
npj | digitalmedicine Article
Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-024-01140-6

Head movement dynamics in dystonia: a
multi-centre retrospective study using
visual perceptive deep learning

Check for updates

Robert Peach 1,2,15 , Maximilian Friedrich 1,3,4,15, Lara Fronemann1, Muthuraman Muthuraman 1,
Sebastian R. Schreglmann1, Daniel Zeller 1, Christoph Schrader5, Joachim K. Krauss 6,
Alfons Schnitzler 7, Matthias Wittstock 8, Ann-Kristin Helmers9, Steffen Paschen 10, Andrea Kühn11,
Inger Marie Skogseid 12, Wilhelm Eisner13, Joerg Mueller14, Cordula Matthies1, Martin Reich 1,
Jens Volkmann1,16 & Chi Wang Ip 1,16

Dystonia is a neurological movement disorder characterised by abnormal involuntarymovements and
postures, particularly affecting the head and neck. However, current clinical assessment methods for
dystonia rely on simplified rating scales which lack the ability to capture the intricate spatiotemporal
features of dystonic phenomena, hindering clinical management and limiting understanding of the
underlying neurobiology. To address this, we developed a visual perceptive deep learning framework
that utilizes standard clinical videos to comprehensively evaluate and quantify disease states and the
impact of therapeutic interventions, specifically deepbrain stimulation. This frameworkovercomes the
limitations of traditional rating scales and offers an efficient and accurate method that is rater-
independent for evaluating and monitoring dystonia patients. To evaluate the framework, we
leveraged semi-standardized clinical video data collected in three retrospective, longitudinal cohort
studies across seven academic centres. We extracted static head angle excursions for clinical
validation and derived kinematic variables reflecting naturalistic head dynamics to predict dystonia
severity, subtype, and neuromodulation effects. The framework was also applied to a fully
independent cohort of generalised dystonia patients for comparison between dystonia sub-types.
Computer vision-derived measurements of head angle excursions showed a strong correlation with
clinically assigned scores. Across comparisons, we identified consistent kinematic features from full
video assessments encoding information critical to disease severity, subtype, and effects of neural
circuit interventions, independent of static head angle deviations used in scoring. Our visual
perceptive machine learning framework reveals kinematic pathosignatures of dystonia, potentially
augmenting clinical management, facilitating scientific translation, and informing personalized
precision neurology approaches.

Dystonia is a neurological disorder characterised by abnormalmovements
and postures caused by involuntary muscle contractions1. It is recognised
as the third most prevalent movement disorder, with recent estimates as
high as 732 per 100,000 individuals2. Despite advancements in under-
standing the epidemiological, neurogenetic, and neurobiological factors
associated with dystonia, the identification of objective biomarkers
remains challenging. Consequently, the diagnosis, monitoring of treat-
ment outcomes, and classification of dystonia heavily rely on clinical

phenomenology. This entails considering various factors, such as the
distribution of affected body regions, which allows for categorising dys-
tonia along a severity spectrum of focal, segmental and generalised
manifestations2. However, dystonic movements exhibit highly complex
spatiotemporal characteristics, involving a combination of tonic and
phasic elements, such as twisting, tremulous oscillations, and overflow to
other body regions, occurring on variable time scales and exacerbated or
alleviated by certain movements1,3–5. Achieving precise clinical
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phenotyping of dystonia poses a significant challenge, demanding expert
visual perception skills6.

To accurately assess disease progression and therapeutic outcomes in
dystonia, it is essential to employ reliable and well-defined operational
measures that can be consistently measured and interpreted across diverse
clinical settings andpractitioners.This is of particular relevance for assessing
outcomesof available therapies, ranging fromoralmedication toBotulinum
neurotoxin injections for selective muscle weakening and deep brain sti-
mulation (DBS)7. To date, clinical rating scales such as theTorontoWestern
Spasmodic Torticollis Rating Scale (TWSTRS) for cervical dystonia and the
Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) for generalized
dystonia have been extensively utilised for this purpose8–10. These scales aim
to condense complex clinical observations into simplified representations,
relying on a limited set of categorical items, such as head-angle deviations in
attemptedneutral head position, encoded by a few ordinal values. Although
this simplification offers advantages in time-sensitive clinical settings, it is
accompanied by significant clinimetric limitations, including substantial
inter-rater variability11–13. Furthermore, the original versions of these scales
fail to quantify important information regarding abnormal movement
trajectories, action-induced changes of dystonia, dystonic overflow (i.e., the
spread of dystonic posturing/movement to adjacent body parts), and tre-
mor, which has recently been recognised as affecting a majority of dystonia
patients14. Yet, emerging evidence fromanimalmodels highlights the critical
role played by the rich spatiotemporal structure of motor behaviour in
understanding thepathocircuitry of dystonia, thereby shapingour approach
to investigation and treatment15–17. The lack of standardised operational and
shared measures hampers translational efforts, thus necessitating the
development of objective outcome measures3,18.

To address the challenges of dystonia assessment, researchers have
explored various instrumented solutions, such as electromyography7 or
body-worn sensors19,20. However, the successful integration of these
approaches into clinical practice has proven elusive21. Contactless, vision-
based methods utilising multiple and/or special depth cameras have shown
promise in extracting head angles in cervical dystonia. Nevertheless, their
clinical validity has been limited, especially when operating under mono-
cular conditions22,23. In this context, computer vision, a branch of con-
temporary artificial intelligence, has emerged as a disruptive and promising
technology in clinical neuroscience and broader medical applications24–28.
By leveraging convolutional neural networks (CNNs), visual perceptive

frameworks offer several advantages, including real-time 3D human pose
tracking derived from monocular 2D videos captured by consumer-grade
camera hardware29,30. These advancements have significantly improved
head pose estimation31–33, some of which have been employed to semi-
automate TWSTRS and TWSTRS-2 ratings21,34,35. However, these studies
have primarily focused on reproducing the rating score by quantifying static
and dynamic head34 angular deviations in a single fixed head position,
thereby reinforcing the aforementioned limitations and biases associated
with the rating scale. Our hypothesis is that a naturalistic approach, which
incorporates both gestalt aspects and the dynamics of head movement, will
lead to a more accurate and ecologically valid assessment of dystonia. This
approach will enable us to capture subtle variations and intricate patterns
that may have been overlooked by previous constrained methods. Fur-
thermore, we propose that including healthy controls and different dystonia
subgroups, with repeated recordings at various therapeutic states (e.g., dif-
ferent DBS settings), will allow us to explore multiple facets of specificity in
these digital physiomarkers.

In this study, we have developed a visual perceptive deep learning
framework that utilises computer vision to analyse the dynamics of natural
head movement (Fig. 1). The goal was to identify distinct patterns, or
pathosignatures, that have diagnostic and therapeutic implications. By
doing so, we aimed to enhance our understanding of the underlying
pathophysiology of dystonia and effects of therapeutic neuromodulation.
Specifically, we trained a novel convolutional neural network to predict
movement states, and we combined the outputs with head angles obtained
from a benchmark algorithm, MediaPipe, to extract both static and kine-
matic features from patients undergoing clinical dystonia examinations. To
demonstrate the feasibility of our approach, we conducted a retrospective
cohort study to assess the agreement between predicted severity and clinical
ratings, establishing how both static and dynamic variables change in
response to DBS. Lastly, through application of our framework to an
additional cohort of patients with generalised dystonia, we provide insights
into the added value of the dynamic variables in differentiating between
patients with cervical dystonia and those with generalised dystonia.

Results
A total of N = 86 patients were retrospectively rated in both treatment
conditions by three independent raters using the TWSTRS severity rating
scale, aswell as theTWSTRS-2 tremor item.We ensured that the raterswere

Fig. 1 | Measurement of static and kinematic features using computer vision
workflow. Videos comprising individual frames are fed into convolutional neural
network models that predict the movement state, i.e., the probability of the head
direction of a patient, and track face-mesh coordinates to derive head angles for each
frame. Head angle deviations can be extracted directly during periods of the video

where a patient attempts a neutral face forward position. Using the full video,
kinematic features can be constructed from the movement states predictions and
angles, e.g., the correlation between axis of rotation or dystonic tremors. Features can
be stored and compared across groups, such as operation status or disease.
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blinded to the disease and treatment status of the patients. For severity
ratings,we focusedon the attemptedneutral, ’null’headposition captured in
each video, aiming to capture dystonic head deviations in three principal
axes: yaw for torticollis, tilt for laterocollis, and pitch for antero-/retrocollis.
We observed considerable variation in the annotated scores among the
raters, which differed between axes: while clinical raters strongly agreed
(mean Cohen-kappa score: 0.86) on torticollis severity, they only moder-
ately agreed on laterocollis and antero-/retrocollis scores (mean Cohen-
kappa scores: 0.65, 0.67, respectively) (Supplementary Fig. 1). Across all
axes, DBS treatment led to a significant reduction in clinical ratings, i.e.,
severity (Supplementary Fig. 2A). However, effect sizes differed con-
siderably within each axis: 0.71 for torticollis, 0.49 for laterocollis and 0.85
for anteroretrocollis. Moreover, individual clinical scores exhibited a strong
correlation between the pre- and post-operative DBS conditions (Supple-
mentary Fig. 3A). Longitudinally, post-operative clinical ratings in the
torticollis and laterocollis directions demonstrated a negative correlation
with the duration between pre- and post-operative evaluations, in line with
the clinical observation of delayed effects (Supplementary Fig. 3B). How-
ever, there was no correlation between the difference in clinical rating from
pre- to post-operation and the duration of time (Supplementary Fig. 3C).

We proceeded to assess the clinical relevance of the visual percep-
tive framework in accurately capturing angular deviations of the head.
We extracted the excursion of head angles from attempted neutral head
positions for each patient. The head angles strongly agreed with clinical
scores for all prinicipal axes of motion (r ≥ 0.66, Fig. 2a). We further
observed a significant reduction of head angle deviations in each axis by
DBS (Fig. 2b) with largest effect sizes in torticollis (0.59), followed by
laterocollis (0.46) and anteroretrocollis (0.38). To further investigate the
relationship between head angle deviations and clinical characteristics,
we divided the patients into three phenotypic groups based on their
dominant axis of deviation. We discovered that each group of patients
exhibited a significant change from pre- to post-operative evaluations
only in their respective dominant axis of deviation (effect sizes: torticollis
0.76; laterocollis 0.93; anteroretrocollis 0.60; Fig. 2c). For instance,
patients with a dominant torticollis excursion only demonstrated a
significant change in yaw but not in other axes. Furthermore, we found
no systematic excursion in a particular direction for any axis of move-
ment (Supplementary Fig. 4). The pre- and post-operative head angles
exhibited a strong correlation (Fig. 2d), indicating a reduction in angle
excursion following treatment but not a complete elimination. However,
we did not observe a systematic correlation between head angles in
different axes of motion among both patients and controls (Fig. 2e).

We argue that the exclusive reliance onmeasurements of static head
angular deviations falls short of capturing the multifaceted abnormal-
ities in dystonic movements that are often evident in clinical assess-
ments. An example of the head-angle kinematics from a full clinical
examination both pre- and post-operation is shown in Fig. 3a—high-
lighting the importance of taking a dynamic approach to clinical
assessment. We conducted an explorative analysis of videos encom-
passing the entire TWSTRS severity assessment, utilising a compre-
hensive set of clinically inspired kinematic variables (Fig. 3c left). First,
we find that several kinematic variables are significantly larger pre-
operatively. The top five differentiating features included oscillatory
characteristics in each axis (ranging from 2 to 10Hz) and correlations of
movement states. Notably, the effect sizes of these kinematic features
were generally larger than those of angle deviations during attempted
neutral face-forward positioning, suggesting that they are more
responsive to DBS intervention. To identify kinematic features that are
predominantly associated with a favourable treatment response, we
further divided the sample into responder and non-responder groups
based on the degree of improvement in overall clinical rater scores (i.e.,
patients with ≥ or <30% improvement, respectively, Fig. 3b). After
repeating statistical tests between DBS conditions for the responder and
non-responder groups, respectively, we found that the top five kinematic
features were also more strongly modulated in the responder group

(calculated as effect size of responders minus the effect size of non-
responders, Fig. 3c right). To understand the time-scales at which dys-
tonic movements were modulated by DBS, we applied multiscale
entropy analysis to the head-angle time-series. With DBS on, patients
displayed less complex head movements at shorter timescales (i.e., <1 s)
(Supplementary Fig. 5), but no significant differences were observed at
longer scales (i.e., >1 s), indicating that neural circuit interventions
restore movement regularity on subsecond time scales.

Despite the original purpose of the scores to capture head-angle
deviations from the natural face-forward position, we hypothesized a sig-
nificant influence of a broader clinical impression beyond pure angular
deviations. Hence, we investigated whether the kinematic variables also
correlated with the clinically annotated scores. We found that various
kinematic features positively and negatively correlated with the scores of
each axis of head motion (FDR corrected p-values, Supplementary Fig. 6).
These kinematic features included symmetries ofmovement, correlations of
movement states, and oscillation amplitudes and frequencies. By collapsing
the TWSTRS sub-item scores into an average, we further defined a holistic,
clinical dystonia severity measure. Notably, the correlation strength of
kinematic features to the holistic score was larger compared to the scores of
each independent axis of motion, in some cases surpassing the correlation
strength of the head-angle deviations (Supplementary Fig. 6). To inde-
pendently verify the holistic score, we collected the original total TWSTRS
severity score for a sub-cohort of cervical dystonia patients (N = 28, scores
ranging from 0 to 27). Using a linear model with additive sequential feature
selection, we found the optimalmodel to predict the total TWSTRS severity
score included a combination of static head-angle deviations and kinematic
features (mean absolute error 4.79, Fig. 3d). Repeating sequential feature
selection with only head-angle deviations produced inferior predictions
(mean absolute error 5.63), suggesting that head-angle deviations must be
accompanied by kinematic features for the automated assessment of overall
dystonic severity. We further examined the oscillatory kinematic features
along each axis and found that they correlated with clinically assigned
tremor scores (Fig. 3e). However, we found no significant correlation
between the oscillation amplitudes and face-forward angle deviations
(Supplementary Fig. 7), suggesting that they capture distinct dimensions of
dystonic movements independent of the angle deviations in static head
position.

Finally, we asked whether kinematic features could differentiate
between cervical and generalised dystonia. To do this, we used an inde-
pendent, out-of-sample dataset comprising pre- and post-operative videos
of 30patientswith generaliseddystonia. It shouldbenoted that patientswith
generalised dystonia tend to also have craniocervical disease
manifestations13. Due to the video framing, only the upper-half poses of
patients were captured, thereby excluding additional signs of generalised
dystonia such as twisting in limbs from the analysis (Fig. 4a). As clinical
ratings and periods of static face-forward were unavailable for the gen-
eralised dystonia dataset, only kinematic variables (and not head angle
excursions) were extracted. First, we repeated the statistical analysis of
kinematic variables as modulated by DBS in generalised dystonia patients
(Supplementary Fig. 8). Remarkably, we observed that the same five
dynamic variables that exhibited the strongest response to DBS in cervical
dystonia were also significantly modulated in the generalised dystonia
patients (Supplementary Fig. 8A). A direct comparison of the generalised
and cervical patients in the kinematic feature space revealed seven features
that displayed a clear differentiation between the disease sub-types (Fig. 4b).
These features were consistently larger in generalised dystonia patients.
Among the significant features, four corresponded to the previously iden-
tified five kinematic features that were preferentially modulated by DBS:
oscillatory features in all three axes and a meanmovement correlation with
the face-forward position. Additionally, two frequency-related variables
capturing the frequency of head oscillations in the laterocollis and ante-
roretrocollis axes were also significantly larger in generalised dystonia
patients. Considering the prominent involvement of oscillatory kinematic
features,which are associatedwith tremor,we further examined the strength
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of harmonics in cervical and generalised dystonia patients. Our analysis
revealed that generalised dystonia patients exhibited stronger harmonics in
head tremor oscillations across all axes ofmotion, in comparison to cervical
dystonia patients (Fig. 4d). Moreover, multiscale entropy analysis showed
that generalised dystonia patients displayed maximal entropy at much
earlier timescales relative to cervical dystonia patients (Supplementary
Fig. 9). This suggests that longer-scale movement patterns hold valuable
information to distinguish between different types and symptom stages of
dystonia.

Discussion
In this study, we developed a visual perceptive framework using convolu-
tional neural networks to comprehensively evaluate dystonia based on
clinical video recordings. Our unique dataset comprised longitudinal video
documentation of cervical and generalised dystonia patients’ full clinical
assessments at multiple medical centres, including those with and without
DBS. This enabled us to comprehensively evaluate headmovements in both
task-constrained, static conditions and quasi-naturalistic, dynamic condi-
tions, providing a holistic assessment of dystonia. Beyond technical

Fig. 2 | Computer vision analysis of head angle during periods of face-forward.
a 2-D histograms for comparing video derived head-angle (absolute angle) and
clinically assigned TWSTRS scores for each axis of motion. b Box plots showing
(absolute) pre- (grey) and post- (purple) operative angles, for each axes of move-
ment. Median and interquartile ranges are displayed in each plot. c Like (b) but
patients are separated into their dominant phenotypes, i.e., their dominant axis of

deviation from face-forward. d Scatter plot showing correlation of predicted pre-
and post-operative head angles for each movement axis. e Scatter plots correlating
each pair of axes ofmotion for (i) patients and (ii) healthy controls, for pre- and post-
op combined. All subplots used N = 86. Correlations were Pearson r tests. Group
tests were Mann–Whitney U-tests: *p < 0.05; **p < 0.01; ***p < 0.001.
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validation, we demonstrate the framework’s utility to augment clinical
judgement and facilitate insights pertinent to disease states and the readout
of neural circuit intervention effects.

Clinical scales, commonly used to assess dystonia and other neurolo-
gical disorders, have inherent limitations due to clinimetric issues, likely
stemming from the oversimplification of complex disease phenomenology
into low-dimensional ordinal parameters9,11–13. While necessary in time-
sensitive clinical settings, this oversimplification comes at the expense of
precision, granularity, and ultimately, ecological validity. An illustration of
this is evident when comparing the relatively simple contemporary scoring
approaches with Oppenheim’s detailed phenotypical account of dystonia
from 191136. For example, TWSTRS omits some key clinical features of
dystonia which only become evident with dynamic, voluntary movements
and undoubtedly influence overall clinical judgement. While adaptions to
TWSTRS have incorporated tremor-related features9,37, there is still a
growing demand for more objective and granular disease metrics3,18.
Already widely used for quantitative phenotyping in experimental neu-
roscience, computer vision approaches have recently emerged as a pro-
mising new tool for clinical assessments21,24,25,34,38.

We first demonstrate the robustness and clinical applicability of our
deep learning framework in accurately inferring head-angle deviations
during attempted ’null’ head positions from diverse clinical videos captured
using consumer-grade hardware. Our visual perceptive approach surpasses
various vision-based frameworks that reliedonmultiple or specializeddepth
cameras to automate ratings22,23, and achieves comparable performance to a
recent study by Zhang et al.21 (we note that we use TWSTRS 0-3 ratings for
latero-, antero-, and retrocollis, which differs from the TWSTRS-2 0-4

ratings used in Zhang et al.21, which limits quantitative comparison).
However, a distinguishing feature of our approach is the ability to estimate
head angles in real-time using a portable device such as smartphones or
tablets. This capability enables its practical implementation in clinical point-
of-care settings and at-home monitoring, enhancing accessibility and
convenience. Moreover, we have applied our framework to diverse clinical
videos from multiple centres with slightly differing protocols, showing the
effects of neuromodulation in both focal and generalised dystonia, high-
lighting the generalisability of our tool and specificity of our findings.

The key advantage of our framework lies in its capability to analyse full
video examinations of patients. To showcase this, we reverse-engineered
complex clinical observations such as dystonic overflow, tremor and the
action-dependent dynamics of dystonic movements into objectively mea-
surable kinematic features. Albeit highly informative and clinically indis-
pensable, these dimensions are not explicitly part of the TWSTRS. To this
end, we first fine-tuned a convolutional neural network to parse natur-
alistically occurring 3D head positions into discrete, geometrically defined
states. By projecting each sample into a high-dimensional space comprising
clinically inspired and interpretable kinematic features, we successfully
identified a set of five kinematic variables that exhibited maximal differ-
entiation across therapy states. These were in addition to expected
improvements in head-angle deviations, which have been shown in prior
studies7. These kinematic features demonstrated the most pronounced
response to neuromodulation, rendering them highly specific to the beha-
vioural downstream effects of the neural circuit intervention. Furthermore,
our analysis revealed that these same features were closely associated with a
favourable treatment response to DBS, as defined clinically by a relative

Fig. 3 | Statistical analysis of kinematic variables from full-videos. Kinematic
variables (e.g., head tremor amplitude and frequency, correlations of movement
states) were derived from the full-video as patients performed a series of clinically
assignedmovements. aExample of the head-angle kinematics for a randomly chosen
patient pre- and post-operation reveals a more structured movement with DBS.
b Responders are patients who observed a 30% relative improvement in their
clinically rated score from pre-operative DBS off to post-operative DBS on (N = 86).
c Summary of statistical analysis, showing (i) effect size of Wilcoxon tests between
pre- and post-operation (rank-biserial correlation, positive effect indicating variable
is larger during pre-operation period) and (ii) the difference in effect sizes of the

responder group and non-responder group (N = 71, all tests Benjamini–Hochberg
FDR corrected). d A scatter plot showing the relationship between predicted values
of total severity scores using additive sequential feature selection on a linear model
with a combination of kinematic and static features (mean absolute error 4.79). The
dotted red line corresponds to line of perfect agreement between predicted and true
holistic scores (subset of N = 28 patients for which holistic pre- and post-op scores
were available). e 2-D histograms for comparing video derived oscillations for each
axis of motion and a clinically assigned tremor severity score (not defined by axis of
motion). Fitted linear model in black (N = 86). Significance levels: *p < 0.05;
**p < 0.01; ***p < 0.001.
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score reduction ofmore than30%39–41. Thisfindingnot only underscores the
relevance of these features but also highlights their potential as reliable
indicators of effect and efficacy of neural circuit interventions.

Our analysis revealed that three of the kinematic features associated
with DBS effect were related to head oscillations. Additionally, multi-scale
entropy analysis highlighted that neuromodulation exerts the most pro-
found effects on movement regularity on a subsecond time scale, pointing
rather tohigh frequencyphasic than low frequency, tonic aspects of dystonic
movements. This finding aligns with recent evidence indicating that head
tremor is a prevalent manifestation in the majority of patients with cervical
dystonia14,42,43. The recognitionof tremor as a core clinical characteristic only
recently led to the inclusion of a quantifiable tremor item in the revised
version of the TWSTRS9. Tremor-related features emerged most con-
sistently across contrasts, strongly highlighting the previously less well-
documented role of oscillatory aspects in dystonia pathophysiology and
therapy. Notably, tremor has been associated with impaired physical
functioning and pain, which are crucial dimensions of quality of life in
dystonia44,45. Therefore, the linkage between kinematic features and patient-
centred outcomes provides an avenue for further investigations into ‘disease
architectures’ comprised by multiple phenotyping axes. The remaining
correlational features we identified in our analysis provide further insights
into potential manifestations of dystonic overflow and multiaxial involve-
ment, as expressed in an abnormal covariance of head movement trajec-
tories. These features were evaluated throughout dynamic movement
trajectories, capturing a key characteristic of dystonia, namely the provo-
cation of involuntary, dystonicmovements through voluntary action.Using

an independent dataset comprising 30 generalised dystonia patients, we
found the same kinematic features reflected pallidal DBS effects, confirming
aforementioned results in cervical dystonia patients. Furthermore, experi-
mental investigations in rodent models of dystonia suggest that similar
correlational features are independent predictors of genetic susceptibility
factors in rodent models of dystonia, establishing a first hint for their
neurobiological and translational relevance15.

To gain further insights into the discriminatory potential of these
kinematic features, we attempted to distinguish different disease states,
namely focal-cervical and generalised dystonia, within the kinematic feature
space. A total of seven features exhibited significant differences, with four of
the previously identified kinematic features among them. Notably, control
patients exhibited the lowest values, followed by cervical and then gen-
eralised dystonia patients. Multi-scale entropy analysis further highlighted
that focal and generalised dystonias show a pronounced difference of reg-
ularity in both subsecond and longer time scales > 1 second, pointing to a
more profound dysfunction of motor control in generalised dystonia at
short timescales, but improved motor control at longer timescales. This
increased complexity at shorter timescales (higher entropy), may spec-
ulatively be the cause of the non-linearities generating the larger harmonics
that we also observed in generalised patients. However, these harmonics
may also be generated by distinct brain signals that vary between the disease
sub-types46 or result frommechanisms such as frequencymixing47. Overall,
these observations align well with the concept of a dystonic phenotypical
continuum wherein severity progressively increases13, and suggests that
these kinematic features sensitively capture disease state and progression,

Fig. 4 | Comparison of generalised and cervical dystonia patients using kine-
matics variables. Annotations of face-forward periods were unavailable and thus
only kinematic variables from the full-videos were extracted. a Schematic describing
the typical visibility of patient pose captured by videos. Markers indicate common
symptoms in cervical and generalised dystonia. b Effect sizes (rank-biserial corre-
lation) of Mann–Whitney U-tests (Benjamini–Hochberg FDR corrected) between
generalised and cervical dystonia patients (positive effective indicating variable is
larger in generalised dystonia patients). c Violin plots of variables that are

significantly larger in generalised dystonia patients relative to cervical dystonia
patients (none were found as statistically significant vice-versa). d Comparison of
oscillation harmonic strengths between cervical and generalised dystonia patients
along each axis ofmotion.Harmonic strength ismeasured per patient as the distance
correlation between the phases of the dominant tremor frequency and its harmonic
(twice the dominant frequency). N(cervical) = 71, N(generalised) = 30.
Mann–Whitney U-tests: *p < 0.05; **p < 0.01; ***p < 0.001.
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which is of critical relevance for interventional studies. Moreover, the
emergence of a unified feature set specific to both cervical and generalised
dystonia aligns with recent findings demonstrating the convergence of a
multisynaptic neural network underlying both dystonia subgroups48. The
observed motor behavioural disorganisation is mirrored on the neurobio-
logical level by pathologically irregular neuronal firing patterns associated
with thedystonic state15,49, overall suggesting that kinematic features canbe a
powerful readout of brain circuit function.

To better understand what information the kinematic features cap-
tured, we next correlated them with clinically annotated scores and mea-
sured angular head deviations. Despite the clinically annotated scores
purposed to capture natural head-angle deviations from attempted null
position, we found various dynamic features that were correlated with a
holistic clinical score, but generally not with individual scores along each
axis, nor with head-angle deviations. These results imply that the kinematic
features are, at least partially, encoded by different neurobiological sub-
strates. In terms of oscillatory features, this finding aligns with recent work
on diverging symptom-specific circuit components for tremor versus
dystonia50. Moreover, it suggests that clinicians may incorporate more
complex kinematic aspects from a patient’s dystonic symptomatology into
their clinical scores either subconciously reflecting the global clinical
impression or the presence of dynamics introduces inaccuracies into
manually determining clinical scores. This could explain some of the dis-
cussed limitations of current scoring approaches, which may be con-
founding factors for score-based therapeutic or brain-behaviour association
studies. Within the context of rapidly emerging adaptive
neurotechnologies51 and connectomic neuroimaging techniques48, intri-
guing use cases for our deep learning approach come to mind, such as
pathophysiologically motivated circuit interrogation or guidance of adap-
tive and personalized neuromodulatory treatment regimes51,52.

Our studyhas several limitations that should be considered. Firstly, our
assessments were limited to videos focusing on the upper body, thereby
neglecting dystonic phenomena occurring in other regions. However, it is
important to note that cervical dystonia is one of themost common formsof
dystonia, and studying head kinematics provides a valuable entry point for
investigating digital pathosignatures of dystonia, given the relative simpli-
city of head movements compared to whole-body movements. Secondly,
although our measurements of oscillation amplitudes demonstrated sub-
stantial clinical validity, it is important to note that the degree of validitywas
slightly lower compared to previous investigations that exclusively focused
on oscillations occurring in the head’s null position34.We deliberately opted
to derive tremor amplitudes from the full videos, considering that tremor in
cervical dystonia exhibits variation in relation to head position42,53. This
approach allowed for amore ecologically valid estimation of tremor but also
introduced natural variability into the measurements. Thirdly, we did not
incorporate information on DBS parametrization. The location of the
implanted lead and the electrical stimulation fields are known to be
important predictors of therapy response in dystonia39,48,54. This omission
mayhave influenced the performanceof our kinematic features in capturing
therapy state contrasts, as suboptimal responses could reduce the overall
distance between therapy states in the feature space. Topartially address this
limitation, we conducted a subgroup analysis specifically focusing on
clinically determined good responders. Fourthly, the retrospective integra-
tion of data across three studies may have introduced heterogeneity for
which we didn’t control. On the other hand, it also highlights the gen-
eralisability and robustness of the identified biomarkers and our results to
variation in measurement paradigms across centres. Finally, there is a
possibility of undetected monogenetic dystonias in our sample. Some
mutations are known to be associatedwith favourable (e.g. TOR1A, SCGE),
others with mixed or even poor DBS outcomes (e.g. THAP1, ANO3)55.
While this might introduce some unexplained variance in DBS outcomes
and potentially also baseline phenotype, there is no evidence to suggest it
negatively affected our framework’s accuracy. Given that responsiveness to
DBS can be indicative of specific genetic variants, our granular phenotyping

may even provide critical insights guiding neurogenetic investigations, e.g.,
in cases with conspicuous DBS outcomes which are otherwise unexplained.

Overall, these findings highlight the potential of our visual perceptive
framework to enhance and augment dystonia diagnosis, monitoring and
therapy by uncovering consistent latent pathosignatures. The proposed
modern vision-based approach expands upon traditional principles of
‘medical cinematography’ in movement science. Video-derived kinematic
pathosignatures may not only inform neural circuit therapeutics but also
address the critical need for objective and standardized evaluationmethods
in the form of digital biomarkers. Their high sensitivity has recently been
shown to facilitate clinical trials, genotype predictions and continuous
monitoring in neurological disorders25,38,56. Moreover, our framework may
bridge methodological gaps between clinical and experimental neu-
roscience, which has already widely adapted computer vision for pheno-
typing animal models of dystonia15–17. We envisage the proposed tool to
strengthen translational and precision medicine approaches in modern
neurology.

Methods
Study design and participants
We sourced clinical video data documenting the severity of cervical and
generalised/segmental dystonia from two prospective, longitudinal, multi-
centre cohort studies investigating the therapeutical effect of pallidalDBSon
dystonia40,41,57 and a third,multi-centre retrospective investigation analysing
clinical outcomes using advanced neuroimaging techniques39. The original
DBS studies only included idiopathic, primary dystonia patients as per their
inclusion criteria—determined using a routine pre-operative MRI.

The sourced data was split into two datasets, based on dystonia sub-
type: (i) cervical and (ii) generalised dystonia. The cervical dystonia cohort
comprised 86 cervical dystonia patients from Rostock, Heidelberg, Dus-
seldorf, Berlin, Innsbruck,Oslo,Hannover,Kiel,Würzburg. The generalised
dystonia cohort comprised 30 patients from the same centres. The char-
acteristics of the datasets are detailed in Table 1. Individual datasets were
included if (i) they contained at least one pre-operative clinical rating video
showing the full dystonic phenotype and a video from the chronic post-
operative phase (3-36 months post surgery) documenting the effects of
clinically programmed DBS and (ii) both videos fulfilled minimal criteria
ensuring videoquality,whichwere chosen to reflect the current best practice
in clinical computer vision approaches21,24,25. These were: (i) front view
perspective of a single individual sitting on a chair, (ii) no significantly
obscuring items on patients (e.g., excessive head dressings with externalised
DBS device), (ii) no excessive camera movements, variable zoom depths or
lighting insufficient to identify typical body landmarks (e.g., eyes), (iii)
continuouspresence of head andneck in the camera frame.Afinal set of 232

Table 1 | Demographic and patient characteristics

Cohort 1:
Cervical
dystonia

Cohort 2:
Generalised
dystonia

Cohort 3:
Healthy
controls

Number of patients 86 30 22

Sex Male
Female

44
42

22
8

11
11

Age of DBS
surgery (years)

46.1 (14.5) 39.8 (16.7) –

Disease duration at
surgery (years)

11.4 (11.1) 16.0 (13.7) –

Age, disease onset 35.9 (12.0) 23.4 (18.6) –

Duration till postop
video (months)

15.2 (9.4) 10.3 (12.9) –

Model
CNN

Training
Test

15
8

0
0

15
7

Data are presented as mean (SD) where applicable.
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videos, comprising a total of 116 individual patients, was analysed in this
study. All videos were recorded with standard consumer grade camera
hardware, in most instances mounted on a tripod. The minimal spatio-
temporal resolution was 540 × 540 pixels and 24 frames per second. An
additional cohort of 22 healthy controls underwent a structured TWSTRS
examination and a head position matching task. This task was precisely
timed tomapground truthsof headmovement range along eachof the three
principal rotational axes (pitch, yaw, tilt; see Supplementary Fig. 10 for the
detailed protocol).

Ethics approval
This study was approved by the Julius-Maximilians University ethics
committee (AZ 301/20). The original studies had been approved by the
responsible ethics committees. Informed consent was obtained from all
human participants.

Clinical scoring
Respective dystonia severity rating scales, i.e., Burke-Fahn-Marsden dys-
tonia rating scale (BFMDRS) for generalised dystonia and the Toronto
Western Spasmodic Torticollis severity part (TWSTRS) for cervical dysto-
nia, had originally been administered in an open-label approach or by one
expert rater. In order to eliminate potential scoring biases and to extend the
clinical rating to includehead tremor9, all videoswere re-scored.To this end,
video segments in which patients were asked to let their head drift to its
natural null position were annotated. These segments partly reflect the
individual dystonic phenotype and its severity (corresponding to TWSTRS
severity element I). Three raters, two blinded senior movement disorders
experts (DZ, CWI) and one junior investigator (LF) specifically trained
using theTWSTRS teaching tape8, applied theTWSTRS severity part. Three
raters, two blinded senior movement disorders experts (DZ, SRS) and one
junior investigator (LF), also applied an additional head tremor subscore
from TWSTRS-29. A subset of N = 28 cervical dystonia patients also had a
holistic severity score that was available from the original clinical exam-
inations. For subsequent analyses, we mainly focused on TWSTRS severity
item assessing the time-weighted deviation of head posture from neutral
straight ahead along three main rotational axes, namely pitch for antero-/
retrocollis, yaw for torticollis and tilt for laterocollis. The original TWSTRS
contains further items, which, however, failed to meet criteria for utility in
subsequent investigations9. Each item is scored on an ordinal scale from0–3
(laterocollis, anterocollis, retrocollis) or 0–4 (torticollis, head tremor), cor-
responding to increasing angle deviations of the head from themidline or in
case of tremor, its amplitude, duration and dominant direction. Assessors’
ratings were collapsed into one ‘mean score’ for subsequent model
evaluations.

Computer vision models
Webuilt a comprehensive framework for assessing dystonia phenotype and
severity, enabling automated kinematic evaluation directly from video. Our
approach involved combining the outputs of two convolutional neural
networks: one tracking facial landmarks and the other one for extracting
gestalt information, represented as movement states. From each video,
utilizing the deep learning outputs, we derived static variables during per-
iods when patients were instructed to allow their heads to drift to a neutral
position (referred to as the null position). In addition, dynamic variables
capturing the patients’ natural movement patterns were extracted using the
entire duration of the TWSTRS video examination. We should note that
these clinical examinations often didn’t follow the full TWSTRS protocol,
nor did they necessarily follow the prescribed ordering of movements.

To achieve face and head tracking, we utilized a pre-trained model
fromMediaPipe32.We opted forMediaPipe due to its real-time applicability
and compatibility with mobile devices, which holds potential for point-of-
care applications (Model 1). The default tracking values of MediaPipe’s
video mode (detection confidence: 0.5; tracking confidence: 0.5) were
employed. Head angles were calculated relative to a neutral face-forward
position along three axes of movement (torticollis, laterocollis, and antero-/

retrocollis) using the face mask. We employed the orthogonal Procrustes
technique to compute the rotation necessary to minimize the discrepancy
between the rotated 3D face mask and a face-forward face mask, thus
obtaining accurate head angles58.

To track gestalt patterns throughout the videotaped examinations,
which lacked a fixed protocol and order, we aimed to classify the head
movement states on a frame-by-frame basis along the three principal axes.
For this purpose, we developed a custommodel trainedon videos of healthy
controls and a subset of cervical dystonia patients (Model 2).We fine-tuned
a pre-trained resnet50 convolutional neural network model in PyTorch for
30 epochs to achieve loss convergence. We took a subset of 23 cervical
dystonia patients and combined themwith the 22healthy controls, giving us
a total of 45 participants to train and validate the model. We split the 45
participants into two groups: 30 participants for training (15 cervical dys-
tonia and 15 healthy controls) and 15 participants for test (8 cervical dys-
tonia and 7 healthy controls)—see Table 1. Participants were exclusively
assigned to either the training set or test set with no overlap. Video frames
were then randomly sampled from the patients within the training and test
sets separately. The training set compriseda total of 4600video frames taken
from the 15 cervical dystonia patients (1437 frames) and 15 healthy controls
(3163 frames). The testing set comprised 1433 video frames taken from the 8
cervical dystonia (288 frames) and 7 healthy controls (1145 frames). Note
that the 8 cervical dystonia patients used to train the custommodel were not
included in the post hoc statistical analyses of kinematic features that were
derived from the custom CNN (e.g., movement correlations with face-
forward).Movement states (e.g., ‘face forward’or ‘tilt left’)were labelledby a
junior movement disorders expert (MF) in the patients, while the healthy
controls followed a set protocol of head movements (Supplementary Fig.
10). The custommodel demonstrated training and test accuracies of 83.8%
and84.6%, respectively.Weemployedmultilabel classificationwith a binary
cross-entropy loss function during model training.

Feature engineering
Using the outputs of the two convolutional neural network models, we
engineered several kinematic features that capture the temporal evolution of
patients’ head trajectories beyond simple angular deviations. These kine-
matic features aimed to quantify clinically relevant observations in dystonia
that are commonly noted but seldom quantified in clinical settings, such as
movement overflow to other bodyparts aswell as action-induced changes of
dystonia, both resulting in asymmetrical or abnormal movement trajec-
tories, dystonic tremor14 and the complexity of dystonia characterisedby the
involvement of multiple axes in phasic or tonic movements andmovement
predictability over time. The features were partially harmonised with
kinematic features recently reported to be relevant to dystonia phenotype
and genetics in rodent models of dystonia15,16 as well as the characterisation
of brain dynamics more broadly59,60.

Both the head-anglemeasurements derived fromMediapipe (Model 1)
and the softmax outputs from the custom-trained CNN (Model 2) are
continuous values assigned to each frame of the video. Each feature was
engineered from either the head-angle measurements or the movement
state predictions, respectively. The derived features primarily included
correlations, symmetries, oscillatory and entropy-related characteristics,
which are further described below.

During the time periods where patients attempted a neutral face-
forward head position (annotated by clinical expert), we derived static head
angle deviations from face-forward (derived from Mediapipe face mesh
tracking). These features were considered ’static’ since the patients are not
attempting to make any particular movements, such as looking to the side.

The primary frequency and amplitude of head-angle oscillations
(derived from Mediapipe face mesh tracking) along each axis of motion
were assessedusing aFourier spectrogram.To isolate the relevant oscillatory
signals and remove intended head movements dictated by examination
protocol, a bandpass filter with an order 6 Butterworth filter was applied,
limiting the frequencies to the range of 2–10 Hz. This frequency range was
chosen to remove unrelated movements including low-frequency camera
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movements or patient swaying, and high-frequency noise associated with
themarker tracking. However, we recommendwhere possible to use a 1Hz
low-cut when these artifacts are not present. These features aim to capture
phasic characteristics, such as dystonic jerks and tremors. It is expected that
healthy controls will exhibit minimal or no head oscillations in these fre-
quency ranges.

To investigate the interdependence between movement states, we
calculated the Pearson correlation between the softmax outputs from the
custom-trained CNN. For instance, a high correlation between the pre-
diction probabilities of rotation left and tilt left would indicate that the
movement vectors blend or exhibit a certain degree of overlap when the
patient rotates left. This suggests that the movement states become
‘entangled’ or ‘intermixed’ during specific actions, as recently suggested in
experimental studies15. Healthy controls are expected to show minimal
correlations between movement states and head angles, indicating precise
and distinct control of head movements. These features aim to capture
phenomena such as overflow and complexity, as well as abnormal move-
ment trajectories.

Each axis of headmotion can exhibit movement in opposite directions
fromaneutral face-forward position, e.g., rotation left and rotation right. To
quantify the symmetry of eachmotion axis, we calculated the proportion of
time the head was oriented in one direction compared to the opposite
direction using the movement state predictions from our custom-trained
CNN. For instance, if a patient spent 7 seconds in rotation left and only
3 seconds in rotation right, the symmetry value would be calculated as
(7− 3)/10 = 4/10 = 0.4. Values closer to zero indicate a stronger symmetry,
while large positive or negative values indicate a significant asymmetry.
These features aim to capture fixed, tonically abnormal head deviations and
asymmetrical movement trajectories. Healthy controls are expected to
demonstrate a high degree of symmetry in their head movements.

Entropy measures provide a quantitative way to assess the irregularity
or complexity of time series data,making themwell-suited for capturing the
intricate and nonlinear dynamics often observed in dystonic
movements59,60. Abnormalmovements in dystonia often exhibit both short-
term irregularities (e.g., tremor) and long-term temporal patterns (e.g.,
sustained postures) that are not easily captured by traditional measures.
MSE quantifies the complexity and regularity of dystonic movements at
different temporal scales. By applyingMSE to the time series of head angles
(derived from Mediapipe face mesh), a scale-dependent measure of com-
plexity can be obtained, potentially revealing specific temporal patterns or
fluctuations associated with disease states or treatment effects. We hypo-
thesize that DBS will increase the regularity and predictability of their
movements, indicative of improved motor control.

Harmonics have been previously identified as reliable markers in dif-
ferential diagnosis of tremors46,61. The strength of the fundamental tremor
frequency and its first harmonic (double the fundamental frequency) were
calculatedusing the distance correlation between their instantaneous phases
of the head angles derived from Mediapipe face-mesh tracking. The har-
monic strengths were determined using the head angles for each axis of
motion, respectively. Distance correlations were calculated in Python with
the dcor package (version 0.6).

Evaluation of the visual perceptive framework
Performance in evaluating predominant direction and severity of dystonic
head deviation was measured by Pearson correlation between the clinically
annotated TWSTRS-2 and the head angle excursion along each axis of
motion, respectively. Performance in evaluating the tremor component of
patients was measured by Pearson correlation between the clinically
annotated tremor score and the head angle oscillation amplitude along each
axis of motion, respectively.

Statistical analyses
Univariate variable analysis was performed to discover kinematic features
that differed (i) between stimulation conditions in cervical dystonia, and
between cervical andgeneraliseddystonia.To establish significance,weused

either Wilcoxon (when paired between pre- and postoperatively) or
Mann–Whitney U-tests, and report p-values adjusted for multiple com-
parisons (Benjamini–Hochberg false discovery rate correction, FDR). Effect
sizes were computed using rank-biserial correlation. To aid interpretation,
we ranked variables by their effect sizes. Statistical analyses were done in
Python with the statmodels package (0.15.0). Correlation analysis was
performed to identify relationships between head angle excursions and
annotated scores. Pearson correlations were calculated in Python with the
scipy package (1.4.1).

Data availability
The data are not publicly available due to containing information that could
compromise the privacy of research participants.

Code availability
The code that support the findings of this study are available upon rea-
sonable request from the corresponding author, R.P.
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