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Topological phenomena are fundamentally underlain by the geometric phase of eigenstates. Time-
varying Hamiltonians furthermore allow for a dynamical topological invariant associated with
continuous flows. We study chiral and nonreciprocal dynamics by encircling the exceptional points
(EPs) of non-Hermitian Hamiltonians in a trapped ion system. We find that these dynamics are
topologically robust against external perturbations even in the presence of dissipation-induced
nonadiabatic transitions. Furthermore, our results indicate that these behaviors are protected by
dynamical vorticity —an emerging topological invariant associated with the energy dispersion of non-
Hermitian band structures in a parallel transported eigenbasis. Through the quantum state
tomography, the symmetry breaking and other key features of topological dynamics are directly
verified. These results mark a significant step towards exploring topological properties of open

quantum systems.

Geometric phases play a crucial role in classifying gapped quantum systems
that are protected by the symmetry of Hamiltonians', often resulting in
robust physical properties that are resilient to perturbations. In time-varying
cases, if the evolution is sufficiently slow, the system remains in the eigen-
state of the instantaneous Hamiltonian, thereby preserving the geometric
phases during dynamic processes. This phenomenon, validated in various
Hermitian systems’ ™, relies on the preservation of symmetry and adherence
to the adiabatic condition. One might expect that this similarly applies to
time-varying non-Hermitian systems; However, this expectation does not
hold. When encircling the exceptional points (EPs) in a non-Hermitian
system, the state deviates from the eigenstate of the instantaneous Hamil-
tonian regardless of how slowly the system evolves”®. This deviation is
known as dissipation-induced nonadiabatic transitions (DNATSs). The
occurrence of DNATS disrupts the continuous accumulation of geometric
phases on the Riemann surfaces of complex eigenvalues. Consequently,
characterizing the topological properties of dynamical non-Hermitian
systems remains a significant and unresolved question.

Previous research on encircling EPs in non-Hermitian systems reveals
fascinating topological behaviors, which have been experimentally explored
in both classical and quantum systems, including microwave/optical

setups”™™, optomechanical oscillators®, acoustic cavities'', superconducting

circuits”, NV centers', and cold atoms"”. Some of these experiments have
demonstrated that in the absence of DNATS, a parameter variation encir-
cling an EP causes two states to switch positions after one cycle and acquires
a geometric phase of 7 after two cycles. With DNATS, however, the geo-
metric phase becomes elusive during dynamic processes. Instead, the vor-
ticity of energy eigenvalues may serve as a type of topological invariant in
non-Hermitian systems™, but its validity depends on the evolution tra-
jectories remaining on the Riemann surfaces, which is contradicted by the
presence of DNATSs. The most intriguing topological behaviors in these
systems™*'’, such as chiral state transfers and nonreciprocal mode switching,
depend on the occurrence of DNATS. Therefore, it is essential to uncover a
profound relationship between DNATS and hidden topological invariants in
dynamics. This understanding could help identify the topological structure of
non-Hermitian dynamics.

In this work, we experimentally study the topological chiral and non-
reciprocal state transfers by dynamically encircling the EPs of both P7
(parity-time) ([H,P7]=0) and APT (anti-parity-time) symmetric
({H, PT} = 0) Hamiltonians in a trapped-ion system. The outcomes unveil
a universal rule for determining the behavior of state transfers associated with
chiral and time-reversal symmetries. Chiral state transfers, where encircling
an EP in a clockwise or counterclockwise direction results in different final
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states, are exclusively dictated by the symmetry of the initial effective
Hamiltonian in the parallel transported eigenbasis. Nonreciprocal state
transfers, where the processes depend on the initial states and the direction of
encircling the EP, are dictated by the time derivative of the initial states. We
find that these state transfers are robust against substantial external noise
introduced during the encircling processes. To reveal the underlying topo-
logical mechanism of this robustness, we transform the original Hamiltonian
into the case in the parallel transported eigenbasis and define a topological
invariant, dynamic vorticity. This dynamic vorticity remains invariant during
the encircling process, regardless of whether DNATSs occur, and is solely
determined by the number of EPs that the trajectories encircle. This reveals
that both chiral and nonreciprocal state transfers are protected by dynamic
vorticity, which can be considered a universal topological invariant in time-
varying non-Hermitian systems. These discoveries validate that topological
dynamics can arise from the interplay of dissipation and coherence, opening
new avenues to explore the topological properties of open quantum systems.

Results

Dynamically encircling the EPs of P7T and AP7T symmetric
Hamiltonians

The experiments utilize a passive P7 -symmetric system involving a single
trapped 7'Yb" ion, building upon the experimental setup (see Methods)
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Fig. 1 | Generation of chirality and nonreciprocity in a dissipative trapped-
ion qubit. a Schematic diagram of the experimental setup. The blade trap confines a
single ion using radio frequency (RF) signals and direct current (DC) voltages
applied to two RF and two DC electrode sets. The microwave signal drives the
transition between the states | | ) and | 1 ) through the horn. A dissipative beam
with 7-polarized component, where the electric field E is parallel to the magnetic
field B, excites the ion from | 1 ) to the 2P, , excited state. The involved energy levels
ofa ”'Yb" ion include |F = 0, m; = 0) and |F = 1, m; = 0, £ 1) in the electronic
ground state S, and |F = 0, m; = 0) in the electronic excited state *P) ;.

b Encircling paths in the parameter space (coupling strength J and detuning A) and

described in detail in our previous works™*, The ion is confined and laser-
cooled in a linear Paul trap. Then, it is initialized to the hyperfine state
|l )=I|F=0,mz =025 /2) of the ground state by optical pumping, The
qubit levels, hyperfine states | | ) and | 1) = |[F = 1,mp = 0,281/2), are
driven by a microwave with a coupling rate J. The dissipation is introduced
by resonantly driving a transition from | 1 ) to |F = 1,my = 0,2P, 2) of
the excited state, resulting in the spontaneous decay to three ground states
|F =1,mg =0, £1) in °S},, with equal probability. Taken the Zeeman
sublevels |F = 1,mp = 1) in °S,, as an auxiliary state |a), the system is
equivalent to a spin-dependent loss from the qubit state | 1 ) to state |a)
with a rate at 4y, as the coupling of the qubit to the environment. When the
coupling strength of the dissipation beam is significantly lower than the
linewidth of the ?Py,, excited state, the involved energy levels can be
approximated to a dissipative two-level system, as illustrated in Fig. la.
Consequently, a passive P7 -symmetric non-Hermitian Hamiltonian,
Hy =], +iyo, — iyl, is derivgdzz’zs’%. Here,6, = | L Y1 |+ M{{ |,
G, =14)(L 1= 11+ and 1= [+ 1)1 | This Hamilto-
nian can be mapped to a P7 -symmetric Hamiltonian by adding an extra
term iyf .

To encircle the EP of the P7 symmetric Hamiltonian, the driving
microwave features time-varying detuning and intensity, resulting in a time-
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the state evolution trajectories projected onto the eigenvalues' Riemann sheets,
starting in the P7 -symmetric (PZS) regime of the 7 Hamiltonian. The solid
(dashed) trajectory in (b) denotes the clockwise (counterclockwise) evolution of
|t (0)). ¢ Chiral symmetry (depicted by red and blue curves in the left panel) and
broken chiral symmetry (depicted by red and green curves in the left panel) serve as
mathematical criteria for determining chiral dynamics. In this context, CCW and
CW refer to counterclockwise and clockwise, respectively. Time-reversal symmetry
(illustrated by red and green curves in the right panel) and broken time-reversal
symmetry (illustrated by red and blue curves in the right panel) serve as mathe-
matical criteria for determining nonreciprocal dynamics.
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Fig. 2 | The time-varying evolutionary state |y(t)) starting from either the P7S
or PTB regime with the 77 Hamiltonian. a, ¢, e, g Clockwise and counter-
clockwise encircling the EP starting from |e, (0)) and |3,(0)) are shown as trajec-
tories 1 to 4. i, k, m, o Similar encircling starting from |a(0)) and |;(0)) are
depicted as trajectories 5 to 8. b, d, f, h Overlaps (a4 ()|y(t)) and (B4(D)|y(1))
between the instantaneous eigenstates and the evolutionary state from the

PT -symmetric (PIS) regime. j, 1, n, p Overlaps (ap(£)|y(1)) and (B5(t)|y(t)) from
the PT -broken (P7B) regime. Nonadiabatic dynamics are shown in the cyan shaded

regions. The solid (dashed) box depicts the state evolution trajectories in the visual
four-dimensional picture of the eigenspectrum as a function of the detuning A and
the coupling rate J, with colors on the Riemann sheet representing imaginary (real)
values. Circles with error bars represent experimental results obtained from the raw
measured data, while lines correspond to numerical simulation results.The error
bars are estimated as the standard deviation (10) from 5 rounds of quantum state
tomography experiments.

dependent Hamiltonian expressed as (4 = 1)

J(®)

_(A®/2+iy
o = ( o) W

J(®)

where A(#) and J(t) represent the detuning and the coupling rate of the
microwave, respectively, and y denotes the dissipation rate dependent on the
laser intensity. The eigenvalues of Eq. (1) are complex numbers given by
Aa(t) = £/57 =y +ipna@+aw?/4, with the EP occurring at A = 0
and J=y.

The system evolves by varying A(t) and J(f), while keeping y fixed. The
real and imaginary components of A, ,() form two intersecting Riemann
sheets wrapped around the EP, as shown in Fig. 1b. We drive the qubit
through a parameter loop defined by A(f) = rsin[0(t) + 6,] and
J(t) = J, + rcos[0(t) + 6,], where r represents the encircling radius, 6(f)
denotes the time-dependent encircling angle, and 6, = 0 (8, = 7r) determines
the starting point in the P7 -symmetric (broken) regime, abbreviated as the

PIS (P1IB) regime. More details regarding the encircling procedure can be
found in Methods.

The clockwise and counterclockwise encircling trajectories from the
eigenstate |a,(0)) (|3,(0))) are demonstrated in Fig. 2a, ¢ (e and g), where
the black lines show the state evolution projected onto the Riemann surfaces.
Figure 2b, d (fand h) show the overlap between the instantaneous eigenstate
la(2)) (|B(£))) with the evolutionary state |y(f)) = C,(t)|a(t)) + C,(#)]
B(1)), e, <0¢A(t)|1//(t)> (<ﬂA(t)|u/(t)>). Here, |a(t)) and |B(¢)) represent the
eigenstates of time-dependent non-Hermitian Hamiltonian at each
moment. When a DNAT occurs, the qubit invariably jumps from the loss
sheet (blue) to the gain sheet (red) on the Riemann surface. Such jump is
characterized by the crossing between <oc A1) 1//(t)> and </3 ()] 1[/(t)> in the
cyan shaded region. Its occurrence is measured through quantum state
tomography of |y(#)) during these experiments. We also investigate the
dynamical encircling with AP7 symmetric Hamiltonians, constructed by
sandwiching a passive P7 -symmetric Hamiltonian H, between two /2
pulses along the * Y axis on the Bloch sphere”. The details are provided in
Supplementary Note 3.
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Chiral and nonreciprocal state transfers
The analyses of chiral behaviors in state transfer are depicted in the left panel

of Fig. 1c. The clockwise evolution of |e 4 (0)) X |3,(0)) (trajectory 1) and

ccw
the counterclockwise case of |a,(0)) —> |, (0)) (trajectory 2) exhibit the
chiral state transfer, whose evolution trajectories are shown in Fig. 2a—-d.
Another example of chiral state transfer involves the pair of of

13,(0)) C—W> |3,(0)) (trajectory 3) and |3,,(0)) Cﬂ;/ |or4(0)) (trajectory 4), as
shown in Fig. 2e-h. It is noted that the chiral state transfers are associated
with starting points located in the PZS regime. The paths in opposite
directions experience unequal numbers of DNATS, preserving the chiral
symmetry. Conversely, for the starting point in the P78 regime, whether
starting from |a(0)) (Fig. 2i-1) or |85(0)) (Fig. 2m-p), both clockwise and
counterclockwise paths experience the same number of DNATS, breaking
the chiral symmetry.

The right panel of Fig. 1¢ explains how nonreciprocity is generated due
to broken time-reversal symmetry (TRS). Starting from the eigenstates in
the PZS regime, the forward-time evolution (trajectory 1) and the
backward-time evolution (trajectory 4) constitute a pair of reciprocal pro-
cesses, the same as trajectory 5 and trajectory 6 with the initial eigenstate in
the P71 regime. For both cases, the same number of DNATS occurs in the
forward-time and backward-time paths. On the contrary, if the forward-
time and backward-time encircling have different numbers of the DNATS,
as seen in trajectories 3 and 4, trajectories 2 and 1, trajectories 7 and 6, and,
trajectories 8 and 5, TRS is broken, resulting in nonreciprocal state transfers.

In addition, we systematically investigate the chirality and non-
reciprocity with the AP7 Hamiltonian. The emergence of the chiral
(nonchiral) behavior in state transfer occurs when the starting point is in the
PIB (P1IS) regime, opposite to the P7 -symmetric Hamiltonian. Regard-
ing the chiral and nonreciprocal properties, we discover a dual relationship
between the PT -Hamiltonian and the AP7 one, where the P75 regime of
the AP7 Hamiltonian is equivalent to the P7B regime of the PT
Hamiltonian, and vice versa (See Supplementary Note 3).

Based on the aforementioned observations, we ascertain that the
unequal numbers of DNATSs appearing in a pair of encircling paths result in
chiral and nonreciprocal state transfers. The crucial role of DNATS stems
from the dynamical phase accumulated as the parameters of the Hamilto-
nian evolve adiabatically””**. The evolutionary state is expressed as |y, ())

= h JE®@ar e?D|n(R(t))), where eh JER@ is dynamical phase
term, " is geometric phase term, and |n(R(t))) is instantaneous eigenstate
state of Hamiltonian. When the state evolves on the loss sheet, the dynamical
phase contributes a decaying factor. Consequently, the state evolving on the
loss sheet will transition to the gain sheet, whereas the state on the gain sheet
will remain unaffected.

Classification of nonadiabatic transitions

We have developed a quantitative approach to examine the dependence of
chirality and nonreciprocity on the adiabaticity of the encircling process. In
this method, the chiral and nonreciprocal behaviors are characterized by
the the fidelity of state transfer during one encircling of the EP, defined as
the squared overlap between the final state y(T) and the initial state.

The adiabaticity of the encircling is quantified by 7= max (m) .In

the experiments, the fidelities of state transfer |a,(0)) “ 13,(0)) (trajec-
tory 1), ie, [{(as(0)|w(T))> and [{BA(0)|y(T))[’, are studied with various
encircling periods and radii, as shown in Fig. 3. These results demonstrate
the dependence of chirality and nonreciprocity on the adiabaticity of the
encircling process.

The results for various periods are shown in Fig. 3a. 7, = 11.8 s forall
selected periods. For an encircling period T'= 250 ps >> T, that satisfles the
adiabatic criteria, the fidelity of state transfer (8,(0)|y(T))? is nearly unity,
representing almost perfect state swaps of |a,(0)) and |,(0)). When the

encircling period reduces, the deviations from the ideal fidelities get larger
and larger, as shown in shown in the olive curve of the side plane in Fig. 3¢, d.
For example, for T = 100 ys, ($4(0)|y(T)) becomes smaller than the unity,
indicating that the final state fails to fully reach |3 ,(0)). This decay of state
overlap is more obvious for T'= 16.67 ys. Such deviation from |f3,(0)) leads
to the breakdown of the chiral and nonreciprocal state transfers.

The results for various radii are also depicted in the dark yellow curve
on the side plane in Fig. 3c, d, showing that chiral and nonreciprocal
behaviors are primarily observed at larger radii. For r = 0.03 MHz, the
fidelity of (B,(0)|y( T))? approaches unity. However, as the radius
decreases, 7./ T < 0.1, resulting in a significant deviation from the predic-
tions of the adiabatic theorem. The state transfer for the APT -symmetric
Hamiltonian, with varying periods and radii, can be found in Supplemen-
tary Note 3.

Here, we observe DNATSs during the adiabatic evolution of system
parameters, which are distinctly different from the conventional speed-
induced nonadiabatic transitions (SNATSs) where the evolution does not
satisfy the adiabatic theorem. In Fig. 3e, as the period reduces from
T =250ps to T = 16.67 us, we observe a crossing of {a(#)|y(t)) and
(Ba®|y(®)) (for T = 16.67 ys blue curves), indicating the occurrence of a
SNAT. Additionally, reducing the encircling period deviates the path from
the prediction dictated by the adiabatic theorem, as demonstrated by the
different crossings in Fig. 3f. The new crossing of (a4(f)|y(f)) and
(Ba®|y()) does not appear due to the dominant DNAT. Notably,
decreasing the encircling radius does not generate SNATs but only decreases
the fidelity of the DNAT, as shown in Fig. 3g, h.

Robustness of the state transfer
We experimentally verify the topological robustness of state transfers using
PT and APT -symmetric Hamiltonians against the physical noises in a
dissipative trapped-ion qubit. For the 77” Hamiltonian, we introduce noises
into the detuning and the coupling rate along the encircling path
{ A(t) = r(1 + w(t)) sin[wt + 6,] )
J() = y + r(1 + () cosfwt + By,

where the encircling radius r = 0.03 MHz, the dissipation rate y = 0.06 MHz,
and «(f) represents the noise in the encircling process. x(f) € [ — ir, ir] is
generated by pseudorandom real number, where ir is defined as the intensity
of the noise.

Figure 4 illustrates the final state outcomes of the encircling process,
showing that it remains unaffected by random noise, regardless of the noise
intensity. Figure 4a-d (e-h) displays the experimental results for the
PT -symmetric (broken) regime. We find that chiral and nonreciprocal
quantum state transfers exhibit robustness against such noise, provided the
adiabatic encircling condition is satisfied. Even in the adiabatic limit of
evolution, this robustness persists near the EP because the external noise
fails to eliminate the degeneracy at the EP. We have also experimentally
verified the topological robustness of the quantum state transfer with the
APT -symmetric Hamiltonian, as detailed in Supplementary Note 3. In
both cases, the experimental data match pretty well with the theoretically
predicted values, even under varying noise intensities. This validation
confirms the robustness of topological state transfer with APT -symmetric
Hamiltonians.

Discussions

In this study, we have observed chiral (nonreciprocal) quantum dynamics in
a trapped-ion qubit, wherein the EPs of both P7 -symmetric and
APT -symmetric Hamiltonians are dynamically encircled. These dynamics
are rooted in the unique topological structure of intersecting Riemann sheets
around the EP. During adiabatic state transfers, this structure leads to the
swapping of two eigenstates after one cycle and the acquisition of a geo-
metric phase of 7 after two cycles™”. The topological invariant of the
adiabatic process is characterized by this geometric phase, providing the
protection against perturbations. For nonadiabatic processes, it is usually
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Fig. 3 | Investigation of the nonadiabatic effects with clockwise encircling of
the EP. a, b The ratio of the critical time to the evolution time, 7..;/ T, as a function of
the encircling period and radius. The black curves are contour lines. ¢, d Fidelity
changes in state transfer with varying periods and radii. The contour map and solid

|, (0)) and (£) |8,4(0)), respectively. The blue, red, and black circles correspond to
T=16.67 ys, 100 us, and 250 ps, matching the vertical lines in (a). g--h Overlaps with
varying radii for the initial state (g) |a,(0)) and (h) |8,(0)), respectively. The blue,
red, and black squares correspond to r = 0.003 MHz, 0.008 MHz, and 0.03 MHz,
matching the vertical lines in (b). The error bars are estimated as the standard
deviation (10) from 5 rounds of quantum state tomography experiments.

lines denote the simulation results, while the circles with error bars represent the
experimental results obtained from the raw measured data. e, f Overlaps (o (£)|y(2))
(solid line) and (B4 (#)|y(t)) (dash line) with varying periods for the initial state (e)
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Fig. 4 | Investigation of the robustness of dynamically encircling an EP.
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the evolutionary state under varying noise intensities. b, d, f, h Experimental results
of robustness under different noise intensities, corresponding to the three dashed
lines in (a, ¢, e, g). Dots with error bars are experimental results obtained from the
raw measured data and solid lines are the simulation predictions. Insets in (b, f)
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display clockwise encircling trajectories in the two-dimensional parameter space of
detuning A and coupling rate J, with random noise intensities ir = 0 (black), 0.3 (red),
and 0.5 (blue), respectively. In (a-d), the encircling starts from point A in the

PT -symmetric (P7S) regime, while in (e-h), it starts from point B in the

‘PT -broken (P7B) regime. The error bars are estimated as the standard deviation
(1o) from 5 rounds of quantum state tomography experiments.
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believed that the nonadiabaticity would cause the evolution to deviate from
the eigenstates of the instantaneous Hamiltonian, and consequently
undermine topological protection from the Riemann surface. However,
previous experiments have confirmed the robust state transfer not only for
adiabatic processes, but also existing in ones involving dissipation-induced
nonadiabatic transitions'*'****’, This raises one critical question: is there a
topological invariant to elucidate the robust state transfers in nonadiabatic
processes, which could unveil the topological structure of DNATS.
Addressing this question is crucial for fully understanding chiral and
nonreciprocal state transfers in non-Hermitian systems. To date, this
question remains unexplored.

Based on the above results, we address this question by providing a
topological invariant that we dub as “dynamic vorticity” for characterizing
topological protections involving DNATS. Previously, the vorticity, also
known as the spectral or eigenvalue winding number***"*", is defined as
V= -2+ §.V,ArglE, (k) — E, (k)] - dk. Here eigenvalues E,,,(k) and E, (k)
are varied with momentum k (k € [0, 27]) in the Brillouin zone and the
indices m and n represent different band structures. Noted that, in this
scenario, although eigenvalues parametrically change along the close loop I
in the momentum space, there are no dynamics or nonadiabatic transitions
driven by time-dependent Hamiltonian. Under this condition, the vorticity
presents the topological structure of a static Hamiltonian. In our case, we
deal with the time-dependent Hamiltonian, which generates real time
dynamics, including nonadiabatic transition.

To effectively explain the robustness of the chiral and nonreciprocal
dynamics that we observed experimentally. We find that the vorticity
concept can be extended to the time-dependent Hamiltonian. To include
the dynamics, we adopt the parallel transported eigenbasis™, giving

£
i+ A(r)) ’ @)

—iy — A(t)
~ftt
the nonadiabatic transition process is reflected in the off-diagonal term of
Eq. (3) since f(t) = (J(A/2 + i) — J(A/2 + iy))/2i)? includes the time
derivatives of both the coupling J and the detuing 4, as seen from Eq. (15)

(Details in Methods). Then, the dynamic vorticity is given by

ﬁeﬁ(t) = (

1

Vp=— %%FVHArg[EJ@) —E_(0)]- d6, 4

where E, (= wt) are dynamically varied with encircling angle
0(8 € [0, 27]) in the parameter space. The dynamic vorticity associates with
the energy dispersion of H, o7 (1), which characterizes the topology of
dynamics of encircling the EP. The validity of V}, lies in the fact that, in the
parallel transported basis, nonadiabatic transitions will not cause the
deviations of the instantaneous state from the Riemann surfaces. Conse-
quently, the system’s evolution consistently remains in the eigenstate of
H o () Therefore, Vp, is a universal topological invariant near the EP not
only for adiabatic dynamics, but also for nonadiabatic ones, which can be
treated as the winding number of the complex-energy bands, as detailed in
Supplementary Note 2. It is also noted that the definition and form of Eq. (4)
apply to both P7 -symmetric and passive PT -symmetric Hamiltonians,
since introducing an extra diagonal term does not alter the basic topology of
the dynamics.

For the topologically protected chiral and nonreciprocal state transfers
in Fig. 2, we find that V, = +1/2,i.e, — 1/2 for trajectory 1 and 1/2 for
trajectory 2. Meanwhile, for state transfers that do not encircle an EP, Refs.
10,13 also show that such processes remain topologically robust, in which
our numerical simulation gives V', = 0. Therefore, we conclude that V, =
0, +1/2 characterize topological state transfers, where the sign + depends
on the orientation of the encircling curve.

Another advantage of using the parallel transported eigenbasis is that
the effective Hamiltonian in this basis can be used to determine the
occurrence of chiral behavior. If the initial effective Hamiltonian satisfies
{Itl eﬁ(O), CPT} = 0, where we define the chiral operator S = CP7T, our

experimental results indicate a pair of encircling dynamics have the chiral
symmetry (i.e., trajectories 1 and 2 in Fig. 2 have different final states). Here,
parity operator P = o, C = 0, and time-reversal operator 7 represents
the conjugate operator. Conversely, if {H ¢f(0), CPT }#0, the dynamics
breaks the chiral symmetry (i.e., trajectories 5 and 6 in Fig. 2 have the same
final states). Note that S = CP7 instead of S = C7 in the Hermitian
case™™ due to non-Hermiticity”. We also find that the nonreciprocal
behavior depends on the initial density matrix p(0). The positive (negative)
value of Tr(o,p(0)) corresponds to the preservation (breakdown) of TRS for
a pair of the forward-time and backforward-time encircling processes.
When Tr(o,p(0)) = 0, if d[Tr(c,p(¢))]/dt|,—, > 0, the processes preserve
the TRS (i.e., trajectories 1 and 4). Otherwise, they exhibit the nonreciprocal
behavior. Therefore, we conclude that the chiral and nonreciprocal
dynamics are dictated by the symmetry of the effective Hamiltonian H o (0)
and the initial state.

It is worth mentioning that the dynamic vorticity is not suitable for
speed-induced nonadiabatic processes, where the evolution period is shorter
than the critical time stipulated by the adiabatic theorem. Our results in
Fig. 3 show that the occurrence of SNATs disrupts the chiral and non-
reciprocal dynamics due to the nonadiabaticity of the Landau-Zener tun-
neling from an eigenstate to another at the avoided-crossing.

Methods

Experimental setup

A single V'Yb™ ion is confined in a homemade blade trap by applying radio
frequency (RF) signals and direct current (DC) voltages to two RF electrodes
and two sets of DC electrodes, respectively, are shown in Fig. 1a. The system

includes a pair of Helmholtz coils that generate a magnetic field B of
approximately 6 Gauss, which not only lifts the degeneracy of the three
magnetic levels but also prevents the ion from being pumped into a coherent
dark state. The microwave signal used for driving the qubit rotation consists
of a 12.61 GHz signal from standard RF source (Rohde and Schwarz, SMA
100B) and a 31.25MHz signal from an arbitrary waveform generator
(AWG, Spectrum Instrumentation). The dissipative beam only contains the
7 polarization component, with its electric field E parallel to the magnetic

field B, and is used to excite the ion from | 1) to the *Py, excited state. This
excitation leads to spontaneous decay to three magneticlevels |[F = 1, m; =
0, 1) in the S/, ground state with equal probability. The decay to |F =
1, mp = +1) canbe considered as equivalent loss of the qubit, resulting in a
nonunitary evolution of the two-level system.

Encircling method

The dynamically encircling of the EP is realized by using the time-
dependent detuning A(t) = rsin[0(t) + 6,] (in MHz) and the time-
dependent coupling rate J(t) = J, + r cos[0(t) + 6] (in MHz), while
keeping the dissipation rate fixed'. Here, r is the encircling radius, 6(f) = wt
is the encircling angle, and w is the angular speed of encircling whose sign
determines the encircling direction ("+ for clockwise encircling and “-” for
counterclockwise encircling). The parameter 6, = 0 (6, = ) indicates that
the starting point lies at the PZS (P7B) regime.

The evolutionary state at each time step, i.e. |y(¢)) = C,(t)|a(t)) +
C,(1)|B(1t)) is the coherent superposition of the eigenstates |a(t)) and |B(¢)).
The coefficients C;(t) and C,(f) are probability amplitudes of the |a(t)) and
|3(1)), respectively, as demonstrated in Supplementary Note 1. The trajec-
tory of the encircling, ie., (|C;(£)I'A; + |C(OPAL)(COF + |C(OP) is
derived, where the sudden transitions between |a(t)) and |B(f)) can be
analyzed through the adiabatic multipliers™””. With the derived trajectory,
the state evolution is projected onto the complex Riemann sheets of the
eigenvalues, shown as the black line in Fig. 1b of the main text.

The presence of spin-dependent loss causes the qubit population to
exponentially decay in a sinusoidal manner for small y/J ratios™****, leading
to an extremely low state population that is challenging to detect experi-
mentally. In response to this challenge, we employ a piecewise strategy.
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Fig. 5 | Experimental verification of the piecewise (a)

strategy with the initial eigenstate |a,(0)) in the
PT -symmetric regime. a The overlap between the 1.0}
evolutionary state |y(t)) and instantaneous eigen-
state |a, (t)). b The overlap between the evolutionary
state |y(t)) and instantaneous eigenstate |, (1)).
Experimental results for N = 10, 20, 30, 50, 80, and
100 are represented by black, red, green, blue, cyan,
and magenta dots, respectively. The yellow shaded
region represents the numerical calculation with 5% 0.6L
uncertainty in the density matrix of the measured

0.8F

(oL, (OI(D)

0.8} ¢
il |

B.OM®)

0.6} § } i

04}

state |y(t)), accounting for fluctuations in the dis- |
sipation strength and the coupling strength.The 0 w2
error bars are estimated as the standard deviation
(10) from 5 rounds of quantum state tomography
experiments.

Encircling angle (Rad)

n 312 2n 0 /2 n 3m/2 2n
Encircling angle (Rad)

Encircling starts at ¢ = 0 and ends at T = L. Throughout the encircling
process, the dissipation rate remains constant at y = 0.06 MHz, the angular
speed is maintained at w = + 2%, and the radius is fixed at r = 0.03 MHz
(unless specified otherwise in subsequent experiments).

The entire encircling path, with a period of T = 277/w, is divided into N
segments. In each of the N segments (1 <# < N), the qubit state is prepared to
evolve for £, = (n — 1) T/N time according to theoretical prediction. Then, it
continues to evolve for t = T/N under the Hamiltonian H(t,). With this
scheme, we map out the whole encircling process by quantum state
tomography of |y(t)), which is carried out at the end point of each segment.
The overlap (ie., the inner product) of the measured evolutionary state
|y(t)) and the instantaneous eigenstates |, (t)) (or |8,(¢))) of the time-
varying Hamiltonian H(t) is used to evaluate whether the measured state
|w(#)) matches with the theoretical calculation.

We adjust the size of N to verify the effectiveness of the piecewise
strategy as shown in Fig. 5, where ] = 0.06 MHz and w = 27 x 4rad ms ",
respectively. The encircling starts from |a,(0)), and N varies with 10 (black
squares), 20 (red squares), 30 (green squares), 50 (blue squares), 80 (cyan
squares) and 100 (magenta squares). The numerical calculation has a 5%
uncertainty (orange error band) in the density matrix of the measured
evolutionary state |y(t)), accounting for the fluctuations of the dissipation
strength and the coupling strength. The nonzero overlap between |f,(0))
and |y(0)) is due to the nonorthogonality of the two eigenstates of H.(0).
The experimental results for N = 100 agree well with the numerical simu-
lation, while the others do not, proving the validness of the proposed scheme
for N> 100. Therefore, we choose N = 100 in the following experiments to
investigate the dynamics of the encircling.

Mapping nonadiabatic transition amplitudes

The nonadiabatic transitions that occur during the encircling of the EP can
be attributed to the Stokes phenomenon of asymptotics™*’ or stability loss
delay”"'. Here, we analyze DNATs observed in our experiment using the
method of parallel transported basis™. The state evolution for a passive PT
Hamiltonian is determined by (#=1)

0
ia|‘/’(t)> = Heff|1//(t)>7 (6]

A/2 ]
] —A2=2iy)

The eigenvalues ofHeﬁareXi = —iy+/(a/2+ip +P=-iy=), Where 1 is
the eigenvalue of the P7 -symmetric Hamiltonian Hp; with detuning. The

where |y(t)) = C,(]a(t)) + C,(1)IB(1)) and Hy = (

normalized eigenstates of H, are

_ . =1+ (A/2 +iy)

A= «/aiﬁﬁ( i >
. A+ (A/2 + iy)

2 = —m( J )

©)

which can be expressed as the parallel transported eigenbasis

o) =y, = (cos(9/2))7|ﬁ> = <—sin(9/2))7 @

sin(6/2) cos(6/2)
where
in(6/2) /A+(A2//\2+iy)
cos(0/2) = —y /L(Az/f +iy) ®)
tanf = J/(A/2+iy).

Then, we use |a) = T'(;),|8) = T(;) to represent the parallel transported

cos(6/2) —sin(6/2) >

eigenbasis of Eq. (7). The rotation matrix T = < sin(6/2)  cos(6/2)

where TT" =TT =1.
Now [y(t)) = Tly/(t)), where [y/(1)) = C(t)(}) + C,(1)(}) =

(g;g;). Substituting the |y(#)) = T|y/(1)) into Eq. (5), we obtain

d
i (TIy'(0) = Hyy (TIy'(D))- ©)

We consider the evolution U'(¢) defined by |y/(¢)) = U’(¢)|y/(0)). Eq. (9)
can be rewritten as 2 (TU'(t)) = —iH, o7 (TU'(1)), which is simplified as

@y’

TU'(H) + TU'(t) = —iH ,(TU'(¢)). (10)
Multiplying T" to the left of both sides in Eq. (10), we obtain
TTTU'(t) + U'(t) = —i(T  Hy T)U' (), (11)
where
. L N 1
b MA/2 + 1)) — MA/2 + iy) ( 0s(6/2) sm(f/z) ) . (12)

1
sin(6/2) " cos(6/2)
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Fig. 6 | The time-dependent nonadiabatic transition amplitude when the P7T~

Hamiltonian encircles the EP. a-d Encircling starting from the P7 -symmetric
regime. Clockwise and counterclockwise encircling with the initial state |a,(0)) in
(a, b). Similar encircling with |8,(0)) in (c, d). e-h Encircling starting from the
‘PT -broken regime. Clockwise and counterclockwise encircling with the initial state
|a3(0)) in (e, f). Similar encircling with |3;(0)) in (g, h). The color maps for the time-

theoretical calculation from Eq. (17) and the numerical simulation from C;(f) and
C,(1), where the encircling period T = 250 ys. The error bars are estimated as the
standard deviation (10) from 5 rounds of quantum state tomography experiments.
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Then,
. o ) 0 1
T MA/2+i9)—MA/2+iy)
T M/t 24 (_1 0)
5 0 (13)
TTH,T = (_W - )
7 0 —ip+A
Substituting Eq. (13) into Eq. (11), we obtain
U'(t) = —i(—iT" T+ TTHyDU'(t) = —iH zU'(H),  (14)
where
~ e —iy—A f
H,=—iT"T+T'H T:( )
4 & —f  —ip+A 15)

f= JA/2+ i) = J(A/2 + iy)
h 2i\? ’

. . . U (1) U@
Expressing U’(f) in matrix form U’(t)=( e o ) Its
differential form can be described as ﬁ“(t) Us ®
U’ ot) = —i((—iy = DUL(8) + fUp,(1))
U’ op(t) = —il(—iy — DU L(8) + fUpg(0))
U'galt) = —il(=iy + VUp (1) = fUL, (1))
U galt) = —i((—iy + M Upg(t) — fUls(8)

(16)

If the initial state is |(0)), meaning C;(0) = 1, Cy(0) = 0, then the final state
/ T 1 _ U:xlx(t) _ C] (t) P . /
[y/'(t)) = U'(¢) ( 0) = ( U/ﬁoc(t)> = (Cz(t) . This implies that U (t)

and Uka(t) serve as the amplitudes of the corresponding eigenstates.
Therefore, the relative nonadiabatic transition amplitudes can be defined as

Up, ()
R =5
R;(t) < 1. However, in the case of the nonadiabatic transition, where two

eigenstates exchange position, R;(f) > 1. The same applies to the initial state
|B), where C,(0) = 0 and C,(0) = 1. In this case, R,(t) = Jopt

Initially set at R,(0) = 0, if the evolution remains adiabatic,

).
7,0 employed to

indicate the occurrence of nonadiabatic transitions. Utilizing Eq. (16), we
derive the differential equations governing the relative nonadiabatic tran-
sition amplitudes.

Rl (t) =
Ry(f)

2iAR (1) — if (1 + RA(1))

—2iARy(t) + if (1 + R3(1)). (17)

We can also calculate R;(f) and R,(t) by measuring C;(f) and C,(¢), giving

C C
R\(1) = & and Ry(r) = 3.

Fig. 6a, R,(t) = &0 <1 in the whole period, indicating C;(f) and C,(f) do

Gi()
not cross, so no DNAT occurs. Similarly, in Fig. 6b, R, (t) = gfgg

from R;(f) < 1to Ry(#) > 1, indicating C,(#) and C,(¢) cross, hence a DNAT
occurs. Both the theoretical and experimental results for PZS and P78
regimes are shown in Fig. 6.

For clockwise encircling from |a,(0)) in

evolves
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