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Higher brain functions require flexible integrationof information acrosswidely distributedbrain regions
depending on the task context. Resting-state functional magnetic resonance imaging (fMRI) has
provided substantial insight into large-scale intrinsic brain network organisation, yet the principles of
rapid context-dependent reconfiguration of that intrinsic network organisation are much less
understood. A major challenge for task connectome mapping is the absence of a gold standard for
derivingwhole-brain task-modulated functional connectivitymatrices. Here, weperformbiophysically
realistic simulations to control the ground-truth task-modulated functional connectivity over a wide
range of experimental settings. We reveal the best-performing methods for different types of task
designs and their fundamental limitations. Importantly, we demonstrate that rapid (100ms)
modulations of oscillatory neuronal synchronisation can be recovered from sluggish haemodynamic
fluctuations even at typically low fMRI temporal resolution (2 s). Finally, we provide practical
recommendations on task design and statistical analysis to foster task connectome mapping.

Building a comprehensive map of human brain connections, called the
human connectome1, can be considered one of the largest and most chal-
lenging scientific projects in the field of human neuroscience over the past
two decades. In the past decade, the trend in fMRI studies has shifted from
functional segregation to functional integration, which is reflected in an
increasing number of publications on functional connectivity (FC) com-
pared to task activations (Fig. 1a). Despite the initial scepticism about
resting-state FC (RSFC)2,3, it has become the most popular fMRI approach
and has profoundly advanced our understanding of the intrinsic functional
organisation of the brain in health4,5 and disease6,7. Furthermore, there is a
growing awareness of the importance of whole-brain FC dynamics
modulated extrinsically by various task demands called the task
connectome8.

Different FC types can be assessed from the task-state blood oxygen-
level-dependent (BOLD) signal, ranging from more intrinsic to more
extrinsic FC (Fig. 1b). The simplest approach is to correlate the whole time
series, similar to the RSFC calculation. We will refer to this type of FC as
task-state FC (TSFC), although the terms “task-based FC” and “task FC” are
also found in the literature (see SupplementaryTable S1 for a reviewof terms
used in previous studies to refer to different FC types). Three neuronal
sources of variability underlie TSFC: spontaneous task-independent
(intrinsic) fluctuations, task-modulated (extrinsic) fluctuations, and co-
activations caused by simultaneous activations without communication
between brain regions. As co-activations can spuriously increase FC

estimates, it has been proposed to regress out task activations from the task-
state BOLD signal and correlate the residuals, which is referred to as
background FC (BGFC)9. TSFC and BGFC are typically very similar to
RSFC since all are drivenmainly by spontaneous fluctuations10. In contrast,
task-modulated FC (TMFC) reflects dynamic changes in FC during one
condition compared to another, eliminating the influence of spontaneous
task-independent fluctuations and co-activations. Several TMFC methods
have been proposed, including direct correlation difference (CorrDiff)11,
standard12, generalised13 and correlational14 forms of psychophysiological
interaction (sPPI, gPPI, cPPI) with andwithout deconvolution procedure15,
and beta-series correlations (BSC) based on least-squares all (LSA)16, least-
squares separate (LSS)17, and fractional ridge regression (FRR)18,19 proce-
dures. Each TMFC approach has its own advantages and limitations. The
lack of a gold standard for derivingwhole-brainTMFCmatrices and limited
knowledge about the fundamental limitations of TMFC estimation related
to sluggishness of the BOLD signal hinder the process of task connectome
mapping.

Previous simulation studies evaluating TMFCmethods have twomain
limitations. First, they often ignore the dynamic, oscillatory nature of neu-
ronal population activity arising from interactions between excitatory and
inhibitory neurons by using simple delta or boxcar functions to simulate
neuronal activity in a pair of regions13,15,20,21. Second, studies with biophy-
sically realistic simulationsbasedonneuralmassmodels consider onlyblock
designs and a limited range of TMFC methods22,23. Meanwhile, one of the
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keyunresolvedquestions is the performanceof differentTMFCmethods for
fast event-related designs with slow data acquisition, which are typical for
the majority of fMRI studies. Thus, to date, there are no biophysically
realistic simulation studies systematically comparing existing TMFC
methods in different experimental fMRI setups (see Supplementary
Table S2 for an overview).

Here, using biophysically realistic simulations and empirical data, we
determined the best-performing whole-brain TMFC methods for different
fMRI task designs and identified their limitations. To simulate the neuronal
dynamics of multiple interconnected brain regions, we applied a large-scale
Wilson-Cowan neural mass model consisting of 100 excitatory-inhibitory
units24,25. The BOLD signals were generated from simulated neuronal
activity using the Balloon-Windkessel haemodynamic model26. To control
the ground-truth TMFC, we manipulated synaptic weights between neural
mass units depending on the task context, which corresponded to short-
term plasticity27–30.

First, we demonstrate that one popular TMFC method, cPPI, is not
capable of estimating TMFC. Second, we establish that TMFCmethods are
susceptible to spurious inflation of FC due to co-activations in event-related
designs even more than in block designs23. Third, we show that the most
sensitivemethods for rapid event-relateddesigns and block designs are sPPI
and gPPI with a deconvolution procedure, while for all other designs, the
best method is BSC-LSS. Despite the scepticism regarding the deconvolu-
tion procedure31, we demonstrate that deconvolution prominently increases
the sensitivity of the PPI methods in both event-related and block designs.
Fourth, haemodynamic response function (HRF) variability across brain
regions and subjectsmarkedly reduces the sensitivity of all TMFCmethods.

The BSC-LSS method is the most robust to HRF variability. Fifth, while
some authors classify PPI as a FCmethod31,32 and others see PPI as a simple
regression model of effective connectivity33–38, our results explicitly
demonstrate that PPI with deconvolution can in principle provide infor-
mation about the direction of causal influence at high signal-to-noise ratios
(SNRs), long scan times, and canonical HRF shape. However, in most
studies, the asymmetry of PPI matrices is likely to spuriously arise from a
low SNR, short event duration, small number of events per condition, small
sample size, and long repetition time (TR).

Finally, we demonstrate that rapid (100ms) task-relatedmodulationof
gamma-band neuronal synchronisation can be uncovered from ultra-slow
BOLD-signal fluctuations, even with typically slow data acquisition (TR =
2 s). Meanwhile, recently developed fast fMRI sequences (TR < 1 s) yield
increased sensitivity of TMFC methods not only by increasing the amount
of data but also due to more precise insights into fast neuronal dynamics
hidden behind the sluggish haemodynamic processes.

Results
To compare different TMFC methods, we first used empirical fMRI data
from the Human Connectome Project (HCP)39 and the Consortium for
Neuropsychiatric Phenomics (CNP)40. In particular, we considered two
block design tasks (working memory and social cognition tasks, N = 100)
from the HCP dataset39,41, two event-related tasks (stop-signal and task-
switching tasks, N = 115) from the CNP dataset40,42 and resting-state data
from both datasets. To construct empirical FC matrices, we used a set of
functionally defined regions of interest (ROIs) covering the whole brain43.
The ROIs were defined as spheres with a radius of 4 or 5mm.We discarded

Fig. 1 | Overview of FC types. a fMRI publications
per year mentioning “activation” (green), “func-
tional connectivity” and “rest” (red), “functional
connectivity” and “task” (blue). Data obtained via
PubMed search from1990 to 2023.Here, we note the
trend shift in the fMRI field from studies of func-
tional segregation (activation studies) to functional
integration (connectivity studies) since 2013. We
also observe the dominance of RSFC studies since
2015. (*) – The term “task connectomics” was
introduced first introduced by Di et al.124, however,
the first large-scale task connectomics study to
analyze whole-brain TMFC across multiple tasks
was conducted by Cole et al.45. b Illustration of
various types of FC matrices along the intrinsic-
extrinsic axis. To calculate FC matrices, we used
resting-state and working memory task data from
the Human Connectome Project. To estimate
TMFC, we applied the gPPI method with the
deconvolution procedure (“2-back > 0-back” con-
trast). To evaluate the similarity between matrices,
we used Pearson’s r correlation. The color scales
were adjusted for each matrix based on the max-
imum absolute value and were assured to be positive
and negative symmetrical.

a “Functional segregation”
period

“Functional integration”
period

Task connectomics*
Cole et al. (2013)

Functional connectome
Biswal et al. (2010)

Human Connectome Project
(2009)

Human connectome
Sporns et al. (2005)

fMRI studies:

Task-modulated FC
Friston et al. (1997)

Resting-state FC
Biswal et al. (1995)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1990 1993 1996 1999 2002 2005 2008 2011 2014 2017 2020 2023

Pu
bl

ic
at

io
ns

 p
er

 y
ea

r

Year

Activation

Rest & FC

Task & FC

100

Fi
sh

er
’s

 Z

Be
ta

 v
al

ue

50

50  100  150  200

Resting-state FC
(RSFC)

Background FC
(BGFC)

Task-state FC
(TSFC)

Task-modulated FC
(TMFC)

Regions
82.0-09.067.0

Intrinsic FC Extrinsic FC

U
nd

er
ly

in
g 

pr
oc

es
se

s:

Spontaneous
fluctuations

Spontaneous
fluctuations

Task-modulated
fluctuations

Spontaneous
fluctuations

Task-modulated
fluctuations

Co-activations

Task-modulated
fluctuations

b

150

200

0.5

-0.5

50

50  100  150  200
Regions

100

150

200

50

50  100  150  200
Regions

100

150

200

50

50  100  150  200
Regions

100

150

200

1

-1

https://doi.org/10.1038/s42003-024-07088-3 Article

Communications Biology |          (2024) 7:1402 2

www.nature.com/commsbio


ROIs for which data were incomplete for at least one subject. As a result, we
utilised 239 ROIs for the HCP dataset and 246 ROIs for the CNP dataset.

Next, we performed a series of simulations to compare the sensitivity
and specificity of TMFC methods in experiments with block and event-
related designs, different SNRs, sample sizes, duration of events, mean
interstimulus intervals (ISIs) and number of events. For block designs, we
considered the CorrDiff approach and PPI methods, and for event-related
designs, we considered the PPI methods and BSC methods. We also com-
pared the effectiveness of fast data acquisition for a fixed number of scans
andfixed total scan time. Then,we assessed the impactofHRFvariability on
the sensitivity of TMFC methods. Finally, we performed simulations with
symmetric (undirected) and asymmetric (directed) ground-truth synaptic
matrices to identify sources of PPI matrix asymmetry.

Empirical comparison of TMFCmethods
We found that all TMFC methods, except cPPI, produce similar unthre-
sholded matrices for the block design (working memory task, Fig. 2a). The
correlations between CorrDiff matrices and symmetrised sPPI and gPPI
matrices ranged from0.66 to 1.We also found that the correlations between
these TMFC matrices and RSFC, BGFC, TSFC and cPPI matrices ranged
from −0.13 to −0.28.

For the event-related design (stop-signal task), similar TMFCmatrices
were produced by the sPPI, gPPI, BSC-LSS and BSC-FRR methods, with
correlation coefficients ranging from0.63 to 0.96 (Fig. 2b).At the same time,
correlations between theseTMFCmatrices and theRSFC, BGFC, TSFC and
cPPI matrices ranged from −0.09 to 0.004. Remarkably, the BSC-LSA
approach produced a random-like matrix correlated with all other FC
matrices with a correlation of 0.01–0.09. The similarities and differences
between these FC methods are also confirmed by calculating the overlap
between thresholded matrices (Supplementary Figs. S1, S2). Analogous
results were obtained for empirical data from other tasks with block and
event-related designs (social cognition task and task-switching task), which
demonstrates that the observed effects are specific to a design type rather
than a particular task (Supplementary Figs. S3, S4).

Notably, the matrices generated by the cPPI method are similar to
matrices obtained using the RSFC, BGFC, and TSFC approaches, which
mainly reflect task-independent spontaneous fluctuations10. Correlations
between the cPPI, RSFC, BGFCandTSFCmatrices ranged from0.69 to 0.99
for block and event-related design (Fig. 2a, b). The partial correlation
between two PPI terms controlling for physiological (BOLD signal in both
regions) and psychological variables (task regressor), as implemented in
cPPI, was as high as the simple correlation between these twoPPI terms and
the correlation between physiological regressors (Fig. 3). Therefore, we
concluded that the cPPI approach is unable to separate task-modulated
(extrinsic) from task-independent (intrinsic) sources of FC. However,
comparison of FCmatrices based solely on empirical data does not allow us
to saywhichmethod better reflects the trueTMFC.To answer this question,
we applied a biophysically realistic simulation approach that enabled us to
control the ground-truth TMFC.

Large-scale neural mass simulations
Our simulation approach was based on the coupled oscillator model for FC
proposed by Mateo et al. (2017)44. Using optogenetic manipulations and
concurrently measuring local field potential, arteriole diameter and blood
oxygenation inwakemice, they showed that correlations betweenultra-slow
BOLD fluctuations (i.e., FCmeasured by fMRI) are caused by synchronised
ultra-slow fluctuations in arteriole diameter, which in turn are caused by
ultra-slow modulation of the envelopes of synchronised gamma-band
oscillations (Fig. 4a). Accordingly, wemodelled gamma-band activity of 100
interconnected regions using the large-scaleWilson-Cowanmodel, and also
modelled arteriole diameter dilations and blood oxygenation change using
the Balloon-Windkessel model (Fig. 4b). For details about the simulation
procedures, see Methods. The matrices of gamma-band neuronal syn-
chronisation measured by the phase-locking value were closely matched to
synaptic weightmatrices (Fig. 4c, d). In accordance with previous empirical
observations by Mateo et al. (2017)44, we observed strong correlations
between simulatedultra-slowfluctuations of the gamma-band envelope and
time-shifted BOLD signal. For the event-related design, the simulated
BOLD signalwas correlatedwith the gamma-band envelope at r = 0.79with
a 3.5 s time lag (Fig. 4e–j). Similar resultswere obtained for the block design,
where the correlation was r = 0.81 with a 3.5 s time lag (Supplemen-
tary Fig. S5).

The cPPI method fails to estimate TMFC
We first considered simulations without co-activations to investigate whe-
ther different TMFCmethods produce FCmatrices similar to ground-truth
synaptic weightmatrices for a sample sizeN = 100, SNR= 0.4, and TR = 2 s.
For differences between simulated conditions (“Cond A-B”), almost all
tested methods produced TMFC matrices similar to the ground truth
(Fig. 5a–g). In contrast, the cPPI method produced matrices similar to
BGFC and TSFC (Fig. 5h), which replicated the above-mentioned findings
from the empirical data analysis (Fig. 2). Knowing the ground-truth FC
patterns, we revealed that the cPPI method, unlike other TMFC methods,
does not show themodulationof FCbetween compared task conditions (the
“Cond A-B” effect), but rather shows the sum of all FC during both con-
ditions, that is, the “CondA+ B” effect (Supplementary Fig. S6). Since task-
unrelated FC is present in both conditions, we see both task-unrelated and
task-related effects in the cPPI matrix. Other TMFC methods effectively
remove task-unrelated effect by subtracting FC in one condition from
another. Thus, the cPPI method does not contrast FC in one condition
relative to another and does not remove task-unrelated effects (functional
connections that is high at rest). Therefore, we excluded the cPPI method
from further analysis, as it is unable to assess TMFC.

Despite its simplicity, theCorrDiff approachallows the computationof
easily interpretable FC matrices separately for task and rest blocks; these
matrices adequately reflect the underlying ground-truth synaptic weight
matrices (Fig. 5a, b). The sPPI and gPPI approaches enable estimation of
both TMFC and task-independent FC (Fig. 5c, d). Task-independent FC is
based on beta coefficients for physiological regressors delivered from

Fig. 2 | Correlations between unthresholded
RSFC, BGFC and TSFCmatrices and FCmatrices
obtained by different TMFCmethods. To evaluate
the similarity between the raw FC matrices, we cal-
culated Pearson’s r correlations between lower
diagonal elements. sPPI and gPPI matrices were
symmetrised. All PPI terms were calculated with the
deconvolution step. a Results for the block design:
working memory task. b Results for the event-
related design: stop-signal task.
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selected ROIs and is similar to FC during rest periods. In addition, the gPPI
approach can be used to calculate FC separately for each of the task con-
ditions (i.e., Condition > Baseline).However, the gPPImatrices for each task
condition should be interpreted with caution. The sign of the PPI estimates
betweennodes that exhibit high connectivity during rest periods depends on
the deconvolution procedure and mean centering of the psychological
regressor prior to PPI term calculation. With deconvolution and mean
centering, thePPI estimates between thesenodesbecomenegative, deviating
from the ground truth, see Fig. 5d (for more details, see “Methods”). The
BSC approaches enable the calculation of FC matrices for each of the task
conditions that are consistent with the ground truth, but do not allow to
calculate FC for rest periods (task-independent FC) since rest periods are
usually not modelled explicitly (Fig. 5e–g).

Co-activations spuriously inflate TMFC estimates
Next, we considered simulations with co-activations to investigate how
different TMFCmethods address artificial inflation of TMFC estimates due
to simultaneous activation of brain regionswithout task-relatedmodulation
of synaptic weights between them (Fig. 6a–c). Sensitivity (true positive rate,
TPR) and specificity (true negative rate, TNR) were calculated based on
TMFC matrices thresholded at α = 0.001 with false discovery rate (FDR)
correction (Supplementary Information 1).

As a result, we found that if co-activations are not removed from the
fMRI time series before TMFC analysis, they spuriously inflate TMFC
estimates in three cases. First, the sPPImethodpractically does not eliminate
co-activations and therefore has near-zero specificity in both block and
event-related designs (Fig. 6f–g). Second, the gPPI method demonstrates
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low specificitywhen applied to event-related designswithout deconvolution
(Fig. 6d, g). Third, the specificity of all TMFC methods decreases if the
designmatrix is not upsampled before convolutionwith the haemodynamic
response function (Fig. 6f, g).

Upsampling of the design matrix is used to improve the convolution
procedure and is implemented in many popular neuroimaging software
packages (SPM, FSL, AFNI, CONN toolbox). However, it may be absent in
some in-house TMFC analysis scripts. The most prominent effect of

upsampling on specificity can be seen for the gPPI method with deconvo-
lution in event-related designs (Fig. 6g).

Tobetter isolateTMFC fromco-activation effects, it has beenproposed
to regress out task activations using finite impulse response (FIR) functions
prior to TMFC analysis45. FIR task regression substantially improved the
specificity of all TMFC methods in both block and event-related designs
(Fig. 6f, g). For instance, the gPPI method without deconvolution had a
specificity of 24% before FIR task regression and 99% after (Fig. 6e). The
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downside of FIR task regression is that it slightly reduces sensitivity, most
notably for the sPPIandgPPImethodswithout deconvolution and theBSC-
LSA method.

In all subsequent sections, we consider simulations with co-activations
and perform TMFC analyses with FIR task regression and design matrix
upsampling, unless otherwise stated. We did not perform upsampling for
CorrDiff and BSC-FRR, since the CorrDiff method does not rely on general
linear models, and FRR implementation in the GLMsingle toolbox requires
the task designmatrix to have the same temporal resolution as the data to be
convolved19. We will not report specificity further since in no case did it fall
below 95%.

Influence of noise and sample size on the sensitivity of TMFC
methods
In this section, we describe the robustness of TMFCmethods to high noise
levels and low sample sizes. For the block design, the PPI methods with
deconvolution were the most sensitive and robust to noise (Fig. 7a, Sup-
plementary Table S3). The least sensitive method was CorrDiff since it
needed a sample size >100 to achieve >80% sensitivity at high SNR = 0.5,
while the PPI methods with deconvolution needed a sample size
>50 (Fig. 7c).

For the event-related design, the BSC-LSS method was the most sen-
sitive (Fig. 7b, Supplementary Table S4). The difference between the BSC-
LSS method, the BSC-FRR method and PPI methods with deconvolution
was relatively small andmore pronounced at high noise levels (SNR < 0.40).
At the same time, the BSC-LSAmethod had the lowest sensitivity due to the
multicollinearity problem17. TheBSC-LSS andBSC-FRRmethods, aswell as
thePPImethodswith deconvolution, neededa sample sizeN > 50 to achieve
>80% sensitivity at SNR = 0.5 (for the event-related design), while the BSC-
LSA method needed a sample size N > 100 (Fig. 7d).

In contrast to previous simulation studies13,20, we did not detect a
noticeable increase in the sensitivity of the gPPI method compared to the
sPPI method. Additional Bayesian analysis provided evidence for the
absence of differences between these methods for the block and event-
related designs (Supplementary Tables S3, S4).

It has also been previously suggested that deconvolution may benefit
only event-related designs and can be omitted for block designs8. Indeed,
some popular neuroimaging packages implement the PPI method without
the deconvolution step (e.g., FSL and CONN toolbox). Here, we show that
the deconvolution procedure substantially increases the sensitivity of the
PPI methods in both block and event-related designs (Fig. 7a, b). Without
deconvolution, these methods failed to achieve >80% sensitivity for sample
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Fig. 5 | Illustration of FC matrices produced by different TMFC methods based
on simulated data. An example of simulation results for sample size N = 100,
SNR = 0.4 and TR = 2 s. a Expected FC matrices based on ground-truth synaptic
weight matrices. b–d For the CorrDiff, sPPI and gPPI methods, we considered the
block design with ten 20 s blocks per condition. e–g For the BSC-LSA, BSC-LSS and
BSC-FRR methods, we considered the event-related design with one hundred 1 s
events per condition andmean ISI = 6 s. hThe cPPI, BGFC and TSFCmatrices were

calculated based on the block design simulation. Analogous results were obtained for
the event-related design simulation. To evaluate the similarity betweenmatrices, we
calculated Pearson’s r correlations between lower diagonal elements. All PPI terms
were calculated using the deconvolution step. sPPI and gPPI matrices were sym-
metrised. The color scales were adjusted for each matrix based on the maximum
absolute value and were assured to be positive and negative symmetrical.
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Fig. 6 | Inflation of TMFC estimates due to co-activations. Simulation results for
sample size N = 100, SNR = 0.4 and TR = 2 s. a Expected influence of co-activations
on FC estimates (artificial TMFC). Tomodel co-activations, we added simultaneous
haemodynamic responses for different functional modules to the simulated BOLD
signal without changing the synaptic weights between them. Functionalmodules№1
and№3 are co-activated in “Cond A”, while modules№2 and№4 are co-activated in
“Cond B”. Artificial FC inflation was expected within and between these modules.
b Expected FC matrices based on ground-truth synaptic weight matrices (true
TMFC). In “CondA”, synaptic weights were increased betweenmodules№1 and№2
and modules№3 and №4. In “Cond B”, synaptic weights were increased between
modules №1 and №4 and modules №2 and №3. c If the TMFC method fails to
eliminate co-activations, we will observe FC changes between all ROIs (artificial+
true TMFC). d, e Raw and thresholded TMFC matrices obtained using the gPPI
method without (w/o) the deconvolution step and with (w/) design matrix
upsampling, similar to the gPPI implementation in the FSL or CONN toolbox.
TMFC matrices were thresholded at α = 0.001 (two-sided one-sample t test, false

discovery rate (FDR) correction). dWithout task activation regression, we observed
FC changes between almost all ROIs (low specificity). eAfter finite impulse response
(FIR) task regression, artificial TMFCwas removed, leavingmostly true TMFC (high
specificity). f Sensitivity (true positive rate, TPR) and specificity (true negative rate,
TNR) of different TMFC methods for the block design with ten 20 s blocks per
condition. g TPR and TNR for the event-related design with one hundred 1 s events
per condition and mean ISI = 6 s. All TMFC matrices were calculated with and
without FIR task regression, as well as with and without upsampling of the design
matrix before convolution, except for CorrDiff and BSC-FRR. We did not perform
upsampling for the CorrDiff and BSC-FRR methods. All PPI terms were calculated
with andwithout the deconvolution step. sPPI and gPPImatrices were symmetrised.
Boxplots whiskers are drawn within the 1.5 interquartile range (IQR), computed
from 1000 random resamplings with replacement. The color scales were adjusted for
each matrix based on the maximum absolute value and were assured to be positive
and negative symmetrical.
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sizes N < 100 and SNR = 0.5 (Fig. 7c, d). Therefore, in the remaining sec-
tions, wewill consider the sPPI and gPPImethods onlywith deconvolution,
unless otherwise stated.

Sensitivity of the TMFCmethods for event-related designs with
different timing parameters
Next, we independently varied the temporal parameters of the event-related
design, including event duration, mean ISI, number of events and data
acquisition (TR), to assess their impact on the sensitivity of TMFCmethods
with a sample size N = 100 and medium SNR = 0.40. Shortening the event
duration substantially decreased the sensitivity of all TMFC methods
(Fig. 8a, Supplementary Table S5). The BSC-LSS method was slightly more
sensitive than the BSC-FRRmethod and the PPImethods, which wasmore
noticeable for short event durations <1 s; in contrast, the BSC-LSAmethod
achieved >80% sensitivity only for long event durations >2 s.

Shortening the mean ISI slightly decreased the sensitivity of the BSC-
LSS, BSC-FRR and PPImethods and substantially reduced the sensitivity of
the BSC-LSA method (Fig. 8b, Supplementary Table S6). The BSC-LSA
method had >80% sensitivity only for slow event-related designs withmean

ISI = 12 s. For the rapid event-related designs (ISI ≤ 4 s), the PPI methods
were slightlymore sensitive than theBSC-LSS andBSC-FRRapproaches.At
longer ISI (≥6 s), the BSC-LSS approach was more sensitive than the BSC-
FRR and PPI methods.

Reducing the number of events also substantially decreased the sen-
sitivity of all TMFC methods (Fig. 8c, Supplementary Table S7). The BSC-
LSS approach was slightly more robust to shortening scan time than other
methods. The BSC-LSS, BSC-FRR and PPI methods needed at least 80
events per condition to achieve >80% sensitivity.

Finally, fast data acquisition (TR < 1 s) yielded the maximum sensi-
tivity for all methods (Fig. 8d, Supplementary Table S8), while reducing
the fMRI temporal resolution from the typical TR = 2 s to the frequently
used TR = 3 s reduced sensitivity below 80%. Notably, the PPI methods
were more sensitive than the BSC-LSS and BSC-FRR methods
for TR = 3 s.

We also considered TMFC simulations with task designs parameters
derived from empirical HCP and CNP tasks. For the working memory task
with 8 blocks per condition, block duration = 27.5 s, interleaved by 15 s rest
blocks, TR = 0.72 s, total scan time ≈ 10min (810 dynamics), SNR = 0.4,
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Fig. 7 | Sensitivity of all TMFC methods depending on the signal-to-noise ratio
(SNR) and sample size. Simulation results for TR = 2 s. a, b Sensitivity of different
TMFC methods at sample size N = 100 for (a) the block design with ten 20 s blocks
per condition and (b) event-related designwith one hundred 1 s events per condition
and mean ISI = 6 s. c, d Sensitivity of different TMFC methods depending on the
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calculated with (w/) and without (w/o) the deconvolution step. sPPI and gPPI
matrices were symmetrised. Boxplots whiskers are drawnwithin the 1.5 interquartile
range (IQR), computed from 1000 random resamplings with replacement.
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and sample size N = 100, the sensitivity of the CorrDiff and PPI methods
with deconvolution was 61% and 99%, respectively. For the social cognition
task with 5 blocks per condition, block duration = 23 s, interleaved by 15 s
rest blocks, TR = 0.72 s, total scan time ≈ 7min (548 dynamics), SNR = 0.4,
and sample size N = 100, the sensitivity of the CorrDiff and PPI methods
with deconvolution was 23% and 97%, respectively. For the stop-signal task
with 96 “Go” and 32 “Stop” events, mean ISI = 1 s (ranged from 0.5 to 4 s),
event duration = 1.5 s, TR = 2 s, total scan time ≈ 7min (184 dynamics),
SNR= 0.4, and sample sizeN = 115, the sensitivity of the BSC-LSS and PPI
methods with deconvolution was 3% and 15%, respectively. The sensitivity
of BSC-LSS was lower than that of PPI methods due to the very short ISI.
Whenwehalved the number of “Stop” events (i.e., only considered “Correct
Stop” events), the sensitivity dropped to 0% and 8%, respectively. For the
task-switching task with 24 “Switch” and 72 “No Switch” events, mean
ISI = 3 s, event duration = 1 s, TR = 2 s, total scan time ≈ 6min (208

dynamics), SNR= 0.4, and sample size N = 115, the sensitivity of the BSC-
LSS and PPI methods with deconvolution was 13% and 15%, respectively.

Therefore, block design tasks from the HCP dataset are well suited for
TMFC estimation. Although the total duration of these tasks is relatively
short, it is compensated by short TR. At the same time, event-related tasks
from the CNP dataset may not have sufficient sensitivity to capture whole-
brain TMFC. In particular, these tasks are unbalanced and have very few
events of interest (32 “Stop” and 24 “Switch” events).

Rapid synchronisation can be revealed even with typically slow
fMRI data acquisition
One intriguingquestion is theprincipal ability ofBOLDfMRI toassess rapid
modulations of gamma-band neuronal synchronisation evoked by short
events given typically slow data acquisition (TR = 2 s). In the previous
section, we showed that the most sensitive TMFC method (BSC-LSS)
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revealed a fairly small number of true positives (TPR = 15%) for the event-
related design with one hundred 100ms events per condition (Fig. 8a).
When we doubled the number of events, the sensitivity was increased to
TPR= 57%. Therefore, typically slow fMRI sequences can in principle
detect task-related neuronal synchronisation on the order of 100ms.
However, the sensitivity to such rapid synchronisation with slow data
acquisition is relatively weak, and many events are required to detect them.

Importance of fast fMRI data acquisition for TMFC analysis
Another possible way to increase the sensitivity of TMFCmethods to rapid
neuronal synchronisation is to employ fast fMRI data acquisition techni-
ques. Increasing the fMRI temporal resolution from TR = 2 s to TR = 500
ms resulted in 99% sensitivity for the event-related designwith one hundred
100ms events per condition when the BSC-LSS method was applied. At a
fixed taskduration (scan time = 23.6min), decreasingTR from2 s to 500ms
increased thenumberof fMRIdatapoints fourfold (from616 to2464 scans).
Thus, with the same scanning time, fast data sampling enables one to
increase the temporal degree of freedom and thereby significantly increase
the statistical power of TMFC methods.

Furthermore, fast fMRI data sampling may improve sensitivity per se,
that is, by more precise insights into neuronal temporal dynamics rather
than simply by providing more data points for a fixed scan time46. To test
this assumption, in contrast to ourprevious simulationswithfixed scan time
and number of events, we considered a fixed number of data points (scans).
As a result, the sensitivity of TMFC methods remained at the same level at
different temporal resolutions, TR = 500/700/1000ms, despite a reduction
in total scan time and number of events per condition, Ne = 50/70/100
(Fig. 8e, left panel). This meant an increase in normalised sensitivity per
single event (TPR/Ne) at shorter TRs (Fig. 8e, right panel). The BSC-LSS
method had the highest sensitivity per event for short event duration and
fast fMRI data acquisition. Therefore, despite the sluggishness of haemo-
dynamic processes, a more accurate characterisation of ultra-slow BOLD-
signal fluctuations allows for more precise insights into rapid task-related
modulation of gamma-band synchronisation.

Haemodynamic variability markedly decrease sensitivity of all
TMFCmethods
In the previous sections,we considered simulationswithfixed parameters of
the Balloon-Windkessel haemodynamic model. However, it is well known
that the HRF shape varies across brain regions and subjects47. To study this
issue, we performed simulations with variable haemodynamic parameters
providing a time-to-peak range of 3 to 7 s, consistent with empirical
studies48.Here,we compared the best-performingmethods (gPPI, BSC-LSS,

BSC-FRR), which assume canonical HRF shape in general linear models
(GLMs), and the CorrDiff approach, which does not use GLMs. The gPPI
and BSC-LSSmethods were compared with and without upsampling of the
task design matrix prior to convolution with canonical HRF. The upsam-
pling procedure can improve sensitivity for an fMRI signal with a fixed
canonical HRF, however its interaction with variable HRF is unknown.
Additionally, we compared the gPPI method with and without deconvo-
lution, since this procedure assumes a canonical HRF shape.

As a result, we revealed a marked decrease in sensitivity of all TMFC
methods (Fig. 9). For the block design with SNR= 0.4, the sensitivity of the
gPPI method with task design upsampling and deconvolution dropped
from 78% to 5% (Fig. 9a). Disabling upsampling and deconvolution further
decreased sensitivity of the gPPI method. As the SNR increases to 0.7, the
sensitivity of the gPPI method increased to 71%. Therefore, the gPPI
method requires a relatively high SNR to estimate TMFC under conditions
of variability in the HRF shape.

For the default event-related design with SNR = 0.4, the sensitivity of
the BSC-LSS and gPPImethods with upsampling dropped from about 93%
to 36% and 14%, respectively (Fig. 9b). At the same time, the BSC-FRR
sensitivity decreased from 91% to 44%, making it more robust to HRF
variability than the BSC-LSS method. This robustness could potentially be
due to fractional ridge regression or the lack of designmatrix upsampling in
the BSC-FFR method. It turned out that this was due to the second option.
In the caseof variableHRF simulation, the absence of upsamplingof the task
design matrix prior to convolution with canonical HRF increased the sen-
sitivity of the BSC-LSSmethod from 36% to 45% (Fig. 9b). This may be due
to the fact that convolution of an upsampled designmatrix with a canonical
HRF (convolution with high temporal resolution) implies greater model
dependence on the canonical HRF shape than convolving the designmatrix
without upsampling (convolution with low temporal resolution).

Thus, theBSC-LSSmethodwithout upsamplingwas themost robust to
haemodynamic variability. The BSC-FRRmethod without upsampling was
slightly less sensitive than the BSC-LSS method, but still much robust than
the gPPImethod.Without upsampling, gPPI sensitivitywas increased from
14% to only 18% for SNR= 0.4 (Fig. 9b). The gPPI method was half as
sensitive than the BSC-LSS and BSC-FRR methods. Disabling deconvolu-
tion, reduced gPPI sensitivity to 3%, even though deconvolution assumes
the canonical HRF shape. At higher SNRs, the difference in sensitivity
between the gPPI and BSC methods became less noticeable.

Genuine and spurious asymmetry of the PPI matrices
Previously, we considered only symmetrised PPI matrices because aver-
aging the upper and lower diagonal elements has become a standard
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procedure inTMFCanalysis since they are consideredquite similar8,11.Here,
we use empirical and simulated data to determine when PPI matrices
become asymmetric, making the averaging procedure problematic. Below,
we report results only for the gPPImethod since the sPPI and gPPImethods
produce nearly identical results.

For the block design (workingmemory task), the correlations between
the upper and lower diagonal elements of the group-mean gPPI matrices
without and with deconvolution were 0.85 and 0.77, respectively (Supple-
mentary Fig. S7a). Without deconvolution, the correlation coefficients for
individual subjects ranged from 0.77 to 0.89 with a mean of 0.83 (Supple-
mentary Fig. S7c). With deconvolution, individual correlation coefficients
ranged from 0.56 to 0.75 (mean 0.68). For the event-related design (stop-
signal task), the correlations between the upper and lowerdiagonal elements
of the group-meangPPImatriceswithout andwithdeconvolutionwere 0.90
and 0.40, respectively (Supplementary Fig. S7b). The correlation coefficients
for individual subjects ranged from 0.78 to 0.93with amean of 0.90without
deconvolution (Supplementary Fig. S7d). In contrast, when deconvolution
was applied, individual correlation coefficients ranged from 0.24 to 0.41
(mean 0.34). Similar results were obtained for other tasks with block and
event-related designs taken from the HCP and CNP datasets (Supple-
mentary Fig. S8). Therefore, empirical data showed that deconvolution
slightly increases the asymmetry of gPPI matrices for block designs and
substantially increases the asymmetry for event-related designs.

Next, we used simulations with symmetric ground-truth matrices to
determinewhichparameters of the fMRI experiment canartificially increase
the asymmetry of the PPI matrices. We found that the main factors for
artificial matrix asymmetry are a low SNR (Supplementary Fig. S9a), small
sample size (Fig. S9b), short event duration (Fig. S9c) and small number of
events per condition (Fig. S9e). In addition, the asymmetry of gPPImatrices
increases slightly with larger TRs (Fig. S9f) and is practically independent of
themean ISI duration (Fig. S9d). Therefore, the large asymmetry of the gPPI
matrices for the event-related designs from the CNP dataset is most likely
related to the short scan time and low SNR.

Finally, we considered simulations with asymmetric ground-truth
matrices (Supplementary Fig. S10), fixed HRF, and without adding co-
activations to test whether the gPPI method could in principle provide
information about the true causal directionality. The causal influence that
one neuronal system exerts over another at a synaptic or neuronal popu-
lation level is referred to as effective connectivity (EC). Here, we calculated
correlation between the asymmetric ground-truth matrix and the asym-
metric gPPI matrix, as well as the ratio between correctly identified sign of
connections to the total number of non-zero ground-truth connections
(correct sign rate, CSR, see Supplementary Eq. S33). CSR of 50%means the
sign was determined by chance. CSR of 100% means that the signs of all
connections presented in the ground truth were correctly identified. For the
block designs, we also calculated task-modulated EC (TMEC) matrices
using the regression dynamic causal modelling (rDCM) method49–51 (see
“Methods”). The rDCMmethod, which is a conventional EC method, was
used as a reference. As rDCM requires a relatively high SNR49, we used
SNR= 5 and twice the total scan duration. If the gPPI method fails to
correctly estimate the direction of information flow at a high SNR, then it
will also fail at lower SNRs. A systematic comparison of TMEC methods
such as Granger causality or structural equation modeling is beyond the
scope of the current study.

As a result, the gPPI method with deconvolution was able to reflect the
actual direction of the information flow for the block design with twenty
blocks per condition (Fig. 10). The correlation between the group-mean
asymmetric gPPImatrix andground-truthmatrix for the “CondA–CondB”
difference was 0.93 (CSR = 100%), and correlation between the group-mean
rDCM matrix and ground-truth matrix was 0.88 (CSR = 99%). We also
ensured that the asymmetry of gPPI regression coefficients was not due to
amplitude differences between ROIs during task conditions (see Supple-
mentary Information 9, Figs. S11, S12).

When the scan duration was halved, the correlation between the gPPI
and ground-truth matrices decreased to 0.76 (CSR = 88%), and dropped to
0.12 (CSR = 56%) when SNR was reduced to 0.5. Similar results were

Fig. 10 | gPPI with deconvolution can reveal the
direction of information flow under fixed HRF,
high SNR and long scan time. Simulation results for
the block design with twenty 20 s blocks per condi-
tion, sample size N = 100, TR = 2 s and very high
SNR = 5. a Asymmetric ground-truth matrix of task-
modulated effective connections. In “Cond A”,
synaptic weights were increased from module№1 to
№4, from№4 to№3, from№3 to№2, and from№2 to
№1. In “Cond B”, synaptic weights were increased in
the opposite direction. b Group-mean difference
between rDCMmatrices calculated for the “Cond A”
and “Cond B” blocks. c Group-mean asymmetric
matrix generated by gPPI with (w/) deconvolution.
Deconvolution allows modelling of psychophysiolo-
gical interactions at the neuronal level. d Group-
mean asymmetric matrix generated by gPPI without
(w/o) deconvolution. Without deconvolution psy-
chophysiological interactions, are modelled at the
haemodynamic level. To evaluate the similarity
between matrices, we used Pearson’s r correlations.
The color scales were adjusted for each matrix based
on the maximum absolute value and were assured to
be positive and negative symmetrical.

a

75

b

50

25

R
O

I (
ta

rg
et

)

100

75

50

25

po
st

er
io

r e
st

im
at

e

Asymmetric ground truth
(Cond A – Cond B) 

0.93

0.88

gPPI w/ deconv
(Cond A – Cond B) 

rDCM
(Cond A – Cond B) 

ROI (seed)

ROI (from)

R
O

I (
to

)

ROI (from)

R
O

I (
to

)

25
100

75

50

25

100755025

-2

0

2
×10-3

-0.05

0

0.05

c

Effective connections:
Cond A: [1 � 2], [2 � 3], [3 � 4], [4 � 1] 

Cond B: [1 � 2], [2 � 3], [3 � 4], [4 � 1]

50 75 100

M
od

ul
es

1

2

3

4

100755025
100

R
O

I (
ta

rg
et

)

100

75

50

25

be
ta

 v
al

ue

gPPI w/o deconv
(Cond A – Cond B) 

ROI (seed)
100755025

-0.02

0

0.02

d

-0.04

  

     

    

     

  

be
ta

 v
al

ue

https://doi.org/10.1038/s42003-024-07088-3 Article

Communications Biology |          (2024) 7:1402 11

www.nature.com/commsbio


obtained for the event-related designs: the correlation between the gPPI and
ground-truth matrices was 0.85 (CSR = 99%) for two hundred events per
condition, decreased to 0.57 (CSR = 75%) when the scan duration was
halved, and dropped to 0.03 (CSR = 51%) when SNR was reduced to 0.5.
Without deconvolution, the correlation between the ground-truth and gPPI
matrices was always close to zero ( | r | < 0.05, CSR ≈ 50%).

Therefore, gPPI without deconvolution failed to estimate the actual
direction of the information flow, determined by asymmetric ground-truth
synaptic weights, even in the best-case scenario (fixedHRF, high SNR, long
scanduration).At the same time, gPPImethodwith deconvolutionwas able
to reveal the true causal directionality in the best case. However, none of the
connections estimated by gPPI survived the FDR-corrected threshold of
0.001 (even though the connection signs were correctly identified). More-
over, when we shortened the scan duration, reduced the SNR, and, most
importantly, introduced HRF variability, the ability of the gPPI method to
correctly identify the direction of information flow was reduced to
almost zero.

Discussion
This is the first evaluation of existing whole-brain task-modulated func-
tional connectivity (TMFC) techniques using biophysically realistic large-
scale neural mass simulations for a wide range of fMRI experimental set-
tings.We identified the most effective TMFCmethods for block and event-
related designs, determined which data analysis procedures and parameters
of the fMRI experiment increase their sensitivity and specificity, and
demonstrated the principal capability of fMRI to detect rapid task-related
neuronal synchronisation from sluggish BOLD signals at various temporal
resolutions.

The simplest and most intuitive approach for constructing a whole-
brain TMFC matrix is to directly calculate the correlation difference
(CorrDiff) between task conditions, accounting for transient haemody-
namic effects11. However, this approach is suitable only for task designswith
long blocks since there must be enough time points after the removal of the
transition periods (first six seconds of each block). We determined that the
CorrDiff method has substantially lower sensitivity than other methods
since cutting out the transition periods significantly reduces the temporal
degrees of freedom.

A more sophisticated TMFC method available for both block and
event-related designs is the psychophysiological interaction (PPI)
approach12. The psychophysiological interaction can be modelled at the
haemodynamic level or at the neuronal level using the deconvolution
procedure15. Standard PPI (sPPI) approach was originally proposed for
seed-to-voxel analysis and optimised for designs with two task conditions12.
Later, it was extended to a generalised form (gPPI) that enables the
assessment of more than two task conditions per statistical model13 and
adapted for whole-brain ROI-to-ROI analysis34–36. In this study, we estab-
lished that themost sensitive TMFC techniques for block designs and rapid
event-related designs (mean ISI ≤ 4 s) are the sPPI and gPPI methods
incorporating the deconvolution procedure. Although previous simulation
studies suggested that the gPPI method is more sensitive than the sPPI
method13,20, we showed that the sensitivity of both methods is practically
equivalent for block and event-related designs. This discrepancy is most
likely due to the difference between previously used biologically simplified
simulations based on box-car or delta functions13,20 and biologically realistic
simulationsofTMFCbasedon the large-scaleneuralmassmodelused in the
present work. Nevertheless, the gPPI method is preferable to the sPPI
method since it provides more flexibility regarding task design and higher
specificity if co-activations have not been removed before TMFC analysis
using finite impulse response (FIR) task regression.

Previous empirical52 and simulation studies15,22 showed that the PPI
approachwith andwithout deconvolutionproduces similar results for block
designs. However, disparities between PPI terms calculated at the haemo-
dynamic and neuronal levels were more prominent for event-related
designs since there are more high-frequency components15. Some authors
suggest that the deconvolution step ismandatory for event-related designs8,

while others warn against its use, arguing that there is no deterministic way
to deconvolve the haemodynamic response if its shapes are not known
exactly31. While the deconvolution step is a default setting in SPM, it is not
implemented inotherpopularneuroimaging softwarepackages, suchasFSL
and the CONN toolbox. Based on our results, we argue that deconvolution
can increase sensitivity by up to a factor of two for both event-related and
block designs.Moreover, deconvolution can increase specificity several fold,
effectively eliminating co-activations even without FIR task regression.
Without deconvolution and FIR task regression, the gPPI method is
susceptible to spurious inflation of TMFC estimates due to simple
co-activations.

Since PPI is a regression method, it produces asymmetric (directed)
TMFCmatrices. However, to date there is no consensus whether PPI can be
used to reveal the direction of information flow. Some authors used PPI
without deconvolution as an effective connectivity method38. Others have
used PPI with deconvolution to determine the direction of connectivity
without making strong claims about the underlying causal structure36. A
popular view is that by using PPI we are making arbitrary directional
assumptions based on a priori assignment of ROIs as sources or targets14,32.
Here, we showed that PPI can in principle reveal the direction of infor-
mation flow, but only in the best-case scenario (fixed HRF, high SNR, long
scan time) and only if the psychophysiological interaction ismodelled at the
neuronal level by using the deconvolution procedure. Without deconvo-
lution, the PPImethod provide no information about the underlying causal
structure even in the best-case scenario. In addition, we found that PPI
matrices asymmetry can spuriously arise due to low SNR, small sample size,
short scan time (small numberof events) and short event duration. Tomake
correct directional inferences, the PPI method, as well as the more sophis-
ticated effective connectivity method, regression dynamic causal modelling
(rDCM), requires low haemodynamic variability across brain regions, high
SNR and long scan times.

To create symmetrical PPI matrices, it was proposed to average upper
and lower diagonal elements based on the empirical evidence that these
elements are strongly correlated in block design tasks11. However, for task
designs with low SNR and short scan time, the PPI matrices can become
largely asymmetric, making the averaging procedure problematic. To
completely avoid the asymmetry problem, it has been proposed to calculate
symmetric TMFCmatrices using correlational form of PPI (cPPI) based on
partial correlations14. The cPPImethodhas not beenpreviously validated on
empirical or simulated data or comparedwith other TMFCmethods. Here,
we demonstrated that the cPPImethod cannot estimate TMFC: it is unable
to eliminate spontaneous task-independent activity and produces matrices
similar to the task-state functional connectivity (TSFC) and background
functional connectivity (BGFC)matrices that reflect the sumof FCacross all
task conditions and intervening rest periods.

An alternative method for obtaining symmetrical whole-brain
TMFC matrices for event-related designs is the beta-series correlation
(BSC) approach16,17

, which is based on correlations between beta esti-
mates of the BOLD signal change for each individual trial. A simulation
study by Cisler et al.20 suggested that the BSC approach is more powerful
than gPPI for event-related designs with many trial repetitions, while an
empirical study by Di & Biswal8 with a large sample size did not support
this notion. The inconsistency between the results of these studiesmay be
due to the discrepancy between real neurophysiological processes that
cause TMFC and the biophysically unrealistic simulations used tomimic
TMFC20. We determined BSC based on the least-squares separate (LSS)
method is superior for most types of event-related designs (mean ISI >
4 s). The increase in sensitivity compared to that of the gPPI method
is especially noticeable for short event durations (<1 s). At the same
time, BSC based on the least-squares all (LSA) method had the lowest
sensitivity due to the multicollinearity problem (resulting in noisy
individual trial estimates) and achieved reasonable sensitivity only
for long ISI (≥12 s) and/or long event duration (≥2 s). Note that one of
the popular BSC software packages (BASCO toolbox) utilises the
LSA method.
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We also tested the application of fractional ridge regression (FRR) to
BSC analysis18,19. The LSS can be thought as an extreme regularisation
approach, as it shrinks noisy parameter estimates towardmore stable values
uniformly across all brain regions18. At the same time, the FRR approach
uses the same general linear model (GLM), as in the LSA approach, but
applies ridge regression and cross-validation to determine the optimal
shrinkage fractionof individual trial estimates for eachvoxel or brain region.
Therefore, the FRR approach can be thought as a tunable regularisation
where regularisation is applied only if the data need it. As a result, the BSC-
FRR approach turned out to be slightly less sensitive than the BSC-LSS
approach, but at the same time noticeably more computationally efficient
(faster than one and a half times compared to LSS).

One of the objectives of this study was to evaluate the influence of task
design parameters on the sensitivity of TMFC methods. The two most
important factors influencing sensitivity are the duration of a single trial and
the number of trial repetitions. A noticeable decrease in sensitivity can be
observed for trial durations shorter than 500ms. The BSC-LSS method is
the most robust to shortening trial duration. In addition, TMFC analysis
requires a relatively large number of trial repetitions. Preferably, at least
80–100 trial repetitionsper task condition.Theblockdesigns canbe thought
as designs with few trial repetitions and long trial durations. For them, the
gPPI method with deconvolution is most sensitive. The sensitivity of BSC-
LSS for block designs is very small, since it is based on correlations between
individual trial or block estimates, the number of which is small in block
designs. It is recommended to use Pearson correlation only if there aremore
than 25 data points53. However, block design with a large number of blocks
becomes unreasonably long.

Another factor that may influence the sensitivity of TMFCmethods is
the mean interstimulus interval (ISI). As ISI decreases (mean ISI ≤ 4 s), the
sensitivity drops relatively little, being more noticeable for BSC methods.
The most robust to short ISI was the gPPI method with deconvolution.
Increasing the mean ISI beyond 6 s did not affect sensitivity. Ideally, to
improve the power of the fMRI design for assessing TMFC, trial repetitions,
trial duration, and mean ISI should be increased. However, in real-world
cases, there are practical limitations of the total duration of the fMRI study
(e.g., fatigue of subjects, habituation to the task, limited access time to the
MRI scanner, etc.). Moreover, inmany cases, increasing the trial duration is
impossible, since it depends on the nature of the psychophysiological pro-
cesses under investigation (e.g., it is impossible to increase the duration of
subliminal stimuli perception). Based on our simulations, we can inferwhat
trade-offs can be made when designing fMRI experiments. Given that
shortening the ISI reduces the sensitivity remarkably less than reducing
number of trial repetitions, a rapid event-related design with a short ISI and
a large number of events ismore preferable than a slow event-related design
with a small number of events. If possible, it is advisable to keep the event
duration to about a second. For instance, an event-related design with 200
trial repetitions for eachof the two task conditions, a trial durationof 1 s, and
amean ISI of 4 s would take 33.3min. This task can be spitted into three 10-
minute sessions, which is reasonable for an fMRI study. Alternatively, one
can reduce the number of trial repetition (e.g., to 100 trials per condition)
and the total task duration, if fast fMRI data acquisition is applied (e.g.,
TR = 0.72 s, as in the HCP dataset).

Importantly, we showed that short-term (100ms) modulations of
gamma-band neuronal synchronisation can in principle be recovered from
ultra-slow BOLD signal fluctuations, even at typically low temporal reso-
lution (TR = 2 s). However, this requires many trials (>200 per condition).
Furthermore, fast fMRI data acquisition increases the sensitivity for short-
term modulations not only by increasing the number of data points for a
fixed scan time but also by providing more insights into neuronal temporal
dynamics. Our results show the particular importance of fast fMRI
sequences for TMFC analysis. Fast data acquisition (TR < 1 s) prominently
increased the sensitivity of all TMFC methods, even when the number of
data points (fMRI scans) was fixed. In the case of slow data acquisition
(TR = 3 s), the gPPI method with deconvolution was the most sensitive
method.

Finally, we examined howheamodynamic variability across brain regions
and subjects influencesTMFCassessment.The introductionofHRFvariability
into simulations markedly decreased the sensitivity of all TMFC methods. It
also abolished the ability of gPPIwithdeconvolution todetermine thedirection
of information flow. The BSC-LSS and BSC-FRR methods were found to be
much more robust to heamodynamic variability than the gPPI method. One
possible explanation is that the latter makes more assumptions about the
canonical shape of HRF. gPPI uses this assumption to create a convolved task
designmatrix for the GLM and to perform deconvolution and re-convolution
of thePPI term,whereasBSCmethods assumeacanonicalHRFonly inGLMs.
However, we argue for a different explanation.

First, disabling deconvolution did not increase, but rather decreased
gPPI sensitivity. Second,we can see a dramatic reduction in the sensitivity of
the CorrDiff approach, which does not use GLMs and does not directly
assume canonical HRF shape. It simply calculates correlation difference
between time points related to different task conditions, cutting out tran-
sitoryperiods.We removed thefirst 6 s in eachblock.Changing the lengthof
these periods from 3 to 7 s did not significantly change CorrDiff sensitivity.
This means that haemodynamic variability across brain regions decreases
correlations between time series fromdifferent brain regions per se, without
any model assumptions about the canonical HRF shape. The gPPI method
can be thought of as the difference in weighted correlations between time
series relating to different task conditions54. Meanwhile, BSC methods are
not based on correlations between time series, but on correlations between
trial-by-trial amplitude fluctuations. Although estimating response ampli-
tudes of individual trials requires an assumption the HRF shape, it turned
out, that correlations between trial-by-trial amplitude fluctuations aremore
robust to HRF variability than correlations between time series. The block
design is generally considered more statistically efficient in fMRI studies
(especially for activation studies). However, our results suggest that, coun-
terintuitively, event-related designs with a large number of trial repetitions
may be more powerful for TMFC assessment in the case of high haemo-
dynamic variability, as they enable analysis of trial-by-trial amplitude var-
iations. To demonstrate this, we considered block and event-related
simulations with comparable total scan duration, variable HRF and
SNR= 0.5. For a block design with 20 blocks per condition and a total
duration of 26.6min, the gPPI sensitivity was 56%, whereas the BSC-LSS
sensitivity was 6%. At the same time, for an event-related design with 100
events per condition and a total duration of 23.6 min, the sensitivity of the
gPPI and BSC-LSS methods was 51% and 83%, respectively.

In conclusion, we provide practical recommendations for TMFC
analysis:

1. Remove co-activations from time series using FIR regression,
especially if you use gPPI without deconvolution or sPPI with/
without deconvolution.

2. For primary TMFC analysis, use:
2.1. gPPI for block designs and rapid event-related designs (mean

ISI ≤ 4 s), if low HRF variability is expected;
2.2. gPPI for fMRI studieswith longTR (≥3 s), if lowHRFvariability

is expected;
2.3. BSC-LSS in all other cases (especially if high HRF variability is

expected).
3. Perform cross-method validations (secondary TMFC analysis):

3.1. High correlation between raw TMFC matrices calculated by
gPPI and BSC methods suggests that the results are reliable;

3.2. Low correlation indicates insufficient or low-quality data for
TMFC analysis.

4. Use the deconvolution procedure to increase sensitivity and speci-
ficity of PPI methods.

5. Report whether mean centering was applied to the task regressor
prior to PPI term calculation. Interpret condition-specific gPPI
matrices (“Condition > Baseline”) with caution regarding connec-
tions that exhibit high connectivity during rest periods. The sign of
these connectionsmaybe reversed tonegativedue to the gPPImodel
and mean centering.
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6. When averaging the upper and lower elements of the PPI matrix,
report its symmetry:
6.1. High correlation between the upper and lower elements of the

PPI matrix suggests that the results are reliable;
6.2. Low correlation indicates insufficiency or lowquality of data for

TMFC analysis.
7. Draw conclusions about the direction of information flow from PPI
results with caution:
7.1. Use the deconvolution procedure.Without deconvolution, PPI

methods do not provide information about directional infor-
mation flow;

7.2. Make sure your data has low HRF variability, a high enough
SNR, and long scan duration;

7.3. Support preliminarywhole-brain PPI results with confirmatory
analysis for several selected ROIs using an advanced effective
connectivity method such as DCM.

8. Do not use the LSA method for BSC analysis (especially if mean
ISI < 12 s). The BSC-LSS method is preferred, however the BSC-
FRR method can be also be used to reduce computation time.

9. If low HRF variability is expected, one can apply task design
upsampling prior to convolution with HRF. Otherwise, task design
upsampling should not be used (e.g., set themicrotime resolution in
SPM to one).

10. When TMFC analysis is the main goal:
10.1. Avoid using very rapid event-related designs (mean ISI < 2 s);
10.2. Increase the number of events as much as possible (TMFC

analysis requires more events per condition than does the
activation analysis);

10.3. Prefer a larger number of events to a long ISI;
10.4. Use a longer event duration (if possible);
10.5. Fast fMRI data acquisition is preferable (TR < 1 s);
10.6. If high HRF variability is expected, consider using an event-

related design with a large number of events instead of a block
design.

We make all simulated time series and code publicly available, along
with Jupyter notebooks for replication of our results (https://github.com/
IHB-IBR-department/TMFC_simulations). These simulated time-series
canbeused in future studies for validation andcomparisonof newTMFCor
TMEC methods. The code for TMFC simulation is also available as a
separate Python module TMFC_simulator (https://github.com/IHB-IBR-
department/TMFC_simulator). TMFC_simulator can be used not only to
compare TMFC methods, but also to facilitate the design of fMRI experi-
ments. The most effective task design can be selected from various possible
design options based on simulations with a given signal-to-noise ratio and
haemodynamic variability.

We also provide a user-friendly SPM12-based toolbox with GUI and
parallel computing capability for voxel-based and ROI-to-ROI TMFC,
called TMFC_toolbox (https://github.com/IHB-IBR-department/TMFC_
toolbox). It implements two of themost sensitivemethods covering all types
of fMRI designs: BSC-LSS and gPPI with deconvolution. It also allows to
perform FIR task regression along with TMFC analysis. Additionally, we
provide MATLAB and Python functions for performing deconvolution
based on ridge regression that reproduce results of deconvolution imple-
mented in SPM12 (https://github.com/IHB-IBR-department/BOLD_
deconvolution). These functions can be useful for performing PPI analy-
sis independently of SPM12 and/or MATLAB.

There are several issues that were not addressed in the present study,
providing opportunities for future research. We manipulated synaptic
weights between neuralmasses, which causedmodulations of gamma-band
neuronal oscillations and synchronisation. This, in turn, led to cascaded
modulation of ultra-slow gamma-band envelope fluctuations, haemody-
namic fluctuations, and BOLD-signal fluctuations. We assessed how dif-
ferent TMFC methods estimate these modulations depending on the
task design, TR, SNR, sample size, presence of co-activations, and

haemodynamic response variability across brain regions and subjects.
However, we did not consider a number of factors that may also affect
TMFC estimates.

First, neuronal synchronisation or coherence can be observed not only
for oscillations, measured by local field potential (LFP), but also for spiking
activity across multiple cortical areas, measured by single-unit activity
(SUA) or multi-unit activity (MUA), which also influence BOLD-
signals55,56. Moreover, concurrent non-oscillatory aperiodic activity can be
misinterpreted as oscillatory activity and confound measures of oscillatory
activity57. One important extension of this study would be simulation of fast
aperiodic neuronal activity and its influence on neuronal synchronization
and TMFC estimates.

Second, neuronal synchrony can bymodulated not only by short-term
plasticity (e.g., synaptic facilitation/depression or spike-timing dependent
plasticity), but also by other mechanisms. For example, synchronisation
between downstream regions can be influenced by the temporal coordi-
nation of spiking activity in source region58. Synchronisation also depends
on the precise timing of the sender and receiver regions, namely, a sending
group of neurons will have the highest impact on a receiving group, if its
inputs consistently arrive when synaptic gain is high59. The rapid changes in
balance between excitatory and inhibitory activity continuously modulate
neuronal synchrony depending on stimulus and behavioral state60,61.
Regional stimulation modulates synchrony depending on the brain net-
work’s collective dynamical state23,62,63. Besides, synchronization can be
controlled by astrocytic modulation, which is rarely taken into account in
computational models64.

Third, ultra-slow arteriole diameter fluctuations can depend not only
on ultra-slow envelopes of higher-frequency bands, but also on ultra-slow
aperiodic neuronal activity, such as the slow cortical potential65,66. Although
a number of studies have shown that an electrophysiological signal with
spectral components below 1Hz can have a non-neuronal origin and
themselves caused by cerebral vasomotion67–69.

Fourth, neuronal activity and ultra-slow hemodynamic fluctuations
can depend on neuromodulatory input from subcortex (e.g., cholinergic or
noradrenaline modulatory centers) and arousal level68–70. Fifth, cardior-
espiratory processes influence arteriole diameter fluctuations and BOLD
signal fluctuations (cerebral blood flow and oxygen concertation). TMFC
estimation canbe affected by imperfect denoising procedures and aliasing of
physiological rhythms68,71. Fast fMRI techniques not only improve TMFC
estimates, as shown in the present study, but can also help avoid aliasing
effects72. Although future studies should also introduce a penalty of reduced
SNR per scan due to reduced longitudinal magnetisation recovery for fast
fMRI acquisition. Finally, TMFC estimates can be affected by head motion,
especially if motion is correlated with task performance71,73–75.

It will also be important for future research to investigate how varia-
bility in neural mass model parameters affect TMFC estimates. In our
simulations, we used a fixed parameters for the large-scale neural mass
model. To account for hierarchical heterogeneity in local circuit properties
across cortical areas (e.g., excitatory-inhibitory balance), neuralmassmodel
can be parameterizing with T1w/T2wmyelin gradients76, RSFC gradients77,
and/or transcriptional variations in excitatory and inhibitory receptor gene
expression78. In addition, we chose parameters such that each neural mass
generated gamma-band oscillations. Although gamma-band power has
been shown to be the closest electrophysiological correlate of spontaneous
and evoked BOLD signals55,66,69,79–82, oscillations in other frequency bands
can also influence BOLD-signals83,84. Future research should consider
oscillations in other frequency bands83 and cross-frequency coupling61,85,86

with respect to TMFC estimation.
Other remaining issues that could be addressed in future research are

the influence of ROI selection (parcellation scheme) on TMFC
estimates87–90, the best choiceof deconvolutionmethod for PPI analysis (e.g.,
consideration of blind deconvolution methods, that do not assume a
canonical HRF shape), as well as region- and subject-specific HRF selection
for the PPI and BSC methods. Finally, the proposed simulation approach
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would be useful for comparison of thewhole-brain task-modulated effective
connectivitymethods (TMEC), suchas rDCM,Granger causality, structural
equation modelling, transfer entropy, Bayesian nets, Patel’s pairwise con-
ditional probability, and others91,92. In the present study, the rDCMmethod
was used to demonstrate that the direction of information flow can in
principle be estimated for our simulations if SNR is high and HRF has a
canonical shape.

Methods
Empirical data
We analysed preprocessed fMRI data for two block design tasks (working
memory and social cognition tasks,N = 100) from the HCP dataset39,41, two
event-related tasks (stop-signal and task-switching tasks,N = 115) from the
CNP dataset40,42 and resting-state data from both datasets. For details about
the scanning parameters and task designs, see Supplementary Informa-
tion 2. The HCP and CNP preprocessing pipelines included realignment,
spatial artefact/distortioncorrection, co-registrationbetween functional and
structural images, and normalisation to Montreal Neurological Institute
(MNI) space. The CNP pipeline also included a slice-timing correction.
Additionally,we smoothed the functional datawith a 4mmGaussiankernel
using SPM12.

To extract region-wise time series, we used a set of 300 functionally-
defined ROIs published by Seiztman et al.43. The full set of functional ROIs
consists of 239 cortical ROIs (most part of them taken from Power et al.93),
34 subcortical, and 27 cerebellar ROIs. Each volumetric ROI represents a
sphere with a radius of 4 or 5mm.We discarded ROIs for which data were
incomplete for at least one subject. As a result, we utilised 239 ROIs for the
HCP dataset and 246 ROIs for the CNP dataset.

Large-scale neural mass model
The simulation procedure included five steps. First, we simulated gamma-
band oscillatory neuronal activity for 100 interconnected brain regions
using Wilson-Cowan equations24,25 and manipulated the synaptic weights
depending on the task conditions to control the ground-truth TMFC.
Transient activity-dependent modulation of synaptic strength, lasting from
tens of milliseconds to several minutes, is referred to as short-term
plasticity27–30. Second,we independently simulated co-activationsusingbox-
car functions to evaluate their impact on spurious inflation of TMFC esti-
mates. Third, we applied the Balloon-Windkessel haemodynamic model26

to convert oscillatory neuronal activity and co-activations into BOLD sig-
nals. Fourth,wedownsampled theBOLDsignal todifferent time resolutions
to assess the potential benefits of fast data acquisition for TMFC estimation.
Fifth, we addedwhite Gaussian noise tomodel scannermeasurement error.

Our simulation approach expands previous TMFC simulation studies
in several ways. First, we used a large-scale neural mass model instead of
delta or boxcar functions13,15,20,21. Second, we applied biophysically realistic
simulations not only to block designs22,23 but also to different event-related
designs. Third, previous biophysically realistic simulations have indirectly
modulated FC by injecting task stimulation into brain regions22,23. In the
current work, we directly manipulated ground-truth FC by changing
synaptic weights between neuronal units depending on the task context,
which corresponds to short-term synaptic plasticity27–30. Finally, we ensured
that the neural mass model generated spontaneous oscillations in the
gamma band. In contrast, the most recent TMFC simulation study by Cole
et al.23 used a large-scale neural mass model without inhibitory sub-
populations, where limit-cycle oscillations cannot emerge under anymodel
parameters (Supplementary Fig. S13). For a more detailed overview of the
results and limitations of previous TMFC simulation studies, see Supple-
mentary Table S2.

The Wilson–Cowan neural mass model achieves a good balance
between biophysical realism andmathematical abstraction25,84,94. According
to this model, a single neuronal population can be represented as synapti-
cally coupled excitatory and inhibitory subpopulations described by two
ordinary differential equationswith a non-linear saturation function24. Each
population can produce self-sustained limit-cycle oscillations as a result of

feedback between coupled excitatory and inhibitory subpopulations. The
Wilson-Cowan units were connected through the excitatory
subpopulations25,63,94 with a signal transmission delay of 25ms95. In linewith
previous large-scale neuralmass simulations25,63,94, we chose to set themodel
parameters such that each coupled Wilson-Cowan unit produced gamma-
band oscillations (≈40Hz) due to the following considerations.

A large body of literature demonstrates that gamma-band oscillations
and synchronisation are linked to sensory processing96,97, motor acts98, and
cognitive processes99,100 and are thought to underlie information processing
and transmission61,86,101–103. The spectral power (or envelope) of gamma-
band oscillations fluctuates very slowly with time, and brain regions with
shared function demonstrate co-fluctuation of gamma-band
envelopes104,105. At the same time, a multitude of animal and human stu-
dies have shown that local field potential power in the gamma band is the
closest electrophysiological correlate of spontaneous and evoked BOLD
signals55,66,69,79–82. Moreover, trial-by-trial BOLD fluctuations are positively
correlated with trial-by-trial fluctuation in gamma power during task
performance106. The mechanisms for the relationship between neuronal
activity and BOLD signals have not yet been fully determined. However, a
recent study by Mateo et al.44 elucidated these mechanisms using optoge-
netic manipulations and concurrently measuring local field potential,
arteriole diameter and blood oxygenation in awake mice. They provided
direct evidence that an increase in gamma-band power leads to an increase
in arteriole diameter, and an increase in arteriole diameter leads to an
increase in blood oxygenation. This chain of processes can be described by a
coupled oscillator model (Fig. 4a). For details on the applied model and its
parameters, see Supplementary Information 3.1 and Supplementary
Table S9. Synaptic activity was calculated as the sum of all inputs to exci-
tatory and inhibitory subpopulations of the Wilson-Cowan unit and was
considered a proxy for the local field potential22,107.

The code for TMFC simulation is available as a Python
moduleTMFC_simulator (https://github.com/IHB-IBR-department/TMFC_
simulator),which is an extension of theneurolib software (https://github.com/
neurolib-dev/neurolib). neurolib is a Python library that provides a compu-
tationally efficient framework for whole-brain resting-state functional con-
nectivity (RSFC) simulations108. The TMFC_simulator extension allows
to manipulate synaptic weights depending on the task condition, simulate
co-activations, change repetition time (TR), vary Balloon-Windkessel para-
meters, and convert excitatory and inhibitory activity into synaptic activity.

Ground-truth synaptic weight matrices
The construction of the synaptic weight matrices involved three steps. First,
we drew synapticweights for each subject fromaGaussian distributionwith
a mean of one and a standard deviation of 0.1. Then, we multiplied the
synaptic weights within and between functional modules by weighting
factors that determined the network structure (Supplementary Table S10).
Finally, we normalised the synaptic weights so that all inputs to each region
summed to one, following previous simulation studies23,63.

Analysis of simulated synaptic activity
We additionally analysed simulated synaptic activity before converting it
into the BOLD signal. Initially, we downsampled the raw time series from a
temporal resolution of 0.1ms to 5ms and bandpass filtered it in a narrow
carrier frequency range [fcarrier – 2Hz, fcarrier+ 2Hz],where fcarrier = 40Hz83.
Next, we employed the Hilbert transform to obtain the instantaneous
amplitudes and phases of the narrowband signal. The instantaneous
amplitudes, or amplitude envelopes, were further cross-correlated with the
simulated BOLD signals, while the instantaneous phases were utilised to
estimategamma-bandneuronal synchronisationbasedon thephase-locking
value method109.

BOLD signal generation
The synaptic activity was converted to the BOLD signal using the Balloon-
Windkessel haemodynamic model26. For more information about the
model, see Supplementary Information 3.2. For simulations with the fixed
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HRF shape, we used the standard parameters taken from Friston et al.26

(Supplementary Table S11), which have previously been used in whole-
brain RSFC simulation studies25,63,94,110. For simulations with variable HRF
shape, we randomly sampled Balloon-Windkessel parameters for each ROI
and subject from Gaussian distributions that provide time-to-peak varia-
bility of 3–7 s (Supplementary Table S12), consistent with empirical data48.

The BOLD signal generated from fast oscillatory activity corresponded
to task-independent spontaneous fluctuations and task-modulated fluc-
tuations during the rest and task conditions. To simulate the BOLD signal
related to simple co-activations, we used boxcar activation functions as
input to the Balloon-Windkessel model. Boxcar activation functions were
set equal to one during task conditions and equal to zero at all other times.
We normalised the BOLD signal related to co-activations such that the
ratio between the standard deviations of the oscillatory-related signal and
co-activation-related signal was determined by the scaling factor: SF = σoscill/
σcoact. In all simulations with co-activations, we set SF = 1. After the FIR task
regression, the SF value does not influence the sensitivity and specificity of
TMFC methods (Supplementary Fig. S14).

Next, we downsampled the raw BOLD signals from 0.1ms to distinct
time resolutions corresponding to different TRs and added white Gaussian
noise as measurement error. The SNR was defined as the ratio between the
standard deviations of the signal and noise, SNR = σsignal/σnoise, which is
commonly used inDCM studies49,50. For simulations with fixedHRF shape,
we varied the SNR between 0.3 and 0.5, and the default SNR was 0.4. For
simulations with variable HRF shape, we varied the SNR between 0.4 and
0.7, since haemodynamic variability significantly reduced sensitivity of all
TMFC methods. To compare the gPPI and rDCM methods, we increased
the SNR to 5, as the rDCM method requires a very high SNR.

Simulation experiments and task designs
By default, we considered symmetric synaptic weightmatrices (Fig. 4c). The
block design included 10 blocks each for the “A” and “B” conditions,
alternating with “Rest” blocks. Each block lasted for 20 s. The total duration
of the block design was ≈ 13min. The default event-related design included
100 events for the “A” and “B” conditions interleaved by “Rest” periods.
Each event lasted for 1 s. The ISI was randomly jittered between 4 and 8 s
(mean ISI = 6 s). The ISI was defined as the interval between the end of one
event and the start of the next event. The total duration of the default event-
related design was ≈ 24min. In other event-related designs, we separately
varied event duration = [100ms, 250ms, 500ms, 1 s, 2 s, 4 s], number of
events per condition = [20, 40, 60, 80, 100], and mean ISI = [2 s, 4 s, 6 s, 8 s,
12 s]. Stimulus onset timings were determined by Chris Rorden’s fMRI
Design software (https://github.com/neurolabusc/fMRI-Simulator), which
improves the statistical efficiency of the task design. By default, we used
typical slow fMRI data acquisition, TR = 2 s. In a separate experiment, we
varied TR = [500ms, 700ms, 1 s, 2 s, 3 s]. In a separate experiment, we
considered asymmetric synaptic weight matrices (Supplementary Fig. S10).
Simulations were performed for N = 100 subjects unless otherwise stated.
We also performed simulations with task designs identical to the working
memory and social cognition tasks fromtheHCPdataset, aswell as the stop-
signal and task-switching tasks from the CNP dataset.

Resting-state, background and task-state functional
connectivity
To calculate the empirical RSFC, BGFC and TSFC matrices, we used the
CONN toolbox release 21.a (www.nitrc.org/projects/conn)111. The mean
time series extracted from functional ROIs were filtered using a bandpass
filter of 0.01Hz to 0.1 Hz and corrected for head motion and physiological
noise using 24 motion regressors112 and 6 anatomical component-based
noise correction (aCompCorr) regressors113. Pearson’s r correlation coeffi-
cients were calculated for each pair of regions and then converted to Fisher’s
Z. Empirical RSFC and TSFC matrices were calculated based on the whole
time series of denoised resting-state and task-state BOLD signals, respec-
tively. To calculate the BGFCmatrix for the block design task, we regressed
out the stimulus-evoked haemodynamic responses (co-activations) from

the time series using an FIR basis set with 64 post-stimulus time bins of
0.72 s duration9. For the event-related task, we used an FIR basis set with 32
post-stimulus time bins of 1 s duration.

Task-modulated functional connectivity
The TMFCmatrices for the empirical and simulated data were constructed
in a similar way. For all TMFC analyses, we considered differences between
two task conditions: (1) “2-back” and “0-back” for the working memory
task, (2) “Social interaction” and “Random interaction” for the social cog-
nition task, (3) “Go” and “Stop” for the stop-signal task, (4) “Switch” and
“No switch” for the task-switching task, and (5) “CondA” and “CondB” for
simulated data. All TMFC matrices were calculated without and with FIR
task regression prior to TMFC analysis. The FIR basis sets were the same as
for the BGFC analysis.

Direct correlation difference
To calculate the direct correlation difference between task blocks, we
removed the first six seconds in each block to account for transient hae-
modynamic effects8,11. We then concatenated the time series for each task
condition, calculated Pearson’s r correlation coefficients, and converted
them to Fisher’s Z. Finally, we calculated the Fisher’s Z difference between
the two conditions.

Psychophysiological interaction
The PPI approach applies a general linear model (GLM) to reveal the
relationships between the BOLD signal in the “target” region and several
explanatory variables: (1) expected task-evoked haemodynamic responses
(psychological regressor, reflecting co-activations), (2) BOLD signal in the
“seed” region (physiological regressor, reflecting task-independent con-
nectivity, similar to BGFC), (3) element-by-element product of psycholo-
gical and physiological variables (psychophysiological interaction regressor,
reflecting TMFC), and (4) non-neuronal nuisance variables (head motion
and physiological noise). The standard PPI (sPPI)method includes one PPI
regressor andone task regressor for thedifference between task conditions12.
The generalised PPI (gPPI) approach includes multiple PPI terms and task
regressors for each task condition, which enables us to consider more than
two task conditions in a single GLM13. To account for the fact that psycho-
physiological interactions occur at the neuronal level, it was proposed to
deconvolve the BOLD signal into underlying neuronal activity, calculate the
element-by-element product of the estimated neuronal activity and
unconvolved psychological regressor15, and then reconvolve this interaction
term with HRF. For more details about different PPI approaches, see Sup-
plementary Information 4.

For deconvolution, we used the SPM12 approach, which is based on
representing unknownneuronal activity in the frequency domain as a linear
combination of a full-rank cosine basis set15. Since parameter estimates
based on a full-rank basis set are highly unstable (in particular for high
frequencies, because the HRF selectively attenuates high frequencies), the
estimates must be constrained or regularised15. For this purpose, SPM12
uses a Parametric Empirical Bayes (PEB) approach with Gaussian priors15.
Alternatively, regularisation can be achieved using ridge regression114. In the
main text, we provided results for sPPI and gPPImethods without andwith
deconvolution implemented in SPM12 (spm_peb_ppi.m function). Addi-
tionally, we provided MATLAB and Python functions for deconvolution
based on ridge regression, independent of the SPM12 software (https://
github.com/IHB-IBR-department/BOLD_deconvolution). Both PEB and
ridge regression deconvolution approaches produce very similar results (see
Supplementary Information 5, Figs. S15, S16). Importantly, these decon-
volutionmethods donot require any knowledge about the timing of the task
design, but do assume the canonical shape of the HRF.

All results for the sPPI and gPPI methods were obtained using mean
centering of the task design regressor prior to PPI term calculation, as
previously recommended by Di et al.11. In the supplementary, we provided
the detailed explanation of the mean centering procedure and comparison
of results obtained with or without mean centering (see Supplementary
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Information 6, Fig. S17, S18, S19). In short, mean centering did not change
PPI parameter estimates without deconvolution, but did change themwhen
deconvolution is applied. Primary, differences could be seen between nodes
that exhibit high connectivity during rest periods inPPImatrices comparing
the single task condition to the baseline. Without deconvolution, the PPI
estimates between these nodes are negative, regardless of mean centering
(Figs. S17a, b, S18a, b). The negative PPI estimates for the strongest task-
independent connections are due to the gPPI model simultaneously fitting
task-independent (physiological) and task-modulated (PPI) regressors. In
the model without the physiological regressor, the negative PPI estimates
arise from mean centering, which reverses the rest periods in the PPI
regressor.

Whendeconvolution is applied, the PPI estimates between these nodes
are positive without mean centering and negative with mean centering
(Figs. S17c, d, S18c, d). If the psychological variable is non-centered with a
constant component, the constant component will add a physiological
variable to the PPI term11. After deconvolution and reconvolution, this
physiological component is no longer exactly the same as the original
physiological variable. In this case, the gPPI model fits the original phy-
siological regressor and PPI regressor with a smoother physiological com-
ponent. Since these physiological components are not identical, the sign
reversal does not occur.

When considering the relative connectivity changes in one task com-
pared with others (“Condition A vs. Condition B”, i.e., the main goal of
TMFC analysis),mean centering did not affect PPI results for well-balanced
task designs. In unbalanced designs (e.g., the stop-signal and task-switching
tasks from the CNP dataset), the lack of mean centering led to false positive
results between nodes that exhibit high connectivity during rest periods if
the sPPI method is used (Fig. S19b, d). False positives could be avoided by
applying mean centering to the sPPI method or using the gPPI method
regardless of mean centering (Fig. S19a, c).

The PPI matrices consist of the beta estimates for the PPI regressors.
The beta estimates change when the “target” and “seed” regions are swap-
ped. However, some authors suppose that the directionality of the PPI
approach is arbitrary, as it is based on the a priori designation of regions as
either sources or targets rather than a dynamicmodel of causal effects posed
at the neuronal level combined with a forward biophysical model linking
neuronal dynamics with haemodynamic responses32. The correlational PPI
(cPPI) approach is amodification of the sPPI approach that avoids arbitrary
directionality assumptions14. It is based on the partial correlation between
PPI terms, removing the variance associated with the psychological and
physiological regressors. To calculate the group-mean cPPI matrices, we
converted partial correlations to Fisher’s Z.

For all PPI analyses, we used SPM’s volume of interest function to
extract time series from the ROIs. Representative ROI time series were
extracted as first eigenvariates after signal pre-whitening (using an auto-
regressive model of order one, AR(1) model), high-pass filtering (cut-off of
128 s), and adjustment for effects of no interest (session-specific constant
terms, headmotion and aCompCorr regressors). Regressionmodels for the
sPPI and gPPI methods included task regressors regardless of whether FIR
task regression was performed before TMFC analysis. All task regressors
were convolved with canonical HRF implemented in SPM12.

Beta-series correlation
The BSC approach is based on the correlations between beta estimates of
stimulus-evoked haemodynamic responses for individual task trials.
According to the originally proposed BSC approach, all events aremodelled
by separate regressors in a single GLM16. This BSC approach, also known as
the “Least-Squares All” approach (LSA), was initially developed for slow
event-related designs. However, the LSA approach is unsuitable for rapid
event-related designs for two reasons. First, beta estimates can become
unreliable due to correlations between regressors for individual trials.
Shorter ISIs lead to higher correlations between regressors. This multi-
collinearity results in highly unstable (noisy) estimates due to a limited
amount of variability unique to an individual event17. Second, rapid event-

related designs consist of many trial repetitions due to the short ISI. As the
number of individual trial regressors approaches the number of time points,
the design matrix becomes close to singular (e.g., the stop-signal task con-
sists of 126 trials and 182 time points) and cannot be reliably inverted using
ordinary least squares115.

The alternative approach, called the “Least-Squares Separate”
approach (LSS), solves this problem by modelling each individual event
against all other events with separate GLMs17. This approach has two main
drawbacks. First, the LSS approach shrinks noisy parameter estimates
towardmore stable values uniformly across all brain regions. Suchapproach
ignores the fact that different brain regions may require different levels of
shrinkage19. Second, the LSS approach is computationally expensive. For
example, the stop-signal task consists of 128 trials and requires estimation of
128GLMs. A possible solutionmaybe to use a newmethod called fractional
ridge regression18,19. Previously, it was used to estimate regularised single-
trial parameter estimates for brain decoding116,117, brain encoding118–120,
reconstruction of viewed images117,121 and representational similarity
analysis122. Here, we propose to apply FRR to BSC analysis (BSC-FRR).

The FRRprocedure is a computationally efficient approach based on
singular value decomposition of the design matrix and reparameterisa-
tion of the ridge regression in terms of the fraction between the L2-norms
of the regularised and unregularised parameters18,19. It allows to deter-
mine the optimal level of shrinkage fraction (regularisation) for each
voxel or brain region from the full range of regularisation levels in a fast
and automated way18. For example, the BSC-LSS analysis took 4 hours
50 minutes for the stop-signal task dataset with parallel computations on
an Intel Core i9-12900F 2.40 Hz (16-core) with 64 GB RAM, a 64-bit
Windows 10 operating system, and MATLAB R2021b. On the same
workstation and dataset, the BSC-FRR analysis took 2 h 58 min.We used
the FRRprocedure implemented in theGLMsingle toolbox forMATLAB
(https://glmsingle.org/)18. We selected the canonical HRF for the BSC-
FRR analysis, as in all other TMFC analyses, and did not apply data-
derived nuisance regressors.

We considered the BSC-LSA, BSC-LSS and BSC-FRR approaches. To
obtain the BSCmatrices, we calculated Pearson’s r correlations between the
mean beta values extracted from ROIs separately for each task condition,
converted them to Fisher’s Z and calculated the difference between Fisher’s
Z values. For more details about different BSC approaches, see Supple-
mentary Information 7.

Task-modulated effective connectivity: regression dynamic
causal modelling
The most popular EC method is DCM, which employs an explicit for-
ward or generative model of how observed haemodynamic signals
emerge from hidden neuronal and biophysical states26. Originally, DCM
was introduced for fMRI data to describe changes in hidden neuronal
states via a bilinear differential equation. It enables us to estimate the
effective strength of task-independent (intrinsic) synaptic connections
(Amatrix), task-modulated (extrinsic) synaptic connections (Bmatrix),
and the direct influence of driving inputs that cause activations (C
matrix). The problem is that the original DCM is limited to parameter
estimation of small brain networks (approximately ten nodes), as the
model inversion becomes ill-posed and computationally demanding for
large-scale (whole-brain) networks. To solve this problem, the regression
DCM (rDCM) approach, which applies several simplifications to the
original DCM, was proposed49. For more information about the rDCM
approach, see Supplementary Information 8.

The task-modulated effective connectivity (TMEC) matrix cannot be
directly obtained using the rDCMapproach because it is based on the linear
neural state equationwithout theBmatrix. Ifwe feed the entire time series of
the resting-state or task-state BOLD signal into rDCM, the A matrix will
reflect the resting-state effective connectivity (RSEC) and task-state effective
connectivity (TSEC)matrices, respectively (cf. Fig. 1). In the latter case, the
Amatrix will depend on both spontaneous (intrinsic) and task-modulated
(extrinsic) fluctuations. To calculate the TMEC matrix, we propose
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calculating twoAmatrices for concatenated “Cond A” and “Cond B” block
time series after removing the first six seconds of each block. The difference
between thesematriceswill subtract spontaneous (intrinsic)ECandresult in
TMEC50. The driving input C matrix was set to zero, as we removed the
transition periods.

Comparison of functional connectivity matrices
For the empirical data, we considered unthresholdedweighted FCmatrices.
To evaluate similarity between the group-mean RSFC, TSFC, and TMFC
matrices produced by different methods, we calculated the Pearson’s r
correlations between the lower diagonal elements. To evaluate the asym-
metry of the raw (i.e., before symmetrisation procedure) group-mean and
individual gPPImatrices, we calculated the Pearson’s r correlations between
the upper and lower diagonal elements.

For the simulated data, we compared the ground-truth TMFCmatrix
and thresholded binary TMFC matrices to evaluate the sensitivity and
specificity of distinct TMFC methods (Supplementary Information 1). To
obtain thresholded binary matrices, we determined significant FC differ-
ences between “CondA” and “Cond B” using a two-sided one-sample t test.
The Benjamini–Hochberg procedure123 was used to control for the false
discovery rate (FDR) at the 0.001 level.

Additionally, we used Bayesian analysis to provide evidence for no
difference between the sPPI and gPPImethods. Bayesian comparisons were
based on the default t test with a Cauchy (0, r = 1/20.5) prior implemented in
JASP software (https://jasp-stats.org).

Ethics declaration
This study involves an analysis of simulated fMRI data and open-access
fMRI datasets. The HCP data were acquired using protocols approved by
theWashingtonUniversity institutional reviewboard. TheCNPprocedures
were approved by the Institutional Review Boards at UCLA and the Los
Angeles County Department of Mental Health.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The HCP data are available at https://www.humanconnectome.org/study/
hcp-young-adult/document/1200-subjects-data-release. The CNP data are
available at https://openfmri.org/dataset/ds000030. Simulated data are
available at https://github.com/IHB-IBR-department/TMFC_simulations.

Code availability
Python and MATLAB code for task-modulated functional connectivity
simulations, along with user-friendly Jupyter notebooks, are available at
https://github.com/IHB-IBR-department/TMFC_simulations. Python mod-
ule for TMFC simulations is available at https://github.com/IHB-IBR-
department/TMFC_simulator. The SPM12-based TMFC toolbox with gra-
phical user interface (GUI) for task-modulated functional connectivity analysis
is available at https://github.com/IHB-IBR-department/TMFC_toolbox.
MATLABandPython functions for performingdeconvolutionbasedon ridge
regression (https://github.com/IHB-IBR-department/BOLD_deconvolution).
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