion of therapeutic antibodies39. We find that the AbNatiV-humanness 
score (that is, the average of the AbNatiV-humanness scores of the VH 
and VL; Methods) shows a Pearson correlation coefficient (R) of −0.49 
(P ≅ 2 × 10−14) with the percentage of patients who developed ADAs on 
treatment, which is available for 216 different therapeutic antibodies 
(Fig. 3b). We note that these ADA data are highly heterogeneous and 
therefore there is no reason to expect much stronger correlations. The 
percentage of patients who developed an ADA response is determined 
in different studies carried out in drastically different ways. In particu-
lar, the dosage of the therapeutic antibody candidate and the length 
of the study (that is, the number of doses administered and the total 
study time) can vary widely among different therapeutic candidates. 
It is therefore foreseeable that a highly immunogenic antibody that is 
administered only once and at a relatively low dose would elicit a weaker 
ADA response than a less immunogenic antibody that is administered at 
a high dose for an extended period. The reason for these discrepancies 
is that these clinical studies are designed around the specific require-
ments of the drug candidate under scrutiny, rather than to quanti-
tatively compare the immunogenicity of different drug candidates.

Classification of native camelid nanobodies. The development of 
single-domain antibodies has been gathering even more momentum 
since the approval of Caplacizumab in 2019, the first nanobody-based 
therapeutic6. Nanobodies (VHHs) are naturally expressed in camel-
ids and can exhibit advantageous stability and solubility properties 
combined with a small size that allows for better tissue penetration, 
while retaining the affinity and specificity of full-length antibodies5. 
When trained on VHH sequences, AbNatiV returns a VHH-nativeness 
score that quantifies the resemblance of antibody sequences to native 
camelid single-domain antibody, and hence the ability of a VH sequence 
to fold independently of a VL counterpart.

We find that AbNatiV accurately discriminates VHH test sequences 
from the VH sequences of human (0.983 PR-AUC), mouse (0.995) and 
rhesus (0.992) (Fig. 4a–c and Supplementary Fig. 11). The PR-AUC 
between PSSM-generated artificial VHH sequences and real camelid 
VHH sequences from the test set is 0.942. The VHH model can classify 
most of the diverse greater than 5% VHH sequences as native, with 
a performance at par to that observed on the test set. Also, 10.4% of 
diverse greater than 5% VHH sequences have a score below the native-
ness characteristic threshold of 0.8, compared with 10.8% for the test VH 
sequences. To the best of our knowledge, AbNatiV is the first approach 
to quantify the nativeness of nanobodies. Therefore, to compare with a 
different model, we retrained the AbLSTM architecture, originally devel-
oped for human VH sequences, on our nanobody training set (Methods). 
We find that AbNatiV shows higher classification performance than the 
retrained AbLSTM model on all tasks, and especially on the classifica-
tions with the VHH diverse greater than 5% dataset (Extended Data Table 
4, Supplementary Table 4 and Supplementary Fig. 12).

CDR nativeness for grafting experiment. The grafting of target spe-
cific CDRs onto a different framework scaffold is a common technique 
to design an antibody with enhanced properties (for example, lower 
immunogenicity, higher stability or expressibility and so on)40–42. In the 
case of nanobodies, a specific camelid framework, referred to as uni-
versal framework (UF), was shown to retain very high conformational 
stability and prokaryotic expressibility almost independently of its CDR 
loops43. In that study, all three CDRs of six unrelated nanobodies target-
ing different antigens were grafted onto the UF. Binding affinity (KD) and 
conformational stability (ΔG) were experimentally measured for all six 
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Fig. 3 | Performance on antibody therapeutics. a, Plot of the PR curves of 
the classification of 196 human-derived therapeutics from 353 therapeutics of 
non-human origin (mouse, chimeric and humanized) carried out with AbNatiV 
(in red) and seven other computational methods (see legend, which also reports 
the AUC values). The baseline (dashed line) corresponds to the performance 
expected from a random classifier. Corresponding ROC curves can be found in 
Supplementary Fig. 10. b, Scatter plot of the AbNatiV-humanness score of 126 
antibody therapeutics and their ADA immunogenicity score, expressed as the 
percentage of patients developing an ADA response in each study. The Pearson 
correlation (R) and two-sided P value are reported on top left corner. Sequences 
are coloured on the basis of their origin (that is, human in orange, humanized in 
purple, chimeric in red and mouse in blue).
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WT nanobodies, and corresponding UF variants with the grafted CDRs. 
Upon grafting, the binding KD worsened for most variants, probably 
because the CDRs now make some non-native interactions with the UF 
sequence, which affects their conformation and consequently antigen 
binding, even if the conformational stability improved on grafting 
because of the superior stability of the UF43. AbNatiV provides a direct 
sequence-based approach to assess the nativeness of these CDRs within 
the VHH UF and their WT framework, by computing the VHH-nativeness 
score across all CDR positions (Methods). We find that for all these six 
grafting examples, AbNatiV scoring anticorrelates with the experimen-
tally measured change in binding KD (Fig. 4d). Specifically, AbNatiV 
attributes a worse (lower) VHH-nativeness score to these sets of CDRs 
when they are grafted onto the UF than when they are found in their 
WT framework, in agreement with the experimental measurement of a 
worse (higher) binding KD. An example of the nativeness profile before 
and after grafting is provided in Supplementary Fig. 13.

Encouraged by these findings on six experimentally character-
ized grafting examples, we sought to obtain more robust statistics by 
computationally grafting all three CDRs of 5,000 different nanobodies 
from the VHH test set onto the UF scaffold. We find that in 86% of cases 

AbNatiV computes a lower VHH-nativeness score for the CDRs grafted 
in the UF than for the CDRs in their native WT framework (Fig. 4e).  
Taken together, the results of these analyses indicate that AbNatiV 
can accurately determine whether CDR loops are in the right context.

Humanization of nanobodies
With the recent surge of interest in the use of nanobodies as thera-
peutics, the humanization of nanobodies has emerged as a crucial 
requirement to improve their therapeutic index and reduce immu-
nogenicity risks for clinical applications41,44,45. Extended Data Fig. 2 
depicts the AbNatiV evaluation of the humanness and VHH nativeness 
of three nanobody therapeutics, and of eight WT nanobodies from a 
SARS-CoV-2 study46 and their humanized counterpart characterized in 
a separate study44. In that study, Sang et al. introduced a computational 
pipeline named Llamanade44, which integrates structural information 
and residue-frequency statistics to humanize nanobody sequences. 
We find that all humanized nanobody sequences are assigned an 
AbNatiV-humanness score higher than that of their WT counterpart. 
This improvement of humanness affects their VHH nativeness only 
weakly or even improves it (Extended Data Fig. 2), which is in line with 
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values). The baseline (dashed line) corresponds to the performance of a random 
classifier. The corresponding ROC curves are given in Supplementary Fig. 11.  
d, Plot of the binding KD, as reported in ref. 40, as a function of the AbNatiV-VHH-
nativeness score computed across all CDR positions of six nanobodies (legend) 
before and after grafting of all three CDRs onto a camelid UF. An arrow is directed 
from the native sequence in the WT framework to the grafted one. e, All three 
CDRs from a test set of 5,000 VHH sequences are computationally grafted onto 
the UF (Methods). The bar plot shows that 86% of them have a lower AbNatiV-
VHH-nativeness score when grafted onto the UF than when they are within their 
native framework.
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the non-significant or very small change observed experimentally by 
Sang et al.44 in the binding KD of these nanobodies on humanization.

Encouraged by these observations, we sought to develop a frame-
work to exploit AbNatiV for the rational humanization of nanobody 
sequences. By combining the humanness (VH-AbNatiV) with the 
VHH-nativeness (VHH-AbNatiV) assessments of AbNatiV, we propose 
a dual-control humanization strategy of nanobody sequences. As 
illustrated in Supplementary Fig. 14, this strategy begins by identifying 
liable positions with a low AbNatiV humanness or VHH nativeness in 
the residue profile. Then, it suggests potentially humanizing mutations 
derived from the human VH PSSM (Supplementary Fig. 7a). Finally, it 
accepts mutations that improve the AbNatiV-humanness score while 
preserving or further improving the AbNatiV-VHH-nativeness score 
(see Methods for further details).

Two distinct strategies to sample mutational variants are pro-
posed, which we designate as ‘enhanced’ and ‘exhaustive’ sampling. The 
enhanced approach iteratively explores the mutational space, aiming 
for rapid convergence to identify a promising mutant. By contrast, the 
exhaustive approach assesses all mutation combinations within the 
available mutational space and selects the best sequence. It is impor-
tant to note that the exhaustive sampling is considerably more com-
putationally demanding. For instance, in the case of a sequence with 
ten liable positions where four mutations are allowed at each position, 
the mutational space encompasses 410 mutants, exceeding 1 million 
combinations. On the other end, the enhanced sampling will explore 
on average less than 100 combinations of mutations. Therefore, to 
manage the computational complexity of the exhaustive approach, 
we restrict its mutational space by constraining the allowed muta-
tions to residues enriched in both the human VH and VHH PSSMs. 
Conversely, the enhanced method’s mutational space is larger as it 
restricts its allowed mutations to the human VH PSSM only. To minimize 
the chances of affecting antigen binding, both strategies are limited to 
the framework regions. For each sampling strategy, we implement both 
a purely sequence-based and a structure-based approach that models 
the nanobody structure from the input sequence (Methods). In the lat-
ter, buried residues that are not on the nanobody surface are excluded 
from the list of potential targets for mutations, as is commonly done in 
humanization strategies based on framework resurfacing47,48.

To test the effectiveness of these different humanization pipelines 
we generated in silico humanized variants of two nanobodies, which 
we then produced and characterized in vitro. These two nanobodies 
bind to two distinct proteins of therapeutic relevance: Nb24 targets the 
β2-microglobulin49, and mNb6 targets the receptor-binding domain 
(RBD) of the Spike protein of SARS-CoV-2 (matured version of Nb6 
in ref. 50). Nb24 was obtained from a llama immunization campaign 
and exhibits moderate binding with a dissociation constant KD in the 
mid-nanomolar range51, while mNb6 was obtained from the screening 
of a synthetic library and then highly optimized via saturation mutagen-
esis to reach a high picomolar-range KD (ref. 52). For each WT sequence, 
we generated four humanized variants using the AbNatiV automated 
pipelines and a further control variant. Two variants were generated by 
each sampling method: one limited to solvent-accessible framework 
sites, and the other encompassing all framework sites. While the crystal 
structures of Nb24 and Nb6 are solved experimentally (Protein Data 
Bank IDs 4kdt and 7kkk, respectively), solvent-exposed sites were 
identified by modelling in silico the structures of the WT sequences 
with Nanobuilder2 (ref. 50) to simulate a more general setting in which 
crystal structures may not be available.

For comparison, we also generated one additional humanized 
variant for each WT nanobody using the automated humanization 
tool Llamanade that proposes humanizing mutations on the basis 
of structural and residue-frequency analysis44. We refer to these as 
frequency and structure-based humanized variants. All generated 
sequences are presented in Extended Data Table 5, and the human VH 
and VHH-AbNatiV profiles in Supplementary Figs. 15 and 16, which 

also highlight the mutations from the WT. As expected, all humanized 
sequences have improved humanness and similar VHH nativeness to 
their WT, except for the two frequency and structure-based variants 
that show worsened VHH nativeness (Fig. 5a,b).

WT nanobodies and all humanized designs were then produced in 
Escherichia coli and experimentally characterized (Methods).

Bio-layer interferometry (BLI) experiments show that Nb24 WT 
binds β2-microglobulin with a KD of 79 ± 6 nM (mean ± standard devia-
tion from three independent experiments; Fig. 5c,e and Supplemen-
tary Fig. 17), which is compatible with previously reported values51. 
AbNatiV-humanized Nb24 variants obtained from both the enhanced 
and the exhaustive sampling strategies bind the antigen with KD values 
at par to or slightly better than that of the WT (68 ± 3 and 75 ± 5 nM, 
respectively; Fig. 5c,e). Conversely, humanized variants containing 
mutations also at buried positions showed worsened KD values, and 
the Nb24 variant with the most compromised binding was that from 
the frequency and structure-based humanization, with a KD in the high 
nanomolar range (Fig. 5c,e).

We also measured the thermal stability of all produced nanobodies 
(Methods). We find that all Nb24 humanized variants have increased 
apparent melting temperatures and temperatures of unfolding onset 
over those of the WT (Fig. 5g). However, this improvement is the small-
est for frequency and structure-based humanization; it is more pro-
nounced for the enhanced sampling AbNatiV humanization and even 
larger for the exhaustive sampling strategies (Fig. 5g,i).

In agreement with previous reports52, we find that WT mNb6 binds 
SARS-CoV-2 RBD with a KD in the high picomolar range (0.78 ± 0.04 nM). 
The AbNatiV-humanized mNb6 variant from the enhanced sampling 
strategy retains this tight KD (KD = 0.86 ± 0.10 nM; Fig. 5d,f). However, 
all other mNb6 humanized variants show a binding compromised to 
varying degrees. The least affected variant is the one from the AbNatiV 
exhaustive sampling, with a KD of 15 ± 2 nM, followed by the two AbNatiV 
variants that also contain mutations at buried sites. The most affected 
variant is the one from the frequency and structure-based humaniza-
tion, which did not yield any binding signal in the assay (Fig. 5d and 
Supplementary Fig. 17).

In terms of stability, the enhanced sampling variants show a 
slight decrease of apparent melting temperature over that of the WT, 
but an unaffected or marginally improved temperature of unfolding 
onset. Conversely, the enhanced sampling variant with mutations at 
buried positions and the frequency and structure-based variant had 
decreased thermal stability, while both exhaustive sampling variants 
had increased thermal stability (Fig. 5h,j).

Taken together, these results underscore the effectiveness of the 
AbNatiV enhanced sampling humanization pipeline to enhance in 
silico the humanness of nanobodies by suggesting mutations that are 
not detrimental to binding and stability.

Discussion
In this work, we have introduced AbNatiV, a VQ-VAE-based antibody 
nativeness assessment method that can evaluate the likelihood of input 
sequences belonging to the distribution of immune-system-derived 
antibodies (human VH and VL domains and camelid VHHs). AbNatiV 
provides both an interpretable overall score for the full sequence and a 
nativeness profile at the residue level, which can be exploited to guide 
antibody engineering and humanization. The integration of masked 
and unsupervised learning with the deep VQ-VAE architecture allows 
AbNatiV to capture complex high-order interactions. AbNatiV suc-
cessfully discriminates natural sequences from artificial sequences 
generated following the natural positional residue frequency, and it can 
distinguish human antibodies or camelid nanobodies from antibod-
ies from other species. Compared to alternative methods developed 
for antibody humanization, AbNatiV exhibits higher classification 
performances, while often being trained on a smaller number of 
sequences (roughly 2 million) for fewer epochs (ten epochs). To put 
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these numbers in context, the deep VH transformer model Sapiens was 
trained on 20 million sequences for 700 epochs36. The training set size 
of the AbNatiV-VHH model, comprising around 2.2 million sequences, 
is inherently limited by the number of VHH sequences available in the 
literature. Conversely, for the human heavy and light chains, 2 million 
sequences only were used for training despite the abundance of avail-
able data for human antibody sequences. On investigation, we revealed 
that the VH model exhibits minimal performance improvement when 
expanding the training set size from 1 million to 2 million sequences 
(Supplementary Fig. 18a). This little gain of performance does not 
justify increasing the dataset training size further as this would sub-
stantially increase training time. Furthermore, having a training size 
comparable with that of the VHH model ensures a fair and meaningful 
performance evaluation across models.

AbNatiV is trained on aligned sequences. The alignment process 
is performed with the AHo antibody residue numbering scheme53, 
which numbers each residue on the basis of its structural role (for 
example, being in a particular CDR loop or in the framework region). 

Essentially all known antibodies fit into this representation, and we 
posited that—albeit our method is purely sequence based—using Fv 
sequences aligned in this way would facilitate the learning of structural 
features and hence increase performance. To test this hypothesis, we 
used the same architecture on non-aligned sequences (Methods), 
which, as expected, led to a very notable performance drop. In the case 
of VH sequences, using non-aligned sequences resulted in a three- to 
fourfold decrease of both training and validation loss performances 
(Supplementary Fig. 18b). These findings are consistent with those of 
Hawkins-Hooker et al.54, who applied a fully connected VAE to a dataset 
of luciferase sequences. The model trained on aligned sequences cap-
tured the information better, leading to a more successful generation of 
new luciferase-like sequences compared to the model trained on una-
ligned sequences. Moreover, using aligned sequences enables AbNatiV 
to produce residue profiles readily comparable across sequences of 
different lengths. This feature is highly advantageous for sequence 
engineering purposes, and for the comparison of different hits from 
antibody discovery or optimization campaigns.
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Fig. 5 | Humanization of two llama-derived nanobodies. The top row pertains 
to the humanization of nanobody Nb24, which binds human β2-microglobulin, 
the lower row to mNb6, which binds SARS-CoV-2 RBD. In the legend, variants 
in bold font are different AbNatiV design strategies (text). The frequency and 
structure-based designs are done using the Llamanade webserver44. a,b, Scatter 
plots of the AbNatiV VH-humanness score as a function of the VHH-nativeness 
score for all characterized variants (legend, the WT is the blue circle): VHH Nb24 
(a) and VHH mNb6 (b). c,d, BLI binding traces (associations and dissociations 
phases) obtained with streptavidin sensors loaded with biotinylated β2-
microglobulin (c) or biotinylated SARS-CoV-2 RBD (d). c, The association was 
monitored in wells containing 25, 50, 100, 200 and 400 nM of Nb24 nanobody 
variants (legend). Data were fitted globally with a 1:1 partial dissociation binding 
model (solid lines) using Rmax, on rate and off rate as global parameters and Yt→inf 

as local parameter. d, Association was monitored in wells containing 3.7, 11.1, 
33.3, 100 and 300 nM of the WT and the enhanced sampling variants (legend); 4, 
12.2, 36.4, 109.3 and 328 nM of the enhanced sampling (+buried) variant (orange) 
and 6.2, 18.5, 55.6, 166.7 and 500 nM of all other mNb6 variants (legend). Data 
were fitted globally with a 1:1 binding model (solid lines) using Rmax, on rate and 
off rate as global parameters. Two additional independent BLI experiments per 
antigen, carried out on different days with different concentrations and times, 
are presented in Supplementary Fig. 17. e,f, Bar plots of the fitted KD values from 
the three experiments: Nb24 (e) and mNb6 (f). g,h, Bar plots of the apparent 
melting temperatures: Nb24 (g) and mNb6 (h). i,j, Bar plots of the temperatures 
of unfolding onset (Methods): Nb24 (i) and mNb6 (j). Triplicates of the thermal 
stability experiments were run for the Nb24 variants, while duplicates were run 
for the mNb6 variants. Error bars are standard deviations.
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We have also observed that AbNatiV outperforms alternative 
methods when classifying human-derived antibody therapeutics from 
therapeutic antibodies of non-human origin, which also reflects the 
robustness of the AbNatiV assessment beyond the span of its train-
ing and test sets. We have further shown that AbNatiV-humanness 
scores have a statistically significant correlation (R = −0.5) with the 
percentage of patients who developed ADA in clinical studies. This 
evaluation of immunogenicity with the ADA database is commonly 
used to benchmark immunogenicity assessment methods36,38,55, and 
therefore we performed it in our work. However, these ADA data exhibit 
a substantial level of heterogeneity, as the database was assembled 
using immunogenicity data from different clinical studies reported in 
the literature with experimental conditions (for example, number of 
patients, dosage, study length) varying substantially among studies. 
As an example, Basiliximab was tested on 339 patients (https://www.
ema.europa.eu/), while Disitamab was tested only on 58 (ref. 56). In 
the study considered in the ADA dataset that we used, Disitamab was 
reported to elicit an ADA response in 58.6% of the patients. However, in 
a more recent publication on a larger study with a more uniform design 
(80 patients with the same dosage instead of 58 patients with four dif-
ferent dosages), Disitamab was shown to elicit ADA response in 23.8% 
of the participants57, which is less than half of the number previously 
estimated. This example shows that the degree of heterogeneity of 
this ADA database should be considered when expecting quantita-
tive correlations with immunogenicity predictions. Nevertheless, a 
recently introduce method, called Hu-mAb38, showed a slightly better 
correlation with these ADA data (R = −0.58)38. Hu-mAb is a random for-
est classifier trained in a supervised way to differentiate human from 
mouse sequences. As supervised learning is well known to typically 
outperform unsupervised learning, and as the ADA dataset contains 
only human, mouse, chimeric or humanized antibodies from mouse 
precursors, it is perhaps not surprising that a supervised learning 
approach specifically trained to separate mouse from human antibod-
ies shows a slightly stronger correlation with these data. In this work, we 
chose to develop a model trained with unsupervised learning because 
we want it to be applicable to any input Fv sequence, as opposed to just 
mouse and human sequences. One of the main reasons we developed 
AbNatiV is to use it in synergy with emerging approaches of de novo 
antibody design, which typically yield artificial sequences whose latent 
distribution may be specific to the design method used.

Alongside humanness, AbNatiV quantifies the nativeness of 
nanobodies. The resulting model exhibits high classification perfor-
mance in distinguishing VHH sequences derived from camelids from 
VH sequences from other species and from PSSM-generated artificial 
VHH sequences. The ability to discriminate artificial sequences con-
firms that the correct classification of VHHs does not solely rely on 
the presence of nanobody hallmark residues41, as these are also pre-
sent in the artificial PSSM-generated VHH sequences. However, while 
the discrimination performance of native nanobody sequences from 
artificial ones is excellent, it is not as good as that of AbNatiV trained 
on human sequences (PR-AUC of VHH 0.942, VH 1.000, Vκ 0.992 and 
Vλ 0.990). This observation may suggest that a bigger, and especially 
more diverse, VHH training dataset could be beneficial. While AbNatiV 
VHH is trained on slightly more sequences than AbNatiV humanness, 
these come from a much more restricted number of studies. Therefore, 
our VHH dataset has more limited diversity than the human one and 
it also comprises nanobodies from different camelid species (llamas, 
dromedaries, vicugna and so on; Supplementary Table 5), which may 
slightly confuse the model and demand for a larger training dataset. We 
expect that the publication of additional camelid immune repertoires 
will be beneficial for data-driven approaches such as AbNatiV, which 
have the potential to facilitate and accelerate nanobody development 
and humanization.

AbNatiV can also be used to assess whether CDR loops are in the 
right context or not (Fig. 4d,e). This observation demonstrates the 

ability of the model to capture long-range interactions between CDRs 
and framework regions and shows that AbNatiV can assist CDR graft-
ing. For example, the CDR nativeness loss calculated by AbNatiV is 
consistent with the experimentally observed loss of binding affinity on 
CDR grafting in a different framework (Fig. 4d). Yet, a quantitative cor-
relation with the magnitude of the change in KD is not observed, most 
probably because only a subset of non-ideal CDR-framework contacts 
resulting from grafting actually translates to an affinity loss in a way that 
is highly specific to the nanobody-antigen binding pose. We envisage 
that these applications of AbNatiV may increase the effectiveness and 
success of de novo antibody design methods on the basis of the graft-
ing of designed CDR loops19,20,58. We have focussed our analysis on VHH 
sequences. However, the exact same approach can be carried out with 
AbNatiV-humanness to select human scaffold sequences that serve as 
better receptors for CDR grafting from non-human sources, such as 
murine CDRs (Fig. 1d), designed CDRs or CDRs from a synthetic library.

Nanobodies exhibit substantial structural differences from 
human VH domains that enable them to fold independently of a VL 
counterpart. For instance, the CDR3 of nanobodies is often longer 
and sometimes folds back to interact with the framework5,44. During 
the process of humanization for therapeutic purposes, it is crucial to 
improve humanness while preserving these traits, as they translate 
into high stability and binding affinity. Consequently, we introduce an 
automated humanization pipeline that combines the humanness and 
VHH-nativeness assessments of AbNatiV. We applied this dual-control 
strategy on two nanobodies and showed that the humanized variants 
generated with the enhanced sampling pipeline retain their bind-
ing activity and biophysical stability. Conversely, both properties 
are disrupted when conventional structural and residue-frequency 
humanization is applied to the same nanobodies.

We selected Nb24 and mNb6 as test nanobodies because they 
bind two distinct antigens with therapeutic potential, are different 
from each other (for example, Nb24 has a non-canonical disulfide and 
mNb6 has not) and represent a standard and a challenging test case, 
respectively, for humanization. Nb24 was obtained from immunization, 
and with a mid-nanomolar dissociation constant is not a particularly 
optimized nanobody. Conversely, with a high picomolar dissociation 
constant, mNb6 is a highly affinity-maturated version of a nanobody 
(Nb6), which was obtained from the screening of a synthetic library52. 
Consequently, one would expect that mutations in mNb6 may be more 
likely to disrupt affinity and stability than mutations in Nb24. Indeed, 
our results align with this hypothesis, with both enhanced and exhaus-
tive sampling strategies showing excellent results on Nb24, improving 
both binding affinity (marginally) and stability (substantially). Con-
versely, only the enhanced sampling strategy did not compromise the 
binding of mNb6 retaining a comparable stability. In agreement with 
previous research47,48, we find that framework resurfacing strategies 
that do not mutate buried residues are superior at preserving bind-
ing, most probably because mutations at non-solvent-exposed sites 
lead to slight conformational changes in the paratope region, thus 
affecting binding.

Overall, the enhanced sampling AbNatiV humanization yielded 
the most promising results. Additionally, this sampling approach is 
the most computationally efficient, adding to its value. Yet, the exhaus-
tive sampling remains a valuable choice as it generates humanized 
sequences for different numbers of mutations via its Pareto set selec-
tion (Methods). In our experiments, we have tested only the variant 
with the highest VH-humanness, which is also the one with the highest 
number of mutations, except for the exhausted + buried strategy ran 
on mNb6 (Supplementary Fig. 19). Yet, this approach offers users the 
flexibility to pick humanized variants with fewer mutations, lowering 
the risk of affecting their activity or other biophysical properties.

In addition to nanobodies, AbNatiV can be used to humanize 
directly paired heavy and light Fv sequences by running the same 
sampling strategies without the VHH-nativeness constraint. In this 
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way, the pipeline improves both heavy- and light-chain humanness. 
For traditional antibodies, the whole Fv region is modelled to identify 
the solvent-exposed residues and residues at the VH–VL interface are 
not considered mutable. In this way, we limit the occurrence of muta-
tions that could affect the pairing and relative orientation of VH and 
VL domain, which is important for binding.

Finally, we note that the trained AbNatiV models may facilitate 
applications of semisupervised learning, even if we have not explored 
this avenue in this work. Semisupervised learning, also known as low-N 
learning, combines a small amount of labelled data with a large amount 
of unlabelled data during training59–61. The embedding of the VQ-VAE, 
and possibly also the last hidden layer of the decoder, can be seen as an 
effective way to distil the fundamental features of antibody variable 
domains into a representation that is semantically rich and structur-
ally, evolutionarily and biophysically grounded62. The compactness of 
this representation, and the fact that it was built by learning from many 
functional sequences, means it can be used as input to train a supervised 
model (top model) with few free parameters, which therefore may 
be expected to generalize with relatively few labelled training data60. 
Approaches of semisupervised learning with protein directed-evolution 
data have been successfully deployed and were shown to be able to 
generalize to unseen regions of sequence space59,61,63.

In summary, we expect that AbNatiV will facilitate antibody and 
nanobody development, as it provides a rapid, highly accurate and 
interpretable way to quantify humanness and VHH nativeness from the 
knowledge of the sequence alone. Looking into the future, it is reason-
able to expect that computational approaches of de novo antibody 
design will be increasingly adopted to generate new antibodies. In this 
context, AbNatiV provides a holistic way to select the best designed 
antibodies or nanobodies to target epitopes of interest, for instance by 
ensuring high humanness or by facilitating the selection of a framework 
highly compatible with designed CDR loops. Antibodies designed in this 
way will have high nativeness, and therefore can be expected to share 
similar specificities and in vivo properties as immune-system-derived 
antibodies. Besides low immunogenicity, these properties include 
favourable half-life and low self-antigen cross-reactivity, which are 
essential for successful clinical development. Overall, we believe that 
approaches such as AbNatiV will constitute a step-change in our ability 
to design de novo antibodies with in vivo properties highly competitive 
with those of antibodies isolated from immune systems.

Methods
Datasets and antibody-sequence processing
The source of all antibody sequences used for training and testing 
is given in Supplementary Table 5, with the full-length antibody 
sequences coming from the OAS35 and the single-domain camelid 
VHH sequences coming from various studies64–67. All sequences were 
aligned, cleaned and processed beforehand. Non-redundant sequences 
were aligned using the AHo numbering scheme53 resulting in aligned 
sequences of length 149. The alignment was carried out using the 
widely used ANARCI software68 followed by a custom python script 
to check for consistency and fix misalignments. More specifically, 
we found that in some instances gaps may be opened in unexpected 
positions (sometimes in framework 1 or framework 2) leading to a mis-
alignment of the subsequent part of the sequence, including the fully 
conserved cysteines that form the intradomain disulfide bond (AHo 
positions 23 and 106). Therefore, a script was run to adjust possible 
inaccuracies in the alignment of each sequence within the multiple 
sequence alignment. This script maximizes the identity between the 
multiple sequence alignment consensus sequence and the sequence 
under scrutiny calculated at all positions with conservation index 
greater than 0.9, which include the two fully conserved cysteines. 
Sequences whose alignment could not be fixed or that did not have 
two cysteines at the conserved positions (because of, for example, 
sequencing errors) were discarded. Furthermore, Fv sequences with 

more than one or two missing residues at the N- and the C-terminal, 
respectively, were removed. For heavy chains, a glutamine residue 
was added at the N terminus, if missing and two serine residues were 
added at the C terminus, if missing. For lambda and kappa light chains, 
a leucine or a lysine, respectively, were added at the C terminus (AHo 
position 148) if missing. After alignment, a check for unique sequences 
was repeated (because, for example, after completing the C terminus 
some duplicated sequences may exist) and any duplicate discarded.

Datasets of processed heavy, lambda, kappa (from human, rhesus 
and mouse) and VHH antibody sequences from various studies from 
the literature were assembled (Supplementary Table 5) and processed 
as described above. All the parsed sequence datasets used in this study 
are available online in the AbNatiV GitLab at https://gitlab.developers.
cam.ac.uk/ch/sormanni/abnativ.

Training, validation, test and diverse datasets. A total of 2,000,000 
sequences from the human heavy, lambda and kappa databases 
were used to train three distinct models, respectively, and 2,144,185 
sequences from the VHH databases (camelid and PDB-sdAB) were 
used to train a fourth model. For each model, 50,000 sequences were 
additionally kept aside for validation and 10,000 sequences for test-
ing. These training, validation and test sequences were selected as 
random splits from the larger database of unique sequences. As we 
only had unique aligned Fv sequences, this procedure ensured that 
sequences in training, validation and test datasets were at least one 
mutation away, as commonly done in the field when dealing with large 
databases of sequences.

Furthermore, to be able to assess performance on a dataset of 
sequences that were more distant from any training sequence, we built 
an additional diverse dataset for each model. Such diverse datasets 
were compiled with sequences that were at least 5% different from 
any sequences of the training set (2.5% for Vκ and Vλ, as light chains 
have less diversity). Percentage difference is defined as the number of 
mutations between an aligned test sequence and an aligned training 
sequence (gap to gap is not considered a mutation), divided by the 
length of the gapless test sequence. For the human models (VH, Vκ and 
Vλ) diverse sequences were extracted from both the test and BioPhi 
datasets (subset of the training dataset of the Sapiens transformer from 
BioPhi36; Supplementary Fig. 20) to yield the corresponding diverse 
greater than 5% (or greater than 2.5% for the light chains) dataset. 
For the VHH model, diverse sequences were extracted from the test 
dataset by requiring at least 5% difference from the closest sequence 
in the training set. Supplementary Fig. 20 shows the cumulative distri-
bution functions of the minimum percentage different from training 
sequences for each dataset. Supplementary Fig. 4 shows the distribu-
tion of the sequence difference between training sequences and all 
sequences in the datasets used to assess AbNatiV performance, as well 
as the lack of correlation between the AbNatiV nativeness score and the 
distance of that sequence from the training set.

PSSM-generated datasets of artificial sequences. Position weight 
matrices (PWM) and corresponding PSSMs were computed from each 
human and camelid antibody training datasets (Supplementary Fig. 7). 
From these matrices, additional custom datasets of artificial sequences 
were generated to be used as controls, named PSSM-generated data-
sets. These sequences were built by randomly filling each residue posi-
tion using the underlying residue frequency observed in the PWM (that 
is, the matrix of observed residue frequencies; Supplementary Fig. 7) 
considering only those amino acids enriched at that position (that is, 
PSSM log-likelihood score greater than zero).

The AbNatiV model
VQ-VAE architecture. The AbNatiV model takes aligned antibody 
sequences of length 149 as input, and one-hot encodes each into a 
tensor of the dimensions 149 × 21. Each position is represented by a 
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vector of size 21 consisting of zeros and a one at the alphabet index of 
the residue under scrutiny (20 standard amino acids and a gap token).

The architecture of the models is based on a VQ-VAE framework32, 
which involves a VAE with a discretization of the dense latent space 
through code vectors (Fig. 1a). The sequence input x ∈ {0, 1}149×21 is first 
encoded into a compressed sequence representation ze (x) ∈ ℝl×dc ,  
where l represents the compressed sequence length and dc the dimen-
sion of the code vectors. To discretize ze(x) in the latent space, a learn-
able codebook of N code vectors {ek}

N
k=1 ⊂ ℝdc  is used. A nearest 

neighbour lookup is applied, so that each component {ze(x)i}
l
i=1 ⊂ ℝdc 

is substituted by the closest code vector of the codebook, resulting in 
the quantized embedding zq (x) ⊂ ℝl×dc . Finally, zq(x) is decoded to 
generate the reconstructed output ̂x ∈ {0, 1}149×21 having the original 
dimensions as the original sequence input x.

For increased codebook usage (that is, higher perplexity), the N 
code vectors are initialized with the N k-means centroids of the first 
training batch, and code vectors not assigned for multiple batches are 
replaced by randomly sampling the current batch as detailed in ref. 69, 
where a vector quantizer was applied to sound compression. In addi-
tion, the code vectors {ek}

N
k=1 and the encoded inputs ze(x) are l2 normal-

ized. The Euclidean distance of the l2-normalized vectors is used  
during the nearest neighbour lookup resulting in a cosine similarity 
search as proposed in the image modelling model ViT-VQGAN70. Fur-
thermore, the code vectors from the codebook are updated during 
training by exponential moving average with a decay of 0.9 to assure a 
more stable training71.

The encoder and decoder layers are illustrated in Fig. 1b. In the 
encoder, the input sequence is embedded by a patch convolutional 
layer70. A one-dimensional (1D)-convolution layer with a kernel size 
K equal to its stride S embeds each of the non-overlapping patches of 
dimension K × 21 into a single vector of size demb (that is, the number of 
channels of the 1D-convolution layer). A minimal padding was added to 
the sequence input beforehand to avoid missing any sequence region. 
For instance, in the VHH model, with K = S = 8, a padding of 3 is added 
to compress the sequence inputs into l = 19 embedding vectors of size 
demb. Then, a sinusoidal positional encoding is added before L trans-
former blocks. The transformer blocks are designed as in BERT72, with 
H heads in the multihead attentions layer and a hidden dimension dff in 
the feed forward layer. Before quantization, a linear layer is applied to 
reduce the embedding dimension demb to the size of the code vectors dc.

In the decoder, a linear layer is first applied to augment the dimen-
sion of the discrete embedding zq(x) to demb. Mirroring the encoder, 
a positional encoding is applied before L transformer blocks with 
the same hyperparameters of the encoder. Ultimately, a transpose 
1D-convolution layer with a softmax activation function is applied to 
reconstruct back the tensor into the same dimension of the original 
sequence inputs. All the hyperparameters were manually tuned for 
the VH and VHH models. It has been found empirically that the same 
hyperparameter values lead to the best performances for both models. 
Since the hyperparameters do not look to be dependent on the origin 
of the training set, the same hyperparameter values were used across 
all models and their values are given in Supplementary Table 6.

Unsupervised masked learning. Like the original VQ-VAE32 the AbNa-
tiV models are trained to minimize a negative evidence lower bound 
(NELBO) consisting of three terms as follows:

NELBO = ‖x − x̂‖22 + ‖sg(ze(x)) − zq(x)‖
2
2 + β‖ze(x) − sg(zq(x))‖

2
2

The first term is the negative log-likelihood reconstruction loss, 
which is characteristic of the VAEs. This term is approximated by the 
reconstruction m.s.e. between the input x and the decoder output x̂. 
The second and third terms are associated with the vector quantization 
step in the latent space, enabling the codebook to be trained. Both 
terms are m.s.e.s between the encoded input ze(x) and the quantized 

latent embedding zq(x). In particular, the second term, stop gradient, 
sg, is applied to ze(x) to detach it from the computational graph, thereby 
updating only the codebook during back propagation. In the third 
term, zq(x) is conversely ignored during back propagation, which drives 
the encoder to commit to the codebook vectors. The stop gradient 
allows the code vectors and the encoder to be updated at different 
speeds. The relative learning speed between these two terms is imposed 
by the scaling factor β. In all our models, β is set to 0.25. By choosing 
β < 1, the code vectors are updated more rapidly to align with the 
encoder, preventing an arbitrary growth of the encoder outputs32.

The neural network is implemented using PyTorch v.1.14 (ref. 73) and 
enhanced by the PyTorchLightning.0.7 module. The models are trained 
with a batch size of 128 by the Adam optimizer74 with a learning rate of 
4 × 10−5. During training, a masking is applied to the one-hot encoded 
inputs. As in the training of the language transformer model BERT72, 
a percentage of positions pmask is selected for masking. Among these 
selected positions, 80% are replaced by the uniform vector of size 21 with 
a probability of one in 21 for each residue, which we use as a mask token; 
10% are randomly replaced by another residue or gap and 10% remain 
unchanged so that the model does not learn to expect a fixed number of 
masked residues (as all sequences are aligned to 149 positions).

Training with non-aligned sequences
For comparison, we trained the same VQ-VAE architecture (the same 
hyperparameters and number of training epochs) on non-aligned VH 
sequences. A padding of the value zero was added to the left and right 
of the one-hot input vectors of non-aligned sequences to reach a size 
of 149. If the padding size required was odd, one more pad was added 
to the right side. The loss function was identical. For the reconstruction 
accuracy, only the non-padded components were considered.

Antibody nativeness definition
The concept of antibody nativeness is intuitively understood as the 
extent to which a given sequence resembles those of native antibodies, 
that is, of antibodies derived from the immune system under scrutiny 
(in this work human or camelid immune systems). Here, we provide a 
quantitative definition of nativeness as:

AbNatiVnativeness = 0.8 − 1
TR − 1

(exp(−
∑149

i=1
1
21
‖x̂i − xi‖

2
2

sequence length
) − 1) + 1

where ‖x̂i − xi‖
2
2 is the m.s.e. at sequence position i between the aligned 

input sequence x and the reconstructed output sequence x̂ of a trained 
AbNatiV model. This m.s.e. is summed over all 149 positions of the 
aligned sequence and normalized by the length of the input sequence 
(that is, without considering the gaps opened by the alignment). As this 
operation gives a number X that in principle ranges in (0, + ∞), where 0 
would correspond to a fully native sequence that is perfectly recon-
structed, we apply the function Y = exp(−X). This way, Y is now a number 
in (0,1), where 1 means fully native, thus providing a more intuitive 
ranking for high and low nativeness. We wish to point out that, for typical 
antibody sequences from any species, the average m.s.e. X was typically 
a very small number in all the models that we trained. Therefore, in this 
relevant range of X, Y = exp(−X) is effectively approximated by a simpler 
linear transformation Y = 1 − X meaning that the distance between dif-
ferent antibody sequences is only minimally affected by the exponential 
transformation. Finally, the operation (0.8 − 1) × (Y − 1)/(TR − 1) + 1   
linearly rescales the scores so that the final nativeness score becomes 
a quantity directly and intuitively interpretable as an absolute value for 
a single sequence, and not just used to rank different sequences (Sup-
plementary Fig. 21). TR is specific to each trained model, and it denotes 
the optimal threshold of Y that best separates native sequences (posi-
tives in the classification) from non-native sequences (negatives in the 
classification). This linear transformation rescales the values of Y so 
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that this threshold on the final nativeness score becomes 0.8 for every 
model. In other words, this means that a nativeness score greater than 
0.8 denotes a sequence classified as native, while a score below 0.8 is 
one classified as non-native. TR is calculated for each trained model as 
follows. The PR curves are generated between human sequences (human 
test and human BioPhi datasets) as positives, and non-human sequences 
(mouse) as negatives for the VH, Vκ and Vλ models. Similarly, the PR 
curve is also calculated between VHH sequences (camelid test) as posi-
tives and non-VHH sequences (human test and house) as negatives, all 
computed on the Y = exp(−X )  scored sequences (Supplementary  
Fig. 21a,d,g,j). For every model, the PR optimal threshold value TR is 
extracted as the point closest to (1,1) (Supplementary Fig. 21b,e,h,k, 
TR(VH) = 0.988047, TR(Vκ)= 0.992496, TR(Vλ) = 0.985580 and 
TR(VHH) = 0.990973). The scores are thus linearly rescaled to shift TR to 
0.8 to return a final value ∈ ]−∞, 1] for any input Fv sequence (Supple-
mentary Fig. 21c,f,i,l). Not only does this rescaling make the nativeness 
scores from different models interpretable in the same way, but it also 
future proofs the definition of nativeness. The values of TR will change 
if, in the future, the model is retrained on a larger or more diverse data-
set, or if the architecture is further improved. However, the interpreta-
tion of the final nativeness score, which is what users will rely on, will be 
the same. We define AbNatiV-humanness score the nativeness from 
AbNatiV trained on VH, Vκ and Vλ human sequences, and AbNatiV- 
VHH-nativeness score, that from AbNatiV trained on single-domain 
VHH sequences.

In addition, residue-level scoring profiles are defined by applying 
Y = exp(−X) to the m.s.e. reconstruction error at each position of the 
given sequence.

Performance metrics
All the performance metrics reported are computed by analysing 
10,000 scored sequences for each database, except for the diverse 
datasets (Supplementary Table 5). For datasets smaller than 10,000, 
the whole dataset is used.

Classification. The AUC of the ROC and of the PR curves are computed 
to quantify the ability of a model to classify sequences. For ROC curves, 
the AUC is equal to one when the classification is perfect. It is equal to 
0.5 when the model performs as poorly as a classifier that is randomly 
sampling from a uniform distribution. For PR curves, the AUC is also 
equal to one when the classification is perfect, while it is equal to the 
ratio of positive entries over the total number of entries in the datasets 
when the classification is random.

The amino acid reconstruction accuracy. The amino acid recon-
struction accuracy quantifies the ability of a model to reconstruct 
the initial unmasked input from the embedded vector of the latent 
space. The reconstructed outputs of the model have for each position 
a probability distribution over the alphabet. For each position, the 
most probable amino acid is selected. The amino acid reconstruction 
accuracy corresponds to the ratio of correctly predicted residues 
for every position over the length of the sequence. It is equal to 1 if all 
residues have been correctly reconstructed, and 0 if not even one has. 
It can be expressed, as follows:

reconstruction accuracy =
∑149

i=1 1xi=x̂i
149

where xi and x̂i are residue at the position i of the input x and the recon-
structed output x̂  of the model, respectively.

Benchmarking with other assessments from the literature. 
Open-source antibody humanness assessments from the literature 
were used to benchmark the performances of AbNatiV. These assess-
ments include OASis and Sapiens from Biophi36 and AbLSTM37.

OASis is an average 9-mer peptide similarity searched through the 
OAS database. Sapiens is an unsupervised human antibody language 
model based on the transformer encoder BERT72 network. It is trained 
on unaligned human antibody sequences from the OAS database. 
The GitHub implementation (https://github.com/Merck/BioPhi) of 
OASis and Sapiens is used to score our testing databases. The relaxed 
stringency level is used for the OASis assessment. The OASis score 
is not position discrete, hence it cannot be used for the amino acid 
reconstruction task.

AbLSTM37 is an unsupervised long–short-term-memory (LSTM) 
neural network. Human heavy chains sequences from the OAS database 
are aligned before training. Here, we used the pretrained model in the 
benchmarking, and we also retrained the AbLSTM for ten epochs from 
scratch on the same single-domain, and human heavy, lambda and 
kappa databases used for the training of our VQ-VAE models. In the 
case of human VH we carried out the benchmark with both retrained 
AbLSTM and original pretrained one as downloaded from https://
github.com/vkola-lab/peds2019. The original hyperparameters of 
AbLSTM were used (embedding dimension 64, hidden dimension 64, 
batch size 128 and learning rate 2 × 10−3). The negative log sum loss of 
the AbLSTM model was used as its humanness or VHH-nativeness scores 
as done in the original work37.

Predictions on antibody therapeutics
Here, 549 antibody therapeutics from the IMGT database75 were 
obtained from the BioPhi dataset36. This dataset includes 196 fully 
human therapeutic sequences and 353 therapeutics of non-human 
origin (mouse, chimeric and humanized). The AUC of ROC and PR 
curves are computed to quantify the ability of the models to separate 
these two groups of sequences.

Similarly, 216 antibody therapeutics with their immunogenicity 
scores, expressed as the percentage of patients who developed an 
ADA response during clinical trials, were also obtained from the BioPhi 
dataset36. These sequences were used to quantify the extent of cor-
relation between the models nativeness scores and the observed ADA 
response, using the Pearson correlation coefficient and its associated 
P value. For each therapeutic, the mean between the scores of VH and 
VL domain is used as an overall nativeness.

The humanness scores from different methods developed to 
humanize antibodies with which we compare our approach were 
obtained as computed by the authors of BioPhi and deposited in 
their GitHub (https://github.com/Merck/BioPhi) and in the tables of  
ref. 36. The alternative methods considered in this work are the BioPhi 
germline content36 (sequence identity to closest human germline), 
Hu-mAb38 (random forest-based humanness), IgReconstruct76 (posi-
tional nucleotide frequency scoring from back-translated human anti-
bodies), AbLSTM37, T20 (ref. 77) (similarity average among the closest 
20 sequences) and Z-score78 (similarity average across all sequences) 
assessments. Light-chain-only antibodies (that is, istiratumab, luli-
zumab pegol, placulumab and tibulizumab) are removed from the 
IMGT BioPhi parsed dataset as the original pretrained AbLSTM can 
only score heavy chains. Because the Fv sequence of pexeluzimab has 
missing C-terminal residues, it is also removed from the ADA dataset 
and excluded from further analysis. All these sequences with their 
associated scores are available in Supplementary Data 1 and 2.

Grafting assessment on nanobodies
In ref. 40 all three CDRs of six nanobodies were grafted onto a camelid 
VHH framework sequence, referred to as the UF. Binding KD and con-
formational stability ΔG were experimentally measured for all six WT 
nanobodies, and corresponding variants with CDRs grafted onto the 
UF. Here, we compute the nativeness scores of the six pairs of WT and 
grafted nanobodies. As the UF has intrinsically better nativeness 
because of its ideal framework, to understand whether our model 
predicts the CDRs to be in the right context or not, we compute the 
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VHH-nativeness CDR scores. These are defined as the sum of the m.s.e. 
reconstruction scores of all residues at the CDR positions (according 
to the AHo numbering scheme) normalized by the length of these CDRs 
without gaps. Y = exp(−X )  is applied to the resulting sum X to give a 
more interpretable number in (0,1). A nativeness prediction of a CDR 
context is considered correct when the VHH-nativeness CDR score of 
the WT nanobody is higher than that of its UF-grafted counterpart, as 
reflected by the experimentally measured change in binding KD, which 
is typically worse for the UF-grafted variant (Fig. 4d). All the sequences 
with their respective KD and AbNatiV-VHH-CDR score are available in 
Supplementary Data 3.

We also carried out this assessment on a much bigger scale, by 
computationally grafting all CDRs of 5,000 different nanobodies from 
the camelid test dataset onto the UF scaffold.

Humanness assessment of nanobodies
For the analysis reported in Fig. 5, 300 VH human sequences and 300 
camelid sequences randomly selected from the test datasets are scored 
both with the AbNatiV human heavy and camelid heavy models to 
provide background distributions. Then, we further scored eight WT 
nanobodies from a SARS-CoV-2 study46 and their humanized counter-
part as reported in ref. 44, and three therapeutic nanobody sequences 
(envafolimab, caplacizumab and rimteravimab) available from the 
therapeutic database Thera-SAbDab79.

Automated humanization of nanobodies
The humanization process of nanobody sequences by AbNatiV follows 
a dual-control strategy that seeks to increase the humanness while 
retaining the VHH nativeness of a given sequence. Standard antibod-
ies can be humanized exactly as described here by removing all steps 
involving the VHH nativeness.

Given an input sequence, the VH-AbNatiV and VHH-AbNatiV resi-
due profiles are computed along with the solvent-accessible surface 
area (SASA) using the ‘rolling ball’ algorithm80 on the whole unbound 
structure modelled with NanoBuilder2 from the ImmuneBuilder soft-
ware50. The SASA of each residue is converted into a relative SASA 
(RASA) value by dividing the SASA of the given residue X under scrutiny 
with its maximum allowed SASA81. The latter is obtained as the SASA of 
residue X in the context of the Gly-X-Gly tripeptide in a fully extended 
conformation. Structural modelling and SASA calculations are only 
performed when the user chooses to do framework resurfacing: that 
is, to avoid mutating any buried residue, which is the default behaviour.

To reduce the mutational space, we first flag positions for muta-
tion using the residue nativeness profiles. The search is restricted to 
the framework region, as CDRs typically contain binding residues. Fur-
thermore, if framework resurfacing is selected as an option, mutable 
residues must exhibit a RASA greater or equal to 15%. By comparison, 
in the work of Chen et al.82 a RASA of 20% serves as a cut-off between 
buried and exposed residues. Starting from these automatically identi-
fied mutable positions, we developed two distinct sampling methods 
to explore the mutational space.

In these two pipelines, all the sampling parameters are fully adjust-
able (for example, tolerance of humanness, VHH-nativeness decrease 
or buried residues). Users can also look at the AbNatiV residue profiles 
and make in-depth analyses of the expected impact of humaniza-
tion. This empowers users to make fully informed decisions when  
designing their humanized sequences and selecting those for experi-
mental testing.

Enhanced sampling. The enhanced sampling is illustrated in Supple-
mentary Fig. 14a. Flagged positions have a VH-AbNatiV score smaller or 
equal to 0.98. Convergence towards the best combination of mutations 
is achieved by mutating each position subsequently one at a time, as 
opposed to exploring all possible combinations. The order in which 
positions are mutated is defined starting from those mutable positions 

that are least affected when other positions are mutated. This strategy 
increases the odds that positions mutated early remain stable even 
after subsequent mutations along the sequence are performed, lead-
ing to a more efficient path towards identifying the best mutational 
variant. Thereby, a first calculation is performed to sort positions to 
mutate on the basis of their average interdependence on mutations at 
every other position in the sequence. To quantify this dependence, a 
computational deep mutation scanning is implemented. For a given 
position, each of the other positions is individually mutated into all 
available amino acid residues (19 possibilities). For each mutation, and 
each of the other positions, we calculate the difference between the 
AbNatiV-VHH residue score at the position under scrutiny of the WT 
sequence and that of the mutated sequence (note that mutations are 
at other positions but may still affect the score of this position and this 
is what we are probing for here). These differences are then averaged 
into a single value quantifying the dependence of the position under 
scrutiny on mutations elsewhere in the sequence. This procedure is 
iterated for every liable position.

Subsequently, starting from the position with the least depend-
ence on mutations at other positions, we mutate it with all the amino 
acids significantly enriched in the human VH PSSM (that is, with a PSSM 
log-likelihood score greater than 0 and a PWM frequency greater than 
0.01; Supplementary Fig. 7). We exclude cysteines and methionines 
from the list of candidate mutations as these are linked to develop-
ability liabilities. The selected mutation at each position is then the one 
that increases most the multi-objective function: 0.8ΔVH + 0.2ΔVHH 
and that does not decrease the VHH-AbNatiV score by more than 1.5% 
of that of the WT (that is, 1.5% decrease tolerance for ΔVHH). If no such 
mutation is found (for example, all screened ones decrease the VHH 
nativeness by more than 1.5%), the residue is left to WT and the proce-
dure continues to the next mutable position. If a mutation is found, 
the sequence is updated and the process of selecting positions for 
mutation in Fig. 15a recommences from the beginning to ensure that 
no over other positions has become a liability (that is, residue score less 
than or equal to 0.98) following the introduction of this new mutation.

Exhaustive sampling. The exhaustive sampling is illustrated in Sup-
plementary Fig. 14b. Flagged positions have either a VH-AbNatiV or 
VHH-AbNatiV score smaller than or equal to 0.98, or the WT residue 
is not enriched in the human VH PSSM (that is, does not have a PSSM 
log-likelihood score greater than 0 and a PWM frequency greater than 
0.01; Supplementary Fig. 7). We generate all the possible combinations 
of mutations at all liable positions by considering as candidates for 
each position those amino acids significantly enriched in both human 
VH and VHH PSSMs (that is, with a PSSM log-likelihood score greater 
than 0 and a PWM frequency greater than 0.01; Supplementary Fig. 7). 
Cysteines and methionines are excluded from the list of candidates as 
these are linked to developability liabilities. The WT residue is retained 
in the list of candidate amino acids at each liable position. First, we 
retain only those combinations of mutations that do not decrease the 
VHH-nativeness score by more than 1.5% over that of the WT. Then, we 
compute the Pareto front that maximizes the VH-humanness score 
while minimizing the number of mutations over all remaining combi-
nations of mutations. In fact, given that WT residues were retained in 
the list of candidate amino acid substitutions, the method produces 
mutational variants that have a number of mutations ranging from 0 
(the WT, which is one possible combination) and the total number of 
identified liable positions.

At the end, this approach returns a set of mutational variants with 
the highest VH-humanness for each number of mutations that are 
beneficial to the VH-humanness (Supplementary Fig. 19). In the Pareto 
analysis, increasing the number of mutations is beneficial only when 
it further increases the VH-humanness score. For instance, we see in 
Supplementary Fig. 19d that going from nine to ten mutations does not 
increase the VH-humanness further, and therefore the variant with ten 
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mutations is not selected in the Pareto front. In this work, experimental 
testing was conducted exclusively on the sequence exhibiting the high-
est humanness score, which happens to be the one with the highest 
number of mutations in all exhaustive sampling designs, except for 
the variant in Supplementary Fig. 19d.

Frequency-based and structure-based nanobody humanization. 
To provide a benchmark for the AbNatiV humanization pipelines 
described above, we carried out nanobody humanization also using 
the recently introduced Llamanade humanization pipeline44. This 
approach builds on a systematic analysis of the sequence and struc-
tural properties that distinguish nanobodies from human VH, and 
proposes humanizing mutations on the basis of the analysis of the 
input nanobody modelled structure and the key differences between 
its sequence and sequences of human VH domains. These frequency- 
and structure-based designs were carried out with the Llamanade 
webserver accessed on 4 July 2023 (at http://35.208.211.136).

Protein production
Genes encoding the Nb24 and mNb6 WT nanobodies and 
their humanized variants were synthesized and cloned into an 
isopropyl-β-d-thiogalactopyranoside (IPTG)–inducible vector (by 
GenScript in vector pET29a(+)), including a leading PelB sequence 
to enable translocation to the periplasm and facilitate intradomain 
disulfide bond formation and ultimately the secretion of the protein to 
the expression media. A C-terminal 6× His tag is added for purification. 
All expressed amino acid sequences are given in Extended Data Table 5.  
Care was taken to maintain the same codon usage as the WT, except 
for the mutated amino acid positions. Plasmids were transformed into  
E. coli Shuffle LysY strain to further facilitate the formation of the 
disulfide bond, and to enable the secretion to the expression media 
(which is facilitated by the LysY leakier cell wall). Cultures (0.5 l) of 
Luria-Bertani media were inoculated at initial 0.03 OD600 (optical 
density at 600 nm), grown at 37 °C until reaching 0.8 OD600 and then 
induced with 500 µM IPTG at 30 °C for overnight expression.

His Mag Sepharose Excel magnetic beads (Cytiva) were washed in 
PBS and added to the cultures (1 ml per 0.5 l) about 3 h before harvest-
ing to capture the secreted his-tagged nanobodies. Loaded beads were 
then fished out from the expression media using an AmMag magnetic 
wand (GenScript) and purification was performed with an AmMag SA 
Plus Semiautomated System (GenScript) using PBS as running buffer 
and carrying out washing steps with PBS 4 mM imidazole, and elution 
with PBS 200 mM imidazole. Eluted nanobodies were further purified 
by size exclusion chromatography using a Superdex 75 10/300 column 
equilibrated in PBS on an Akta Pure System (Cytiva) to remove the imi-
dazole, further increase the purity and isolate monomeric nanobodies. 
Purified nanobodies were aliquoted, flash-frozen in liquid nitrogen 
and stored at −80 °C. Each aliquot was used only once and, following 
thawing, was centrifuged at 21,000g at 4 °C for 10 min to pellet down 
any precipitate that may have formed during freeze–thawing.

Recombinant β2-microglobulin was expressed and purified to 
homogeneity as previously reported in ref. 83. Briefly, E. coli BL21(DE3) 
cells were transformed with pET29b carrying the coding sequence 
of β2-microglobulin. The transformed cells were grown at 37 °C in 
Luria-Bertani medium supplemented with kanamycin and protein 
expression was induced with 1 mM IPTG for 3 h. β2-microglobulin was 
purified from the inclusion bodies. The cell pellet was resuspended 
in Triton buffer (100 mM sodium phosphate pH 7.4, 0.1% Triton, 
1 mM EDTA, 10 mM DTT) supplemented with lysozyme and DNase. 
The cells were lysed by sonication and then centrifuged. The pellet 
obtained was washed with Triton buffer and then dissolved in 6 M 
GuHCl. β2-microglobulin was refolded by consecutive dialysis (20 mM 
sodium phosphate pH 7.4, 150 mM NaCl; 20 mM sodium phosphate 
pH 7.4, 75 mM NaCl; 20 mM sodium phosphate pH 7.4, 35 mM NaCl and 
20 mM Tris-HCl pH 8.3), and then purified by ion exchange using a Hi 

Prep Q FF 16/10 column (GE Healthcare Life Sciences) connected to an 
Akta Pure system (Cytiva). The protein was eluted with a linear 0–1 M 
NaCl gradient in 20 mM Tris-HCl pH 8.3. Purified β2-microglobulin 
was aliquoted, lyophilized and stored at −80 °C. SARS-CoV-2 RBD was 
purchased as biotinylated purified protein from CUSABIO (product 
code CSB-MP3324GMY1-B) and stored at −80 °C.

Protein concentrations were measured using blanked absorb-
ance 280 nm values and extinction coefficients calculated from the 
amino acid sequence using the Expasy ProtParam tool (web.expasy.
org/protparam/).

LC–MS
The mass of all antibodies was verified by liquid chromatogra-
phy with mass spectrometry (LC–MS) using an ACQUITY UPLC/
VionTM-IMS-QTof system coupled with an electrospray ionization 
source. Liquid chromatographic separation of samples was performed 
on ACQUITY UPLC Protein BEH C4 column (300 Å pore diameter, 
1.7 μm, 2.1 × 50 mm, Waters) using gradient elution. Then 1 μl of sample 
was injected with a flow rate of 0.3 ml min−1 and the analysis was car-
ried out at default parameters. The acquired data was processed using 
UNIFI software. Disulfide bonds (−2 Da per bond) were detected in all 
variants (Extended Data Table 5).

β2-microglobulin biotinylation
To enable BLI binding assays with streptavidin sensors, β2-microglobulin 
was biotinylated. Next, 10 µM of β2-microglobulin were incubated with 
1× molar concentration of EZ-Link Sulfo-NHS-LC-Biotin (Thermofisher 
21335) for 2 hours, quiescent at room temperature. After this time, unre-
acted biotin was removed by size exclusion chromatography using a 
Superdex 75 10/300 column equilibrated in PBS on an Akta Pure System 
(Cytiva). Biotinylated β2-microglobulin was then characterized with 
LC–MS to determine the degree of labelling (Supplementary Fig. 22).

Measurements of thermal stability
Measurements of apparent melting temperature were carried out in 
PBS at 6 µM nanobody concentration (except for mNb6 exhausted 
sampling + buried, which was at a concentration of 1.5 µM because of 
insufficient material) on a Tycho system (NanoTemper). Each experi-
ment was repeated three times for Nb24 variants and twice for mNb6 
variants. Each 350/330 fluorescence ratio trace is first smoothed via a 
Savitzky–Golay filter (window length 21, polynomial order two) and 
fitted with the two-state thermal denaturation model:

y =
αN + βNT + (αD + βDT ) exp (

ΔHD−N
R

( 1
TM

− 1
T
))

1 + exp ( ΔHD−N
R

( 1
TM

− 1
T
))

where αN, βN and αD, βD are the intercept and slope of the linear baselines 
of the native (N) and denatured (D) states, respectively, R is the gas 
constant, ΔHD-N is the enthalpy of equilibrium between the native and 
the denatured state, and TM is the apparent melting temperature. Each 
350 to 330 nm fluorescence ratio trace is first smoothed via a Savitzky–
Golay filter (window length 21, polynomial order 2) and then fitted. The 
temperature of unfolding onset Tonset is defined as the temperature 
needed to unfold 5% of the folded population. By definition, Tonset is a 
function of TM and ΔHD-N:

Tonset =
TM

1 − TM
R

ΔHD−N
ln 0.05

0.995

BLI affinity measurements
BLI measurements were performed using an OctetBLI K2 system (Forte-
Bio). All assays were carried out in PBS supplemented with 0.05% Tween-
20 (Sigma) to suppress non-specific interactions with the sensors.  
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All assays were carried out in a black 96-well plate (Greiner 655209), 
200 µl per well, and all sensors were subjected to prehydration in 
the assay buffer for at least 15 min before usage. The assay plate was 
kept at 30 °C with a shaking speed of 1,000 r.p.m. The loading wells 
contained 50 nM of biotinylated β2-microglobulin or 30 nM of bioti-
nylated SARS-CoV-2 RBD (purchased from CUSABIO, product code 
CSB-MP3324GMY1-B). All experiments consisted in a baseline step, 
a loading step, another baseline step, followed by several association 
and short dissociation steps. After the last association step, a long 
dissociation step is performed. The number of association and/or 
dissociation steps, their time and analyte concentrations used varied 
among experiments (Fig. 5 and Supplementary Fig. 17 and their cap-
tions). In all experiments a reference sensor (loaded in the same way as 
the assay sensors but probing only buffer wells in all association steps) 
was used and its signal was subtracted from that of each assay sensor 
before data analysis. Binding data of all Nb24 nanobody variants were 
fitted globally with a 1:1 partial dissociation binding model using Rmax, 
on rate and off rate as global parameters and Yt→inf as local parameter. 
Data of all mNb6 variants were fitted globally with a standard 1:1 binding 
model using Rmax, on rate and off rate as global parameters.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the large training, validation and testing datasets needed to train 
and evaluate AbNatiV are available online in the AbNatiV GitLab at 
https://gitlab.developers.cam.ac.uk/ch/sormanni/abnativ/-/tree/main/
datasets?ref_type=heads (https://doi.org/10.5281/zenodo.10171047, 
ref. 84). Details and sources of these datasets are presented in Supple-
mentary Table 5. Smaller datasets required to analyse the therapeutic 
classification, ADA correlation and VHH grafting studies are compiled 
in the Supplementary Data file, with details and sources included in 
the legends. All the sequences that were tested in vitro are provided 
in Extended Data Table 5.

Code availability
The AbNatiV code repository including the trained models and the 
automated humanization pipeline is available at https://gitlab.devel-
opers.cam.ac.uk/ch/sormanni/abnativ (https://doi.org/10.5281/
zenodo.10171047, ref. 84). A user-friendly webserver to run AbNatiV 
is provided at www-cohsoftware.ch.cam.ac.uk/index.php/abnativ. To 
access the webserver, users need to register a free account and log in.
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Extended Data Fig. 1 | Performance on Vκ and Vλ sequence classification.  
(a, d) The AbNatiV-humanness score distributions of the Human Test (purple), 
Human Diverse >2.5% (red), Rhesus (green), PSSM-generated (blue), and Mouse 
(orange) Vκ (A) and Vλ (D) antibody datasets. The PSSM-generated database 
is made of artificial sequences randomly generated using residue positional 
frequencies from the PSSM of the Human Test dataset. The Human Diverse 
>2.5% dataset is made of sequences from the Test and BioPhi datasets with a 
sequence identity difference of 2.5% from their respective closest sequence of 

the corresponding Training set (see Methods). Each dataset contains 10,000 
sequences except Human Diverse >2.5% which contains 10,490 sequences for Vκ, 
and 10,459 for Vλ. (b, c) Plots of the PR curves computed to represent the ability 
of AbNatiV to distinguish the Vκ Human Test set (B) or Human Diverse >2.5% (C) 
from the other datasets (see legend, which also reports the area under the curve). 
(e, f) Same PR plots but for the Vλ model. The corresponding ROC curves are 
given in Supplementary Fig. 6c–f. The baseline (dashed line) corresponds to the 
performance that a random classifier would have with the Mouse dataset.
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Extended Data Fig. 2 | Combining AbNatiV humanness and VHH-nativeness. 
Plot of the AbNatiV humanness and VHH-nativeness scores of 300 sequences 
from the VH Human Test (in red), and VHH Camelid Test (in blue) datasets, 
along with the three nanobody therapeutics Envafolimab, Caplacizumab, and 
Rimteravimab (in pink), and 8 WT nanobodies (in purple) with their humanized 
counterpart (in orange) (45). An arrow is directed from the WT sequence to 
the humanised one. Two dashed lines at 0.8 represent the threshold that best 

separates native from non-native sequences as defined in Methods. Only 
sequences with a score in [0.5,1] are represented to improve readability.  
To provide a reference background distribution, 300 randomly selected human 
VH sequences and 300 camelid VHH sequences are plotted. The cluster of human 
sequences that score relatively well in VHH-nativeness derive from the IGHV-3 
germline gene (Supplementary Fig. 23), consistent with the genetic origin of 
natural camelid nanobodies (48).
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Extended Data Table 1 | Evaluation of the PR classification and reconstruction tasks for human Vκ light-chain sequences

The assessment is carried out for AbNatiV trained on human Vκ sequences (first row) and other computational approaches that can assess humanness (other rows). The first six columns report 
the PR-AUC (curves shown in Extended Data Fig. 1b,c and Supplementary Fig. 9a–d), assessing the ability of the models to separate sequences in the Human Test (T) or the Human Diverse >2.5% 
(D) sets from those from mouse, rhesus, and PSSM-generated (see column headers). The last two columns quantify the ability of each model to reconstruct human sequences in each dataset 
(column header). The OASis method does not carry out reconstruction. Many sequences of the D datasets belong to the Sapiens training set. See ROC results in Supplementary Table 2.
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Extended Data Table 2 | Evaluation of the PR classification and reconstruction tasks for human Vλ light-chain sequences

The assessment is carried out for AbNatiV trained on human Vλ sequences (first row) and other computational approaches that can assess humanness (other rows). The first six columns report 
the PR-AUC (curves shown in Extended Data Fig. 1d,e and Supplementary Fig. 9e–h), assessing the ability of the models to separate sequences in the Human Test (T) or the Human Diverse >2.5% 
(D) sets from those from mouse, rhesus, and PSSM-generated (see column headers). The last two columns quantify the ability of each model to reconstruct human sequences in each dataset 
(column header). The OASis method does not carry out reconstruction. Many sequences of the D datasets belong to the Sapiens training set. See ROC results in Supplementary Table 3.
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Extended Data Table 3 | Performance on the classification of antibody therapeutics

The assessment is carried out for AbNatiV (first row) by averaging the AbNatiV humanness scores of the heavy and light chains from the relevant AbNatiV model (that is, trained either on VH, 
Vκ, or Vλ, see Methods), and for other computational methods (table rows). The classification task consists in distinguishing 196 human-derived therapeutic antibodies from 353 therapeutic 
antibodies from a different origin (mouse, chimeric, and humanised). The area under the curve for both ROC and PR curves are reported in the first two columns.
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Extended Data Table 4 | Evaluation of the PR classification and reconstruction tasks for camelid VHH sequences

The assessment is carried out for AbNatiV trained on camelid VHH sequences (first row) and the AbLSTM model retrained on the same training set of AbNatiV (see Methods and second row). 
The first eight columns report the area under the curve for PR curves (shown in Fig. 4c and Supplementary Fig. 12), assessing the ability of the models to separate sequences in the Camelid 
Test (T) or Human Diverse >5% (D) sets from those from human, mouse, rhesus, and PSSM-generated (see column headers). The Camelid Diverse >5% dataset is used as a control to specifically 
assess the ability to generalize to sequences distant from those in the training set. The last two columns quantified the ability of each model to reconstruct camelid sequences in each dataset 
(column header). Corresponding ROC results are in Supplementary Table 4.
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Extended Data Table 5 | Nanobody sequences experimentally tested

Sequences of the WT nanobodies Nb24 and mNb6 and their humanised variants as used in the wet-lab experiments. A PelB signal sequence was present at the N-terminus of all nanobodies, 
but this is cleaved upon secretion and hence it is not part of the final protein. All humanised designs are done with AbNatiV except for the Frequency & structure-based designs, which are 
done with the Llamanade software (45). The theoretical MW is calculated from the amino acid sequence assuming reduced di-sulphide bonds, observed MW is measured with LC-MS.  
Nb24 variants have two disulfide bonds and mNb6 have one. Therefore, a difference of −4 Da and −2 Da respectively for Nb24 and mNb6 variants is expected between theoretical and 
observed MWs.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data were collected from the sources detailed in Supplementary Table 1 without the need of any software.

Data analysis Antibody Fv sequences were aligned as described in the method section, using the open-source ANARCI (v. 1.b) software. PyTorch (1.13.1) 
and  PyTorchLightning (0.7.3) were used to monitor the training/validation performances. ImmuneBuilder (1.0.1) was used to generate 
antibody structures. Llamanade (webserver: http://35.208.211.136/ on 4th of July 2023) was used to humanise Nb24 and mNb6 nanobodies. 
The Expasy ProtParam toll (webserver: web.expasy.org/protparam/) was used to compute the extinction coefficients of the expressed 
antibodies. The UNIFI software was used to analyse the LCMS spectra.  
All the code we have developed and used in the manuscript is made available open source at https://gitlab.developers.cam.ac.uk/ch/
sormanni/abnativ (https://doi.org/10.5281/zenodo.10171047). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All the large training/validation/testing datasets needed to train and evaluate AbNatiV are available online in the AbNatiV GitLab at https://
gitlab.developers.cam.ac.uk/ch/sormanni/abnativ/-/tree/main/datasets?ref_type=heads (release 1: https://doi.org/10.5281/zenodo.10171047). Details and sources 
of these datasets are presented in Supplementary Table 5. Smaller datasets required to analyse the therapeutic classification, ADA correlation, and VHH grafting 
studies are compiled in the Supplementary Datasets file, with details and sources included in the legends. All the sequences tested in vitro are provided in Extended 
Data Table 5. 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The method is trained, validated and tested on the number of sequences reported in the material and method and detailed in Supplementary 
Table 5. For the VHH model, we trained it with all the VHH camelid repertoires available in the literature at the time. For the human models, 
we provide a sample size study in Supplementary Fig. 18A (see the Discussion section). 

Data exclusions Sequences that were incomplete, or that did not include ultra-conserved Cys residues were discarded as described in the Methods section.

Replication All the binding experiments were replicated 3 times. The thermal stability experiments for Nb24 were replicated 3 times. The thermal stability 
experiments for mNb6 were replicated twice. 

Randomization Splitting between the train/validation/test datasets was fully randomised. 

Blinding All the testing datasets were never seen by the model. The hyper-parameters of the model were selected with the validation dataset. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used All the antibodies used in the humanisation study were expressed by us. Details and sequences for each antibody are presented 

Extended Data Fig. 5. 

Validation All the details of production, purification and characterisation are presented in the Method section. 
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