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Deep-learning system to improve the quality and efficiency of
volumetric heart segmentation for breast cancer
Roman Zeleznik 1,2,3,7, Jakob Weiss1,2,3,4,7, Jana Taron3,4, Christian Guthier2, Danielle S. Bitterman2, Cindy Hancox2,
Benjamin H. Kann 1,2, Daniel W. Kim 2, Rinaa S. Punglia2, Jeremy Bredfeldt2, Borek Foldyna1,3, Parastou Eslami3, Michael T. Lu 3,
Udo Hoffmann1,3, Raymond Mak 2 and Hugo J. W. L. Aerts 1,2,3,5,6✉

Although artificial intelligence algorithms are often developed and applied for narrow tasks, their implementation in other medical
settings could help to improve patient care. Here we assess whether a deep-learning system for volumetric heart segmentation on
computed tomography (CT) scans developed in cardiovascular radiology can optimize treatment planning in radiation oncology.
The system was trained using multi-center data (n= 858) with manual heart segmentations provided by cardiovascular radiologists.
Validation of the system was performed in an independent real-world dataset of 5677 breast cancer patients treated with radiation
therapy at the Dana-Farber/Brigham and Women’s Cancer Center between 2008–2018. In a subset of 20 patients, the performance
of the system was compared to eight radiation oncology experts by assessing segmentation time, agreement between experts, and
accuracy with and without deep-learning assistance. To compare the performance to segmentations used in the clinic, concordance
and failures (defined as Dice < 0.85) of the system were evaluated in the entire dataset. The system was successfully applied without
retraining. With deep-learning assistance, segmentation time significantly decreased (4.0 min [IQR 3.1–5.0] vs. 2.0 min [IQR 1.3–3.5];
p < 0.001), and agreement increased (Dice 0.95 [IQR= 0.02]; vs. 0.97 [IQR= 0.02], p < 0.001). Expert accuracy was similar with and
without deep-learning assistance (Dice 0.92 [IQR= 0.02] vs. 0.92 [IQR= 0.02]; p= 0.48), and not significantly different from deep-
learning-only segmentations (Dice 0.92 [IQR= 0.02]; p ≥ 0.1). In comparison to real-world data, the system showed high
concordance (Dice 0.89 [IQR= 0.06]) across 5677 patients and a significantly lower failure rate (p < 0.001). These results suggest that
deep-learning algorithms can successfully be applied across medical specialties and improve clinical care beyond the original field
of interest.
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INTRODUCTION
Medical knowledge is increasing exponentially with an estimated
doubling every few months as of 20201. While this has improved
healthcare across the world2, it is paralleled by increasingly
specialized expert knowledge, which may be disproportionately
distributed to high-resource medical centers, thus increasing
healthcare disparities3. Recent advances in artificial intelligence
(AI), and deep learning in particular, offer a novel way to improve
and automate complex tasks that up until now could only be
performed by professionals4. Typically, deep-learning applications
are developed using labeled data generated by medical experts
for domain-specific problems. As a result, this expert knowledge is
encapsulated in the deep-learning system, providing the oppor-
tunity to disseminate this highly skilled expertise across medical
domains, institutions and countries, with the potential to optimize
patient care and reducing knowledge and economic disparities in
undersupplied settings.
One area that could benefit from this concept are imaging-

related specialties, such as radiology and radiation oncology.
While the former uses imaging studies primarily for diagnosis, the
latter relies on the same information for organ and tumor
targeting, treatment planning and delivery, and monitoring. An
integral part of radiotherapy treatment planning is segmenting

organs at risk in the radiation field on computed tomography (CT)
scans5. If appropriate resources are available, this is done manually
by trained experts who require considerable time and are prone to
inter- and intra-observer variability. If time or knowledge are
limited, this crucial step to ensure treatment quality and patient
safety may be neglected. Therefore, automating and optimizing
this process of organ at risk segmentation by deep learning could
improve clinical care at high speed and low additional cost,
especially in underprivileged healthcare settings6.
Depending on the region of interest, different organs of varying

complexity need to be segmented. Among those, the heart is of
special interest as it is known that increasing radiation dose
exposure to the organ is associated with future cardiac adverse
events, such as coronary artery disease and heart failure7,8. Given
their training, the highest anatomic expertise in cardiac imaging is
likely found among cardiovascular radiologists, who focus on the
diagnosis and monitoring cardiac-related diseases using dedi-
cated image acquisition, reconstruction, and analysis techniques.
Hence, disseminating this highly specific but narrow expert
knowledge across medical domains and to institutions or
countries with limited resources may enable more accurate
treatment planning and measurement of cardiac radiation dose
to optimize cardioprotective strategies in radiation oncology. This
is of particular interest for patients with breast cancer as the heart
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and its substructures are in close proximity to the target area.
Thus, reducing heart dose is of great importance to not harm the
generally favorable outcomes of these patients.
Here, we investigate whether a deep-learning system devel-

oped in cardiovascular radiology can be applied for radiation
oncology treatment planning. The deep learning system was
developed for whole heart segmentation on input data provided
by expert cardiovascular radiologists using dedicated, cardiac CT
scans (see Fig. 1). We then applied this system in an independent
dataset with real-world segmentations of 5677 patients with
breast cancer to compare its performance to radiation oncology
experts as well as to heart segmentations used in the clinic for
treatment delivery. This study may serve as proof of principle to
repurpose and leverage AI applications for optimizing patient care
and reduce healthcare disparities across specialties, institutions,
and countries.

RESULTS
Training, tuning, and testing the deep-learning system
We trained and tuned the deep-learning system with 757 ECG-
gated cardiac CTs as well as 100 low-dose chest screening CTs. The
performance was tested in 1010 ECG-gated cardiac CTs and 296
low-dose chest screening CTs. Manual segmentations were done
under the supervision of cardiovascular radiologists at the
Massachusetts General Hospital. The deep learning system
achieved a median Dice of 0.95 (IQR= 0.008) on the testing data.

Prospective validation of AI assistance in clinical setting
To evaluate the deep-learning system for a clinical radiation
oncology implementation, we compared the time needed to
generate a clinically acceptable segmentation without and with
the assistance of the deep learning system, and found a significant
reduction by 50% (median 4.0 min [IQR 3.1–5.0] vs. 2.0 min [IQR
1.3–3.5]; p < 0.001) for the deep-learning-assisted approach
compared to the current manual clinical workflow (Fig. 2a). At
the same time, agreement of the segmentations significantly
increased from a median Dice of 0.95 (IQR= 0.02) for the manual
segmentations to 0.97 (IQR= 0.02) for the deep-learning-assisted
approach (p < 0.001) (Fig. 2b). Along with the changes in time and
variation, accuracy analysis revealed no significant differences
between the manual and deep learning-assisted segmentations
(median Dice 0.92 [IQR= 0.02] and 0.92 [IQR= 0.02], respectively;

p= 0.50). Also, no significant differences were found between the
deep-learning-only segmentations (median Dice 0.92 [IQR= 0.02])
and the manual as well as deep-learning-assisted approach
(p= 0.2 and p= 0.10, respectively) (Fig. 2c). Additional results
are provided in Supplementary Fig. 2.

Validation of performance in real-world, clinically used data
In the subsequent assessment of the deep-learning system in real-
world data used in clinical practice, the automated whole heart
segmentations showed a high concordance (median Dice of 0.89
[IQR= 0.06]) with the clinically used segmentations across the
entire cohort of 5,677 breast cancer patients. In a per-year analysis,
the median Dice increased significantly from 0.85 (IQR= 0.05) in
2008 to 0.91 (IQR= 0.04) in 2018 (p < 0.001). In parallel, the
percentage of failure cases with a Dice below 0.85 decreased from
46.7% to 5.6%. An overview is given in Fig. 3a.
The detailed failure analysis of cases with a Dice below 0.85 in

the subset of patients treated between 2016 and 2018 comprised
299 patients. The ratings performed by the cardiovascular
radiologist revealed a significantly higher segmentation accuracy
for the deep-learning system as compared to the manual, clinically
used segmentations (p < 0.001). While the majority of deep-
learning segmentation were rated as excellent (62.2% vs. 15.7%
for the clinical segmentations), most of the historical clinically
utilized segmentations were found to be of fair quality (70.6% vs.
35.5% for the deep-learning system). Poor accuracy was found for
13.7% of the clinical segmentations vs. 2.3% for the deep-learning
approach (Fig. 3b). Representative image examples are provided
in Fig. 4.

DISCUSSION
In this study, we demonstrate that expert knowledge encapsu-
lated in a deep-learning system can be disseminated across
medical domains to help optimize the treatment of patients
with breast cancer in radiation oncology. The dissemination of
domain-specific expert knowledge across disciplines in medi-
cine has profound clinical implications. With the rapid and
ongoing growth of knowledge across all medical specialties, no
single discipline or individual can master the entire field of
medicine beyond their expertise1. On the contrary, continued
sub-specialization and longer years of training lead to more
narrow but highly skilled experts for particular fields or diseases.

Fig. 1 Study overview. A 3D deep-learning system was developed in cardiovascular radiology using CT scans from distinct and well-
established cohorts. For training, medical experts segmented the heart in cardiac gated and non-gated CT scans. This specialized knowledge
embedded in the deep-learning system was then transferred to radiation oncology and used to support treatment planning in patients with
breast cancer.
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While this is beneficial if an expert is available onsite in resource-
rich healthcare settings, the best possible care might not be
deliverable to patients in low-resource areas9. In this context,
expert knowledge encapsulated in deep-learning systems
developed and tested for specific tasks, but then repurposed
for different but related tasks in another specialty, institute or
country, might be helpful to reduce knowledge and economic
disparities, especially in undersupplied settings where such
tasks might be neglected due to limited time or training. In such
situations, an AI-mediated knowledge dissemination can create
opportunities for human-AI partnerships to improve quality and
safety in healthcare. Additionally, this approach maximizes the
potential benefit of each expert annotated case, a particularly
valuable aspect as deep-learning tasks depend on such
annotated data, and the current paucity of these data limits
deep-learning applications in medicine.
In our prospective clinical assessment, we evaluated the

potential of a human-AI partnership for heart segmentation as
part of breast cancer radiation treatment planning. In a
previously published study Tschandl et al.10 showed how the
human-AI relationship can improve image-based skin cancer
diagnosis. In our study, we found that the partnership between
dosimetrist and AI facilitated the generation of highly accurate
heart segmentations in a significantly shorter time and with a
significantly higher concordance compared to the current
clinical standard in a high-resource medical center. At the same

time, no differences in accuracy were observed. This is of
considerable importance, as it helps to reduce labor-intensive
manual work and could optimize quality while maintaining
similar treatment standards11. Moreover, this is also an
opportunity to improve the quality of care by reducing intra-
reader and inter-reader variability both in radiology and
radiation oncology12,13, which persist despite standardized
guidelines have been proposed to ensure quality control14.
Most interestingly, when comparing the manual and deep-
learning-assisted segmentations to the deep-learning-only
segmentations, no differences in accuracy were found. This
suggests that human input might not be necessary at all to
generate segmentations of similar quality as the current clinical
standard, thus suggesting the beginning of a paradigm shift in
segmentation for radiotherapy treatment planning and the
potential to implement this technique in undersupplied
hospitals, in which organ at risk segmentation is not performed
due to limited resources.
These results were emphasized in our assessment of the

deep-learning system in real-world, clinically used data of 5677
patients with breast cancer. Here, we could show a robust
performance of the system without prior retraining. Although
the median Dice was already high (0.85) in the subpopulation of
patients treated in 2008, it significantly increased over the next
decade to a median of 0.91. At the same time, the variance and
number of patients with a Dice below 0.85 decreased. This is

Fig. 2 Comparison of human only, AI-assisted and AI-only segmentation. In a prospective assessment, 8 radiation oncology experts
individually segmented the heart in 20 breast cancer treatment CTs. In a subsequent session, the same patients were segmented again with AI
assistance. a The analysis shows that AI-assisted segmentation significantly reduces the time needed, (b) and agreement between medical
experts significantly increases. c Comparing the manual-only, AI-assisted and AI-only segmentations to the reference segmentations of a
radiation oncology expert with several years of experience shows no significant differences in accuracy. Each box represents the interquartile
range (IQR, 25th and 75th percentiles) and the centerline the median of the results. The whiskers represent minimum and maximum data
points, excluding outliers. Outliers are defined as greater than the 75th percentile +1.5×IQR and smaller than the 25th percentile −1.5×IQR
and are denoted as diamonds.
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likely due to increased standardization of heart segmentations
based on the 2016 RADCOMP guidelines, and recognition that
heart dosimetry was intricately linked to radiotherapy toxicity
and clinical outcomes15. In addition, it is of particular interest to
gain a better understanding of failures before the potential
implementation of a new deep-learning system into clinical
workflows. In our analysis of outlier cases with a Dice below 0.85,
we found a significantly higher failure rate in the clinically used
segmentations as compared to the deep learning system (13.7%
vs. 2.3%). This finding indicates that the current error rate in
daily clinical practice could be significantly reduced by
implementing the deep learning system for this heart segmen-
tation task in radiotherapy planning. In addition, this may have
implications for radiotherapy quality control by optimizing
planning in order to minimize toxicity and enhance the
therapeutic ratio. Moreover, creating a human-AI partnership
for routine but clinically relevant tasks such as organ segmenta-
tion has the potential to fundamentally change and optimize
clinical workflows16: (1) in high-resource centers by altering the
role of medical experts from professionals spending substantial
portions of their time manually generating segmentations to
providing oversight of AI and quality control, while freeing up
more time for higher value responsibilities such as face-to-face
interactions with patients and/or complex clinical decision-
making and (2) in low-resource settings by introducing new
treatment possibilities that are currently neglected but para-
mount for patient safety and quality of care.
The robust performance of the deep-learning system is not only

interesting from a clinical perspective, but also from a technical
perspective17. In detail, we trained the deep-learning system using
images and segmentations from cardiovascular radiology and
assessed the possibility to transfer this learned knowledge to
radiation oncology and further studied the human-AI partnership.
The main difference between images of the radiology training
cohorts and images of the oncology testing cohorts was that the
training cohorts included mostly cardiac ECG-gated CTs acquired
during a breathhold interval to reduce cardiac and respiratory
motion artifacts while the testing cohorts consisted solely of non-
gated scans and many of them acquired during free-breathing.
Segmentations in non-gated scans are typically less accurate due
to motion artifacts. This applies to both manual and automatic

segmentations and explains the small performance drop of our
network from the training cohorts to our testing cohorts. In
addition, acquisition and reconstruction protocols as well as
scanners varied widely, however, that did not seem to have a
major impact on performance. The difference between images
from the training and testing set are shown in an example in
Supplementary Fig. 3, indicating the different image acquisition
and reconstruction techniques used in radiology and radiation
oncology, respectively.
Although the input data in the current study was considerably

different from the data used for development, no systematic
failures were observed and differences in acquisition and
reconstruction protocols did not affect the segmentation perfor-
mance. This indicates the robustness of the deep-learning system
for potential applications in different clinical settings and beyond
the primary intention of development. Additional data and patient
baseline characteristics can be found in Supplementary Table 1.
There are limitations to our study that need to be addressed.

Time needed for segmenting the heart was self-recorded by the
medical expert, which makes inaccurate measurements more
likely than if they were taken by an independent person.
Moreover, with the investigated AI system, only whole heart
segmentations are possible although there is increasing evidence
suggesting that cardiac substructures are of more importance and
more closely linked to outcome and cardiac toxicity. Also, as the
primary focus of this study was on deep-learning-based expertise
dissemination in a general setting, the analyses are lacking dose
calculations and dedicated evaluations of treatment plans. In
addition, as of now, only patients examined in the supine position
can be analyzed by the deep-learning system given the input data
used for training.
In conclusion, we demonstrated that expert knowledge

encapsulated in a deep-learning system can be disseminated
across medical domains and institutes to optimize patient care
beyond the intended narrow field of application. Furthermore, we
demonstrated that the disseminated domain-specific expertise
can be repurposed to substantially optimize the efficiency and
quality of care in the investigated example of heart segmentation
for breast cancer radiotherapy planning.

Fig. 3 Similarity of manually and automatically generated segmentations. a Dice coefficient between the AI framework and clinically
approved heart segmentations in 5677 scans acquired between 2008–2018. Non-similar segmentations with a dice coefficient below 0.85
(dashed line) were defined as failures. The boxes represent the interquartile range (IQR, 25th and 75th percentiles) and the centerlines the
median of the results. The whiskers represent minimum and maximum data points, excluding outliers. Outliers are defined as greater than the
75th percentile + 1.5×IQR and smaller than the 25th percentile − 1.5×IQR and are denoted as diamonds. b Results of qualitative
segmentation accuracy assessment in cases defined as failures between 2016–2018 (n= 299) by an expert cardiovascular radiologist. The
results show significantly higher segmentation accuracy for AI as compared to radiation oncology experts (p-value < 0.0001).
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METHODS
Study design and population
An overview of the study design is given in Fig. 1. A search of the
radiation oncology treatment planning system identified all breast
cancer patients treated with radiotherapy in our institution’s Department
of Radiation Oncology between 2004–2018 (n= 6751). Exclusion criteria
were: corrupted imaging data (n= 380), missing/corrupted whole heart
segmentations (n= 499) and images of patients other than in supine
position (n= 195) resulting in a final study cohort of 5677 patients
(Supplementary Fig. 1). The study was conducted under a protocol
approved by the Dana-Farber/Harvard Cancer Center institutional review
board, which waved written informed consent. CT images for treatment
planning were acquired following the institutional standards without
administration of intravenous contrast agent and with and without
breath holding. As the inclusion timeframe is over a decade, scanners as
well as acquisition and reconstruction protocols varied widely, thus
reducing the likelihood that the results are biased towards a single
institution or a specific vendor, scanner, or imaging technique,
respectively. After reconstruction, images were transferred to the
treatment planning system (Varian Eclipse, Varian Medical Systems, Palo
Alto, California). All treatment plans and whole heart segmentation were
created by trained medical experts following internal institution
standards, and were in line with national guidelines as they became
publicly available starting in 2016 (e.g. RADCOMP Breast Cancer Atlas15).
All heart segmentations were approved by an attending radiation
oncologist for use in clinical treatment planning.

Development of AI system and domain transfer of expertise
from cardiovascular radiology to radiation oncology
We developed a deep-learning system, which is able to automatically
localize and segment the heart from a given CT scan using expert
knowledge from cardiovascular radiologists. Therefore the proposed
system consists of two consecutive steps, each using a separate 3-
dimensional deep-learning model of the U-Net18 architecture. In-depth
details of the system architecture, development, and application can be
found in the Supplementary Methods (Supplementary Methods 1).

Prospective validation of AI assistance in radiation oncology
To prospectively investigate the potential of a human AI partnership, we
assessed the performance of 8 trained medical experts (certified medical
dosimetrists) responsible for radiation treatment planning by asking each
expert to segment the whole heart using their typical clinical routine
without and then with access to the deep-learning system output.
Measures of interest were (1) segmentation time, (2) agreement of the
segmentations, defined as agreement between medical experts in the
same patient, and (3) their anatomical accuracy, as outlined in RADCOMP
Breast Cancer Atlas. For this assessment, 20 breast cancer patients were
randomly selected from subjects treated in 2018. To avoid bias and ensure
that the selected cases mirror a representative subset of the entire cohort,
we calculated the dice coefficient between the AI segmentations and the
clinically used segmentations before we started the trial with the
dosimetrists. The mean dice was 0.90 (Std: 0.04) and the minimum and
maximum dices were 0.78 and 0.94 respectively. As the network’s
performance was varying in the selected cases, we could assume that

Fig. 4 Segmentation accuracy of AI (Yellow) and manual (Cyan) segmentations. All manual segmentations were created by medical experts
and approved by a radiation oncologist for treatment. Quality ratings (poor, fair, excellent) were made by a board-certified radiologist trained
in cardiovascular imaging in a blinded pairwise fashion following the RADCOMP Breast Cancer Atlas. In (a–c), AI was rated excellent whereas
the clinically used segmentations revealed a poor accuracy (Dice: 0.811, 0.826, and 0.826 respectively). d depicts an example with excellent
segmentation accuracy for AI and radiation oncology experts (Dice: 0.960). e shows poor accuracy for both, AI and radiation oncology experts
(Dice: 0.773). In (f), segmentation accuracy was rated poor for AI and fair for the radiation oncology expert segmentation (Dice: 0.833).
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there was no bias in the selected subsample. Furthermore, we used the
parametric Welch’s t-test and non-parametric Mann–Whitney U test to
compare the Dice coefficients of the subset and the full cohort. Both tests
resulted in statistically not different dice coefficients (p= 0.293 and p=
0.153 respectively).
In a first segmentation session without distractions and no time limit,

the medical experts were asked to segment the heart using the technique
they would use in routine clinical care and recorded the time needed per
patient. In a subsequent segmentation session 2 weeks later, the heart of
the same 20 patients was pre-segmented with the deep-learning system
prior to the start of the session. The 8 medical experts were then asked to
review and, where necessary, modify the deep-learning segmentations
until they were clinically acceptable for radiotherapy planning. Again, there
were no other restrictions made and the time needed to modify the
segmentations was self-recorded by each medical expert. The segmenta-
tions of a senior radiation oncologist with more than 16 years of
experience in breast cancer treatment acquired in the same setting were
used as reference standard for the medical experts as well as for the deep-
learning segmentations.

Validation in real-world data used for radiation treatment
delivery
To investigate the application and robustness of the deep-learning system
in real-world clinically used data, we analyzed its performance across the
entire study cohort using the historical, clinically used segmentations as
comparators. Based on a subjective review, a Dice ≥0.85 was arbitrarily
defined as “similar segmentation”. For quality control and to generate a
better understanding for reasons of discordance between deep-learning
and clinically utilized heart segmentations, we manually analyzed cases
considered as failures (Dice < 0.85) in a subset of patients treated between
2016–2018 (n= 299). This timeframe was chosen to explore failure rates in
the most recently treated patients following the latest implemented
guideline update15. A board-certified radiologist trained in cardiovascular
imaging with 6 years of experience rated anatomical accuracy of the
historical, manually created and clinically used as well as the deep-learning
segmentations on a 3-point Likert scale (1= poor, 2= fair, 3= excellent).
The reading session was performed in a pairwise fashion and blinded to
the segmentation technique used.

Statistical analysis
All statistical analyses were performed in Python (V2.7). Data are presented
as median and interquartile ranges (IQR). Similarity of manual and deep-
learning segmentations was measured using the Dice coefficient19,20 with
a smoothing factor of one. Furthermore, we calculated the symmetric
surface distance and Hausdorff distance using the MedPy Python package
(V0.4.4). For pairwise comparison a non-parametric Wilcoxon signed-rank
test was performed due to violation of the normality assumption. To
perform the parametric Welch’s t-test and non-parametric Mann-Whitney
U test we used the SciPy.stats Python package (V1.2.3). All p-values were
two-sided and considered statistically significant below 0.05.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The trained models are shared under the GNU General Public License v3.021 at our
webpage https://aim.hms.harvard.edu/DeepHeartRO. Due to privacy agreements
with our institutions we can not share CT imaging or segmentation data. For that
reason we provide test data from a publicly available dataset with automatic heart
segmentations.

CODE AVAILABILITY
The full code of the deep-learning system and statistical analysis is shared under the
GNU General Public License v3.021 at https://aim.hms.harvard.edu/DeepHeartRO.

Received: 27 July 2020; Accepted: 8 February 2021;

REFERENCES
1. Densen, P. Challenges and opportunities facing medical education. Trans. Am.

Clin. Climatol. Assoc. 122, 48–58 (2011).
2. Craig, L. Service improvement in health care: a literature review. Br. J. Nurs. 27,

893–896 (2018).
3. Hosny, A. & Hugo, J. W. Artificial intelligence for global health. Science 366,

955–956 (2019).
4. Yu, K.-H., Beam, A. L. & Kohane, I. S. Artificial intelligence in healthcare. Nat.

Biomed. Eng. 2, 719–731 (2018).
5. Mohan, R. et al. A comprehensive three-dimensional radiation treatment plan-

ning system. Int. J. Radiat. Oncol.*Biol.*Phys. 15, 481–495 (1988).
6. Esteva, A. et al. A guide to deep learning in healthcare. Nat. Med. 25, 24–29

(2019).
7. Gagliardi, G. et al. Radiation dose–volume effects in the heart. Int. J. Radiat. Oncol.

*Biol.*Phys. 76, S77–S85 (2010).
8. Darby, S. C. et al. Risk of ischemic heart disease in women after radiotherapy for

breast cancer. N. Engl. J. Med. 368, 987–998 (2013).
9. van Dis, J. MSJAMA. Where we live: health care in rural vs urban America. JAMA

287, 108 (2002).
10. Tschandl, P. et al. Human–computer collaboration for skin cancer recognition.

Nat. Med. 26, 1229–1234 (2020).
11. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. W. L. Artificial

intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018).
12. Bauknecht, H.-C. et al. Intra- and interobserver variability of linear and volumetric

measurements of brain metastases using contrast-enhanced magnetic resonance
imaging. Investigative Radiol. 45, 49–56 (2010).

13. Steenbakkers, R. J. H. M. et al. Reduction of observer variation using matched CT-
PET for lung cancer delineation: a three-dimensional analysis. Int. J. Radiat. Oncol.
Biol. Phys. 64, 435–448 (2006).

14. Huttin, C. The use of clinical guidelines to improve medical practice: main issues
in the United States. Int. J. Qual. Health Care 9, 207–214 (1997).

15. RADCOMP Breast Atlas. https://www.nrgoncology.org/About-Us/Center-for-
Innovation-in-Radiation-Oncology/Breast/RADCOMP-Breast-Atlas.

16. Topol, E. J. High-performance medicine: the convergence of human and artificial
intelligence. Nat. Med. 25, 44–56 (2019).

17. Paschali, M., Conjeti, S., Navarro, F. & Navab, N. Generalizability vs. Robustness:
Investigating Medical Imaging Networks Using Adversarial Examples. Medical
Image Computing and Computer Assisted Intervention—MICCAI 2018 493–501
(2018) https://doi.org/10.1007/978-3-030-00928-1_56 (2018).

18. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Bio-
medical Image Segmentation. Lecture Notes in Computer Science 234–241 (2015)
https://doi.org/10.1007/978-3-319-24574-4_28 (2015).

19. Dice, L. R. Measures of the amount of ecologic association between species.
Ecology 26, 297–302 (1945).

20. Sørensen, T. A Method of Establishing Groups of Equal Amplitude in Plant Sociology
Based on Similarity of Species Content and Its Application to Analyses of the
Vegetation on Danish Commons (København, I kommission hos E. Munksgaard,
1948).

21. GNU General Public License v3.0. https://www.gnu.org/licenses/gpl-3.0.en.html
(2007).

ACKNOWLEDGEMENTS
The authors acknowledge financial support from the National Institutes of Health
(HA: NIH-USA U24CA194354, NIH-USA U01CA190234, NIH-USA U01CA209414, and
NIH-USA R35CA22052; UH: NIH 5R01-HL109711, NIH/NHLBI 5K24HL113128, NIH/
NHLBI 5T32HL076136, NIH/NHLBI 5U01HL123339), the European Union—European
Research Council (HA:866504), and the American Heart Association Institute for
Precision Cardiovascular Medicine (MTL: 18UNPG34030172). J.T. is funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—TA 1438/1-
2. JW is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)—WE 6405/2-1.

AUTHOR CONTRIBUTIONS
R.Z. and J.W. equally contributed to this project. Detailed author contributions are as
follows: Figures: R.Z., J.W.; Code design, implementation and execution: R.Z., J.W.; CT
annotation: J.W., J.T., C.G., D.S.B., D.W.K., B.H.K., R.S.P., C.H.; Study design: R.Z., J.W., C.G.,
D.S.B., M.L., U.H., R.M., H.J.W.L.A.; Training data preparation: R.Z., B.F., P.E., M.L., U.H.,
R.M., H.J.W.L.A.; Data analysis and interpretation: R.Z., J.W., J.T., C.G., R.M., H.J.W.L.A.;
Critical revision of the manuscript for important intellectual content: All authors;
Statistical Analysis: R.Z., J.W.; Study supervision: R.M., H.J.W.L.A.

R. Zeleznik et al.

6

npj Digital Medicine (2021)    43 Published in partnership with Seoul National University Bundang Hospital

https://aim.hms.harvard.edu/DeepHeartRO
https://aim.hms.harvard.edu/DeepHeartRO
https://www.nrgoncology.org/About-Us/Center-for-Innovation-in-Radiation-Oncology/Breast/RADCOMP-Breast-Atlas
https://www.nrgoncology.org/About-Us/Center-for-Innovation-in-Radiation-Oncology/Breast/RADCOMP-Breast-Atlas
https://doi.org/10.1007/978-3-030-00928-1_56
https://doi.org/10.1007/978-3-319-24574-4_28
https://www.gnu.org/licenses/gpl-3.0.en.html


COMPETING INTERESTS
R.M. discloses research grants from ViewRay, Inc. as well as consulting fees from
ViewRay, Inc; AstraZeneca. All unrelated to this work. MTL reports consulting fees
with PQBypass, research funding from MedImmune, and a GPU donation from the
Nvidia Corporation Academic Program, all unrelated to this research. U.H. reports
grants from HeartFlow, MedImmune, Siemens, Genentech, and the American College
of Radiology Imaging Network and personal fees from the American Heart
Association. H.A. reports consultancy fees and stock from Onc.AI, unrelated to this
research. The remaining authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41746-021-00416-5.

Correspondence and requests for materials should be addressed to H.J.W.L.A.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

R. Zeleznik et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021)    43 

https://doi.org/10.1038/s41746-021-00416-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Deep-learning system to improve the quality and efficiency of volumetric heart segmentation for breast cancer
	Introduction
	Results
	Training, tuning, and testing the deep-learning system
	Prospective validation of AI assistance in clinical setting
	Validation of performance in real-world, clinically used data

	Discussion
	Methods
	Study design and population
	Development of AI system and domain transfer of expertise from cardiovascular radiology to radiation oncology
	Prospective validation of AI assistance in radiation oncology
	Validation in real-world data used for radiation treatment delivery
	Statistical analysis
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




