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Immunotherapy has largely failed in ovarian carcinoma (OC), likely due to that the vast tumor
heterogeneity and variation in immune response have hampered clinical trial outcomes. Tumor-
immunemicroenvironment (TIME) profilingmay aid in stratification of OC tumors for guiding treatment
selection. Here,we usedDigital Spatial Profiling combinedwith image analysis to characterize regions
of spatially distinct TIME phenotypes in OC to assess whether immune infiltration pattern can predict
presence of immuno-oncology targets. Tumors with diffuse immune infiltration and increased tumor-
immune spatial interactions had higher presence of IDO1, PD-L1, PD-1 and Tim-3, while focal immune
niches had more CD163 macrophages and a preliminary worse outcome. Immune exclusion was
associatedwith presence of Tregs and Fibronectin. High-grade serousOCshowed anoverall stronger
immune response and presence of multiple targetable checkpoints. Low-grade serous OC was
associated with diffuse infiltration and a high expression of STING, while endometrioid OC had higher
presence of CTLA-4. Mucinous and clear cell OC were dominated by focal immune clusters and
immune-excluded regions, with mucinous tumors displaying T-cell rich immune niches.

Ovarian carcinoma (OC) is the most lethal gynaecological cancer, with a
5-year survival rate of less than 50%1. Standard treatment includes a com-
bination of surgery and systemic therapy2. Despite advances with aggressive
cytoreductive surgery, approximately 70% of patients recur within three
years3, with chemoresistant cancer that is typically incurable. The 5-year
relative survival rate for stage III-IV invasive OC, which includes the
majority of patients, is currently less than 30%. PARP inhibitors are
approved for treatment of platinum-sensitive, recurrent OC, and newly
diagnosed advanced OC with BRCA1/2-mutations and homologous
recombination deficiency (HRD)4. Still, PARP inhibitors have limited long-
term efficacy in the eligible group because of diverse resistancemechanisms.

Existing treatments could potentially be complemented with immu-
notherapeutic approaches for improved response rates. Immune check-
point blockade has however shown modest effect in OC, and no FDA
approved immunotherapeutic intervention is yet available, despite
increasing evidence of immune infiltration playing a pivotal role for both
initiation, progression, and chemotherapy resistance in OC5. While the
association of immune infiltration and prolonged survival of OC has been
recognized since long6, the heterogeneous immune response in OC may
explain the failure of immunotherapy trials in unselected populations, and
highlights the need for new strategies to improve the stratification of OC

patients7. Immune infiltration has been correlated to survival in different
studies5, demonstrating the vast potential for patient tailored strategies
based on high-resolution immune profiling in OC.

OC can be grouped into five main histotypes, of which high-grade
serousOC(HGSC) is themost prevalent (80%) andmost studied in termsof
immune infiltration. The less common subtypes include low-grade serous
OC (LGSC), endometrioid, mucinous and clear cell OC. A unifying clas-
sification of Type 1 and Type 2 OC is sometimes used, where Type 2 are
more aggressive, TP53-mutated tumors of chromosomal instability, which
are near-ubiquitously HGSC8, and Type 1 are primarily LGSC, endome-
trioid, mucinous, and clear cell OC, commonly characterized as low-grade,
indolent tumorswith frequent alterations in cell signallingpathways8.While
the characteristics of the different histotypes have been recently defined at
genomic and transcriptomic levels9–11, variation in tumor immune micro-
environment (TIME) and presence of immuno-oncology targets have not
been extensively reported to date, particularly for the Type 1 histotypes.
More defined immune profiles associated with the OC subtypes could aid
patient stratification for immunotherapy eligibility.

Inflamed ovarian tumors with intra-epithelial compartment T-cells
have been shown to have a favourable outcome, and it was recently shown
that for BRCA1/2 mutated HGSCs, increased proximity of CD8+ and
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CD4+ T-cells to Ki67+ tumor cells was associated to improved
prognosis12. These studies have demonstrated that prognostic information
can be harnessed from the spatial distribution of immune cells. Studies of
immune microenvironments in solid tumors are however still frequently
based on subjective classification to stratify tumors as e.g., inflamed,
excluded or immune-cold based on H&E or CD3 stains13. Approaches for
reproducible and objective scoring of spatial immune infiltration patterns
are needed14.With recent advances in image analysis and cell segmentation
approaches, spatial statistics which better reflect heterogeneous tumor-
immune topologies compared to e.g., average distance between tumor and
immune cells15, can be collected and integrated in models for patient stra-
tification. In addition, multiple immune phenotypes and molecular inter-
actions have been shown to affect the outcome of OC, and the need for
spatially resolved analysis of both tumor and stroma/immune compart-
ments, with simultaneous measurements of multiple TIME markers, has
been indicated in recent studies16–19. Thanks to the current emerge of novel
digital pathology tools formultiplex, in-situ tissue analysis20–22, such analysis
can now be achieved.

Here, we have used GeoMx Digital Spatial Profiling (DSP) of distinct
spatial TIME niches, complemented with image-based analysis for spatial
statistics that could aid in more objective and reproducible scoring of
immune infiltration. We identified immuno-oncology targets associated
with spatial tumor-immune topologies and assessed variation in immune
infiltration patterns and TIME signatures across OC subtypes.

Results
Study workflow
From two TMA slides with a total of 64 OC tumors (Table 1), TIME
phenotypes of 50 tumors (Fig. 1a) could be analyzed using DSP (Fig. 1c). IF
staining of PanCk (epithelial cells), CD45 (immune cells) and Syto13
(nuclei) was guiding selection of 1-3 ROIs per patient (Fig. 1e), selected as
representative areas of the TIME in each tumor (Fig. 1d). ROIs were seg-
mented into tumor (PanCk+ Syto13+CD45-) and, when possible,
immune (CD45+ Syto13+ PanCk-) AOIs for separate quantification of 49
biomarkers (Fig. 1b). ROIs with < 20 immune cells were only segmented for
tumor content. Following quality control filtering, the final data consisted of
156 AOIs from 50 patients (Fig. 1a). Of these, 27 tumors had sufficient
immune infiltration for reliable quantification, enabling parallel profiling of
tumor and immune AOIs (Fig. 1e). For the remaining 23 patients, only
tumor AOIs were profiled.

Themajority of biomarkerswere normally distributed (Supplementary
Fig. 1A). No significant difference was observed between the two TMA
slides, which had been stained in the same batch, but scanned, collected and
hybridized on two different occasions (Supplementary Fig. 1B). Immune
AOIs had generally lower biomarker counts, owing to lower cell numbers
and smaller areas of immune segments compared to tumor segments
(Supplementary Fig. 1C). To avoid excessive data transformation, data was
divided into immune and tumor, for separate processing and analysis.
Normalization was performed by linear scaling to the geometric mean of
GAPDH and S6, which showed the highest correlation among the house-
keeper proteins (Supplementary Fig. 1D). Strong correlation between
background (isotype control) level and nuclei count was neutralized by the
normalization (Supplementary Fig. 1E).

Classification of immune infiltration and tumor-immune spatial
distribution
The presence of immune cells was highly variable across the samples, with a
mean percentage of CD45+ cells ranging from 0.3% to 69% in the sampled
tumor regions (Supplementary Fig. 2A). Overall immune presence showed
no significant association to overall survival (OS, Pearson R =−0.17,
p = 0.26) or progression-free survival (PFS, Pearson R =−0,18, p = 0.25).
ROIs were annotated by visual review as having significant (“infiltrated”,
n = 65) or insignificant (“insignificant”, n = 37) immune presence, based on
CD45 staining. The majority of ROIs from infiltrated tumors could be
segmented based on PanCk, CD45 and Syto13 into tumor and immune

AOIs, while most tumors with insignificant immune infiltration were seg-
mented into a tumor AOI only due to scarcity of immune cells. Expression
profile of lineagemarkers varied largely across patients (Supplementary Fig.
2B). Immune infiltratedROIswere further annotated by the spatial immune

Table 1 | Patient cohort

Total
cohort n = 64

Tumor
data n = 50

Tumor+Immune
data n = 27

Age at diagnosis (years)

Median 59 57 54

Min 21 25 28

Max 87 87 87

Malignant/Borderline/Benign

Malignant 53 43 26

Borderline 7 6 0

Benign 4 1 1

Stage

I 32 24 14

II 5 4 2

III 20 19 8

IV 3 2 2

NA (benign) 4 1 1

Histology

HGSC 25 23 14

LGSC 5 5 3

Endometrioid 12 6 4

Mucinous 6 5 2

Clear cell 5 4 3

Benign/borderline 11 7 1

Type

Type 1 28 20 12

Type 2 25 23 14

NA (benign/borderline) 11 7 1

Progression-free survival (yrs)

Average 8.4 8.0 7.6

Min 0.5 0.5 0.6

Max 15.8 15.8 15.7

Response to therapy

Complete response 42 34 19

Partial response 4 4 2

Stable disease 1 1 1

Progressive disease 1 1 1

Not reported 16 10 4

Progression during follow-up

Yes 24 22 14

No 31 23 10

Not reported 9 5 3

Cause of death

Ovarian cancer 16 15 9

Ovarian cancer
treatment

1 1 0

Other 2 1 1

NA (alive at end of
follow-up)

27 20 8

Not reported 18 13 9
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infiltration patterns as “diffuse” (n = 35) for immune cells dispersed among
tumor cells, or “focal” (n = 30) for immune infiltration largely present as
clusters in the tumor, by visually assessingwhether immune cells weremore
closely interacting with other immune cells (=focal clusters) or with tumor
cells (=diffuse infiltration) (Fig. 2a).

To complement visual scoring, we used image analysis to generate
objective and reproducible metrics of spatial relationship between tumor
and immune cells from ROI images. To this end, we developed a workflow
adapted to the 20X ROI immunofluorescence, multilayer OME-TIFF files
which can be exported from the GeoMx software. Following image

Fig. 1 | Experimental overview. a Sample inclusion. From a total of 64 patients, 12
were excluded due technical or quality reasons. Of 52 tumors deemed evaluable, 36
were estimated to have sufficient immune infiltration (> 20 CD45+ cells per ROI
(Region of Interest)) for ROI segmentation into tumor (PanCk+ Syto13+ CD45-)
and immune (CD45+ Syto13+ PanCk-) AOIs (Areas of Illumination). Following
DSP (Digital Spatial Profiling) quantification of antibody-bound probes, 17 AOIs
failed QC (quality control) process based low nuclei count, control normalization
factor > 3 (indicating low probe binding), or poor segmentation. The final dataset
consisted of 156 AOIs from 50 patients, with matched tumor and immune AOIs
from 27 patients, and tumor only AOIs from 23 patients. b Specificities of antibodies
used for tumor immune microenvironment (TIME) profiling. c Experimental
workflow. The DSP technology includes staining FFPE (formalin-fixed paraffin-
embedded) samples with panels of fluorescently labelled and barcoded antibodies.

Immunofluorescence visualization through scanning is used to guide selection of
ROIs. Upon exposure of UV light, barcodes are cleaved off, aspirated and dispensed
in a microwell plate. Collected barcodes are hybridized to color-coded probes which
are quantified in the nCounter instrument. d ROIs representing insignificant, focal
and diffuse immune infiltration were selected from two TMA slides with 3x1mm
cores per tumor (red=PanCk, green=CD45, blue=Syto13). Each ROIwas segmented
into AOIs of tumor (PanCk+ , CD45-, Syto13+ , teal masks) and, when possible
(> 20 immune cells per ROI), immune (CD45+ , PanCk-, Syto13+ , lime masks),
for separate quantitation of biomarkers. Graphs show raw counts of biomarkers for
tumor and immune AOIs, for the respective ROIs. e Data was collected from 50
patients, of which 27 had sufficient immune content per ROI for sampling of both
immune and tumor AOIs. The number of AOIs collected per patient varied
from 1-6.
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processing, cell segmentation and classification based on PanCk and CD45
were performed. Based on our ROI annotations, immune infiltrated tumors
could be discriminated from immune insignificant tumors using ratio of
immune cells over total cell count (p = 1.7e-11, Supplementary Fig. 3).
Samples with under or over-estimated immune ratios compared to the
visual scoringwere found to have highly dense tumor areas andweakCD45

staining, or high CD45 staining background, respectively (Supplementary
Fig. 3), which highlights the need for quality tissue and staining for semi-
automated scoring by image analysis.

Graph network analysis was applied to assess tissue topology and used
to calculate spatial statistics features related to cell-cell clustering and tissue
architecture (listed inmethods) based on a set distance threshold. Although

Fig. 2 | Spatial patterns of immune infiltration. a Six representative ROIs are
shown for each of the spatial phenotypes; diffuse, focal and insignificant immune
infiltration, three from each of the two TMA slides. Boundary of circular 300 µm
diameter ROIs are shown on top, with segmented tumor/immune or tumor only
AOIs below (red=PanCK, green = CD45, blue = Syto13). The segmentation masks
are colored in teal (tumor) and lime (immune) for TMA1, and in pink (tumor) and
lime (immune) for TMA2. b Tumor and immune protein signatures in spatial
phenotypes of immune-insignificant and infiltrated tumors. Tumor segments in
regions of insignificant immune infiltration had higher levels of CD25 and Fibro-
nectin, while infiltrated tumor regions had higher CD45, PD-L1, HLA-DR, CD44,
IDO1 andCD11c. c Immune segments from regionswith low immune cell ratiowere

higher in CTLA-4, FOXP3 and PD-L2, while regions with high immune cell ratio
were higher in CD3, beta-2-microglobulin (B2M), CD4, CD45, CD45RO, CD8,
CD44, and STING. d Regions with diffuse immune infiltration had tumor segments
that were higher in IDO1, PD-L1, B2M, CD45, and Tim-3, compared to regions with
focal immune infiltration. e Immune segments of diffuse infiltration patterns were
higher in IDO1, granzyme B (GZMB) and CD3, while focal immune segments were
higher in CD163. Differential expression was assessed through linear mixed models
(LMM) with Patient ID as random effect, including only malignant tumors. Sig-
nificance (-log10 p-value) was plotted against LMM regression coefficient. Red
dotted line marks p = 0.05.

Fig. 3 | Combined image analysis and digital biomarker profiling exemplified for
diffuse and focal immune infiltration regions in one HGSC patient. Immune
infiltration of (a) diffuse and (b) focal patterns was identified in different cores of the
same tumor (patient P387). Upper panels: Boundary of ROI (left) and segmentation
into immune and tumor AOIs (right) in the DSP analysist (red=PanCk,
green=CD45, blue=Syto13). Bottom panels: corresponding FIJI pre-processed ROI
image (left), and DL-based segmentation and cell classification in QuPath (right).
Right panels (larger image): Graph networks overlayed grey scale Syto13 ROI image.
Nodes are colored in pink for tumor and green for immune. Connections within a
30-pixel (=12 µm) distance from centre of each node are displayed and were used to

calculate spatial statistics. Scale bars represent 20 µm. c Normalized counts of
selected biomarkers quantified in immune AOIs of diffuse and focal immune
infiltration regions in tumor of P387. CD45 was similar in both AOIs. Diffuse
immune infiltration was higher in CD3, CD8, CD44, and GZMB, and focal immune
infiltration was higher in CD68, CD14 and CD20. d Spatial statistics derived from
image analysis of the P387 tumor. Immune cell ratio was similar in diffuse and focal
immune infiltration. Gdc was higher and tumor ccr lower in diffuse compared to
focal infiltration. *the same y-axis scale are used for different spatial parameters; ccr
scores, gdc scores and immune/(tumor+immune) ratio, respectively. ccr values have
been scaled with a factor of 0.1 to enable visualization in the same plot.
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Fig. 4 | Tumor immune phenotypes in OC subtypes. a Diffuse, focal and insig-
nificant immune infiltration were present in Type 1 and Type 2 malignant OC, as
well as in benign and borderline samples. b Distribution of diffuse, focal and
insignificant immune infiltration ROIs across histology subtypes of OC (malignant
samples only). c gdc and (d) ccr across histotypes. ROIs are colored by patient IDs.
Boxplots display median value (center line), first (lower hinge) and third (upper
hinge) quartiles. Whiskers extend to the largest and smallest values, respectively.
e, f Linear Mixed Models (LMM) with Patient ID as random effect and Type 1/2 as

fixed effect to identify differences in immune infiltration between Type 1 and Type 2
OC in (e) tumorAOIs, and (f) immuneAOIs. Onlymalignant tumorswere included.
Significance (-log10 p-value) were plotted against LMM regression coefficients. Red
dotted line marks p = 0.05. g Biomarkers upregulated in low grade histotypes of OC
as compared to all other samples and to other Type 1 histologies, respectively.
Comparisons weremade using LMMwith Patient ID as random effect and histology
as fixed effect. Biomarker significantly higher in each histotype are listed. Clear cell
carcinoma is not included as no biomarkers were identified for that histotype.
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ratio of immune cellswas the strongest discriminant of infiltrated vs ignored
tumors, it did not differ between regions annotated as having focal and
diffuse immune infiltration (p = 0.21) (Supplementary Fig. 4A). Instead,
group degree centrality (gdc) and tumor cell cluster co-occurrence ratio
(ccr) were shown to better capture differences in immune infiltration pat-
terns reflecting diffuse versus focal classification. Gdc here represents the
fraction of tumor cells that are connected to at least one immune cell within
a set distance, and tumor ccr is the frequency of connections between tumor
cells compared to randomized data with equal number of tumor/immune
nodes.Gdcandccrwere significantlydifferent between regions annotatedas
having focal and diffuse infiltration for both distances (30 and 50 pixels)
used as threshold, however stronger discrimination was observed at 30
pixels (=12 µm), (p = 0.007/p = 0.047 and p = 0.002/p = 0.017), for gdc and
ccr at 30 px/50 px, respectively, Supplementary Fig. 4A).

Tregs and fibronectin are associated with immune exclusion
Spatial phenotypes were compared using linear mixed models (LMM) with
patient as random effect, to account for patient dependency and multiple
ROIs being sampled per patient. The tumor protein profiles were skewed
towards diffuse/infiltrated samples, due to that the majority of markers were
immune related and thus not expected to be present in tumor segments
devoid of immune cells. Still, tumor segments annotated as having insignif-
icant immune infiltration were shown to display higher relative levels of
CD25 andFibronectin (Fig. 2b). LMMwere also generated to predict features
derived from the image analysis, which showed that areas with low immune
cell ratio (< 0.2) had immune segments that were higher in CTLA4, FOXP3
and PD-L2 (Fig. 2c). Taken together, these analyses suggest that the presence
of Tregs, as indicated by CD25, FOXP3 and possibly CTLA4, as well as
Fibronectin is associated with immune exclusion. In comparison, infiltrated
regions showed higher levels of activated lymphocytes, markers associated
with antigen-presentation, and checkpoints PD-L1 and IDO1 (Fig. 2b).

IDO1, PD-L1 and Tim3 are present in areas of diffuse immune
infiltration, while focal immune niches are high in CD163
Areas annotated as having diffuse immune infiltration showed higher levels
ofMHCI (beta-2-microglobulin, B2M) and checkpoints IDO1, PD-L1, PD-
1 andTim-3 in tumorAOIs (Fig. 2d), and higher levels of T-cells (CD3) and
Granzyme B in immune AOIs (Fig. 2e). Similarly, the graph network ana-
lysis showed that areas with high gdc, i.e., a high proportion of closely
interacting immune and tumor cells, were high in T-cells, lymphocyte
activation markers (CD44, CD40, CD80), dendritic cells (CD11c), but also
immune suppressive markers PD-L1, Tim-3, IDO1, and VISTA (Supple-
mentary Fig. 4B, C). In contrast, focal immune niches had higher levels of
CD163, and tendency (p = 0.10) towards higher level of CD66b (Fig. 2e),
suggesting a higher proportion of immune suppressive myeloid cells (M2
macrophages and possibly neutrophils) located in tumor-adjacent focal
clusters. Significantly higher immune segment levels of CD163 were also
associated with low gdc (Supplementary Fig. 4C).

In one HGSC tumor, ROIs had been identified in areas of both diffuse
(Fig. 3a) and focal (Fig. 3b) immune infiltration, from two different tumor
cores. ROIs from this patient (P387) were used to demonstrate the image
analysis workflow from DSP ROI selection and segmentation into AOIs to
image processing, cell detection and classification, and graph network
analysis (Fig. 3a, b). Immune segmentCD45 level (Fig. 3c) andROI immune
cell ratio (Fig. 3d)were similar in the two, again showing that theoverall level
of leukocyte presence could not discriminate between immune infiltration
phenotypes. As expected, image analysis showed that gdc was higher in the
ROI of more diffuse infiltration, while tumor ccr was higher in the ROI of
more focal infiltration (Fig. 3d). These structural phenotypes were asso-
ciated with ROI-specific differences in immune profiles, with diffuse
immune infiltration showing stronger expression of CD3, CD8, CD44 and
GZMB; while focal immune infiltration was higher in CD68, CD14, and
CD20. Thus, in this particular tumor, diffuse immune infiltration showed a
higher presence of activated T-cells while focal immune infiltration was
enriched for macrophages and B-cells.

Diffuse, focal and insignificant immune infiltration is observed
across OC histotypes
Diffuse, focal and insignificant immune infiltrationwere represented inROIs
from both benign/borderline and malignant tumors. Among malignant
tumors, all three spatialphenotypeswereobserved inbothType1 (low-grade)
and Type 2 (high-grade) tumors, although the frequency of diffuse immune
infiltrationwasmarginallyhigher inType2OC(Fig. 4a).Although limitedby
small subgroups, malignant tumors were further stratified into respective
histotype. Type 2OCwere exclusively high-grade serous carcinoma (HGSC),
andType 1OC included low-grade serous carcinoma (LGSC), endometrioid,
mucinous and clear cell carcinoma. Both immune-infiltrated and immune-
insignificant regions were observed and sampled across all subtypes. For
HGSC and endometrioid tumors, diverse infiltration patterns were seen,
while LGSCmainly showed diffuse immune infiltration patterns. In contrast,
focal or insignificant immune infiltration dominatedmucinous and clear cell
ROIs (Fig. 4b. In linewith this, gdcwas generallyhigher in the serous subtypes
(Fig. 4c), indicating a higher frequency of tumor-immune interactions in
particularly LGSC, while tumor ccr was higher in low-grade histotypes (Fig.
4d), significantly so for endometrioid OC.

Type 2 OC shows stronger immune response and presence of
multiple targetable checkpoints
To assess abundance of immune phenotypes and targetable markers in
relation to OC histology and grade, the different subtypes of OC were
compared using LMM with patient as random effect. Type 2 OC, which
made up 46% of malignant samples in the final dataset, displayed higher
level of Ki67, which was expected as HGSC in general has a higher pro-
liferation rate.HigherPanCkwas observed in tumorAOIs fromType 1OC,
whichwas also expected as low-grade tumors aremoredifferentiated. In line
with this, benign/borderline tumors had significantly higher level of PanCk
compared tomalignant tumors of all grades and stages (Supplementary Fig.
5). Anumber of phenotypicmarkers showed significantly higher expression
in Type 2 tumor AOIs, including CD4, CD3, CD11c, CD163, CD80, CD56,
and immuno-oncology targets PD-L1, 4-1BB, B7-H3, ARG1 and IDO1
(Fig. 4e). Immune AOIs had higher levels of CD34 in Type 1 OC, and close
to significantly higher levels of FOXP3 and CD66b, while Type 2 immune
AOIswerehigher inCD44andB7-H3 (Fig. 4f).Hence, Type2OCdisplayed
an overall stronger immune response and presence of several immune
suppressive targets. CD34, which was higher in Type 1 immune AOIs, is a
marker of haematopoietic progenitor cells, but can also be expressed by
subtypes of innate immune cells. Together with a higher expression of
granulocyte marker CD66b and FOXP3, this indicates an, in general, more
immature and regulated immune environment in Type 1 OC.

Differential expression of key immunemarkers indicated in low-
grade histotypes
Albeit limited by small groups, further subgrouping the malignant tumors
into histotypes indicated key differences in immune phenotypes. Each
histotype were compared to all other samples, as well as to other Type
1 samples only, and biomarkers significantly higher in each respective
subgroup were listed (Fig. 4g). Endometrioid OC had immune segments
that were significantly higher in CTLA-4 and FOXP3 (Fig. 4g, Supple-
mentary Fig. 6A, Supplementary Table 1), which may indicate a generally
stronger presence of Tregs compared to other histotypes and potential for
CTLA-4 targeting. LGSChad significantlyhigher level of STING, suggesting
a potential for agonistic immune stimulatory targeting. Mucinous tumors,
which had immune infiltration frequently found in focal clusters, had sig-
nificantly higher levels of CD8 and CD4 and low level of immune sup-
pressivemarkers and checkpoints in the immuneAOIs (Supplementary Fig.
6A), and tumor AOIs with higher expression of VISTA. The smallest group
of clear cell OC (4 patients in final dataset) showed significantly lower levels
of a vast number of biomarkers in both tumor and immune segments. The
indicationof anoverall lower immune response in clear cell tumors however
needs to be confirmed in larger cohorts. PD-L1 and IDO1 were more
prevalent inHGSCcompared toLGSC,mucinous andclear cell tumors, and
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on a similar level as endometrioid tumors (Supplementary Fig. 6B). In all,
the differential expression of checkpoints between OC histotypes warrants
validation in larger cohorts, to confirm whether abundance of immuno-
oncology targets can be associated to specific subtypes.

Spatial immune infiltration niches were not significantly asso-
ciated with tumor stage and prognosis
The frequency of focal, diffuse or insignificant immune infiltration was
similar across tumor stages (Supplementary Fig. 7A), and little variation in
biomarker expression was observed as an effect of stage. LMM regression
with stage as an ordinal scale fixed effect and patient as random effect
identified immuneAOI expression of LAG3 and 4-1BB as the onlymarkers
increasing with increased stage (Supplementary Fig. 7B). No biomarkers or
spatial features were identified as having significant prognostic impact by
Coxmixedeffect (CoxME)modelswithpatient IDas randomeffect andPFS
as fixed effect. Among clinical features, only radical surgery (p = 0.007) and
stage (p = 0.04) were significantly associated with PFS. Other known
prognostic parameters, including Type 1/2 OC and patient age were non-
significant, which highlights the stringency of the CoxME model. Type of
immune infiltration was not identified as impacting survival based on
CoxME. Kaplan-Meier (KM) analysis based on one value per patient, using
consensus classification including all cores, confirmed that no difference in
PFS was seen between tumors dominated by an immune-infiltrated versus
immune-insignificant phenotype (p = 0.87, Supplementary Fig. 8A).
Among infiltrated tumors, a trend (p = 0.086) of inferior PFS for tumors
dominated by focal compared to diffuse immune infiltration was noted
(Supplementary Fig. 8B). This was despite the (marginally) higher presence
of focal infiltration in Type 1 OC, which have an overall better prognosis
than Type 2, and is thus potentially an unfavourable effect of CD163+
macrophages, which were observed to a higher extent in the focal immune
clusters.

Discussion
The low success rate of checkpoint inhibitors for OC treatment is related to
the notable variation in immune response in ovarian tumors, which high-
lights the need for TIME profiling to guide treatment options23. In addition,
OC can be subdivided into several histotypes with different clinical pre-
sentations, and little is known about how the TIME and thus propensity for
response to immunotherapy, varies across the subtypes. To this end, we
assessed immune infiltration variation in relation toTIME topology andOC
subtypes by measuring 43 immune related proteins in regions of interest
representing tumor and immune areas with diffuse, focal, or insignificant
immune infiltration patterns.

Immune infiltrationwas highly variable across samples, and the overall
level of immune infiltration was non-prognostic. The spatial pattern of
immune cells, i.e., distance and distribution in relation to tumor cells, had a
higher impact on TIME molecular signatures than the overall level of
immune infiltration. The proportion of CD45+ immune cells did not differ
between areas of diffuse and focal immune infiltration, when generalizing
over all sampled regions. However, areas of diffuse immune infiltration had
more cytolytic activity as indicated by higher Granzyme B in immune
segments, as well as higher tumor expression of targetable checkpoints PD-
L1, Tim-3, and IDO1. Albeit non-significant (p = 0.09), patients with
tumors dominated by focal immune clusters, had a tendency of inferior
survival when compared to tumors dominated by diffuse immune infil-
tration. Focal immune clustersweremore dominant inType 1OC,which in
general are associated with improved survival. This may point to the highly
unfavourable effect of CD163+ macrophages which were significantly
higher in Type 2 vs Type 1 tumors, but also higher in focal immune clusters
compared to diffuse immune segments. Tumor associatedmacrophages are
in general the most abundant immune cell in the TIME24 and the ratio of
M2-like over M1-like (CD163/CD68) macrophages have previously been
associated to inferior survival inOCandother tumors25,26. There is still a lack
of understanding to what extent the spatial distribution of CD163+ cells in
the TIME effect outcome of different subtypes of OC. While our results

indicate that checkpoint blockade targeting PD-L1 and/or Tim-3 and
IDO1 should be more relevant for tumors dominated by diffuse immune
infiltration, tumors with high presence of CD163+ focal immune clusters
could potentially be subjected to TAM targeting therapies to increase sus-
ceptibility for checkpoint inhibitors or chemotherapy27,28.

Exclusion of cytotoxic immune cells from theTIMEhas been described
asmediated by infiltration of tumor associatedmacrophages and/or Tregs12.
By combining categorical and imaging-based stratificationof tumorswehere
showed that immune-low/insignificant regionswere higher inCD25, FoxP3,
CTLA-4 and Fibronectin, suggesting that primarily Tregs (and potentially
fibroblasts) are mediating immune exclusion. Finding new therapies for
immune cold tumors remains a challenge and targeting ofTregs is associated
with risks of severe side effects29. However, emerging evidence suggest that
the effect of CTLA-4 antibody therapymay primarily be a result of depletion
of Tregs rather than activation of effector T-cells30. Our comparison of
subtypes ofOC indicated a higher expression of Tregs in Type 1 tumors, and
in this limited cohort, CTLA-4was shown tobemore prominent particularly
in Endometrioid OC. Thus, while PD-L1 therapy may be more viable in
HGSCwithdiffuse immune infiltration,CTLA-4 inhibitioncouldpotentially
be an option for subtypes of Type 1 OC and immune cold tumors.

Classification of immune infiltration is commonly done by visual
annotation, categorizing tumors as e.g., immune-hot, cold or excluded13,14.
In an attempt to assess whether tumor-immune topology can be predictive
of immune phenotypes and targets, we here selected and classified ROIs
rather based on the tumor-immune topology, as either diffuse, focal or
insignificant. Similar to previous studies, our classification was based on
visual assessment and thus largely subjective. To complement the DSP
analysis with improved segmentation algorithms and a more reproducible
scoring of TIME toplogy, an image analysis workflow using OME-TIFFs
exported from the GeoMx software, was developed. Deep learning-based
single-cell segmentation and classification was performed in an external
software, followed by graph network analysis. Spatial statistics including
group degree centrality31 and cluster co-occurrence ratio32 are attractive
features for semi-automated, objective scoring of TIME topology and cell-
cell interactions, and correlated well with our annotations based on visual
review. Our graph network analysis workflow could likely be improved by
applying more advanced image deconvolution, including e.g. graph-based
deep learning33,34. AI-based models have the potential for a more objective
and automated stratification of tumors based on tissue tumor-immune
topology and molecular information which potentially could be predicted
even form low-plex immunofluorescence images35,36. These efforts hold
promise for clinical implementation of spatio-molecular profiling to predict
survival or response of therapy.

Importantly, this study is one of the first applications of spatial,
molecular profiling of TIMEs across different histopathological subtypes of
OC. Tumor segments in Type 2 OC (HGSC) were shown to have stronger
infiltration of immune cells, including CD3, CD4, CD11c, CD163, CD56
and CD80, suggesting that both pro- and anti-inflammatory immune
phenotypes are elevated inside the tumor nests compared to Type 1 OC.
While CD4 was the most differentially higher expressed marker in Type 2,
CD8 did not differ between Type 2 and Type 1 OC, which in this particular
cohort likely was due to a prominent presence of CD8 also in themucinous
subtype. In addition, targetable and predominantly immune suppressive
markers, PD-L1, IDO1, ARG1, 4-1BB, and B7-H3, were more abundant in
Type 2 OC. HGSC has previously been shown to display a highly varied
TIME14,37. Considering the molecular heterogeneity of HGSC, further
stratification of this subtype based on e.g. BRCA1/2 mutations may be
required to optimally predict propensity for different immunotherapy
strategies. Indeed, previous studies have demonstrated that HRD status
impacts the TIME of HGSC17, and that tumor-intrinsic mutational profiles
are associated to specific immune evasion mechanisms38. Unfortunately,
mutational profiling had not been performed on this retrospective cohort.

Grouping into Type 1 and Type 2 OC has been criticised for being
overly simplistic, with Type 1 not capturing the heterogeneity of low-grade
OC (here represented by low-grade serous, mucinous, clear cell, and
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endometrioid tumors). Recent studieshave shown that non-serous subtypes
not always cluster together basedonmolecular features9. In linewith this, we
could not identify a generic TIME profile for the low-grade tumors, with
CD34 being the only significantly upregulated marker for the collected
group of Type 1 tumors. Thus, profiling of the individual subtypes is likely
more relevant for clinical implications. Although limited by low number of
patients, our study indicated that there are key differences in TIMEs across
the histotypes. For example, mucinous tumors displayed a more active
immune response compared to the other low-grade carcinomas, with
relatively higher levels of CD8 cytotoxic T cells and immune activation
marker VISTA, while lower in immune suppressive markers (IDO1,
FOXP3,CTLA4). In contrast, endometrioid tumorswere indicated tohave a
stronger presence of Tregs (FOXP3 and CTLA-4), and tumor PD-L1 and
IDO1 levels on par with HGSC. Interestingly, LGSC had high levels of
STING, an immune stimulatory target which has been suggested an
attractive therapeutic target in OC in general39, and which also previously
was shown to be highly expressed in LGSC in particular40. The small set of
four clear cell tumors showed an overall weak immune response relative the
other histotypes. The low immune activation in endometrioid and clear cell
OC compared to other histotypes is noteworthy considering that mismatch
repair deficiency is frequent in these subsets41,42 andneeds tobe confirmed in
larger cohorts.

We recognize that the limited tissue material provided on TMAs may
be a confounding factor to capture TIME heterogeneity in a tumor43,44. The
TMAs used in this study had been previously constructed from repre-
sentative tumor areas, thus not with the purpose of profiling immune
infiltration.We addressed potential bias by using TMAswith three cores per
tumor and, whenever possible, sampling multiple ROIs per tumor. Impor-
tantly, this limited cohort was primarily used to assess whether immune
biomarkers could be associated to patterns of immune infiltration in selected
regions. On-going analysis of a larger cohort will serve to further establish
spatio-molecular signatures associated to OC histotypes and prognosis.

The field of spatio-molecular profiling is only in its infancy but carries
vast potential for guiding personalized treatments in the clinical setting. In
this study, we showed that there are distinct differences in molecular phe-
notypes related to tumor-immune topology in ovarian carcinoma. Based on
the protein signatures identified, patients withmore diffuse tumor immune
infiltration are more likely to benefit from targeting PD-L1/PD-1, IDO1
and/orTim-3, while tumorswith focal immune infiltration patterns showed
increased presence of CD163+ macrophages and a preliminary worse
outcome. These results demonstrate the potential value for stratification of
tumors by spatio-molecular profiling for preselection for immunotherapy
inclusion.

Methods
Clinical samples
A tissue microarray (TMA) of 64 surgically resected, mixed-histology OC
tumors had been previously constructed from tissue collected between 2001
and 2010 at the Sahlgrenska University Hospital. The study complied with
all relevant ethical regulations including theDeclaration ofHelsinki. Sample
collectionwas approved by the SwedishEthical ReviewAuthority (reference
201–1545)45. The patients included receivedwritten and oral information in
Swedish and signed the informed consent. Cohort characteristics are listed
in Table 1. Whole biopsies were sectioned and stained with Hematoxylin
(Histolab Products AB, Sweden). Three representative tumor areas were
identified under the light microscope (Olympus BX45, Olympus Cor-
poration, Tokyo, Japan), and three1mmcoreswere punchedwithamanual
tissue microarrayer (Beecher MTA-1, Estigen,Tartu, Estonia) and re-
embedded into a predefined position on a new, paraffin block. The TMA
block was heated at 45 °C for 1 h, sectioned at 4 μm, mounted onto two
slides, and stored at -80°C. Benign and borderline cases were excluded from
analyses that compared spatial TIMEniches, histologies and subtypes (Type
1 and Type 2 OC). Tumor regions could be sampled from 50 patients (77%
of total cohort). Of these 50 tumors, 27 (54%) had sufficient immune
infiltration for parallel tumor and immune niche sampling (Fig. 1a).

Antibodies
The TMA was analyzed using GeoMx Digital Spatial Profiling (DSP,
Nanostring, Seattle,WA,USA)46. 3-color immunofluorescence was used
for visualization of cell nuclei (Syto13), tumor cells (PanCk) and
immune cells (CD45) using the GeoMx Solid Tumor TMEMorphology
Kit v1.0 (Nanostring) and profiled using 49 antibodies (Fig. 1b)
including the GeoMx panels for immune cell profiling (core panel, 18
targets and 6 controls), immuno-oncology drug targets (10 targets),
immune activation status (8 targets), and immune cell typing (7 targets).
The controls included negative isotype controls mouse IgG1, mouse
IgG2a and rabbit IgG; and positive housekeeper controls HistoneH3, S6,
and GAPDH.

Sample preparation
The GeoMx Protein Slide Preparation protocol was applied, using the DSP
Protein Slide Prep Kit for FFPE. Briefly, TMA slides were baked at 60 °C
followed by deparaffinization and rehydration (3 x 5min CitriSolv,
2 x 5 min 100% EtOH, 2 x 5 min 95% EtOH, 2 x 5 min ddH2O); antigen
retrieval for 15min in 1xCitrate buffer, pH 6.0 at high pressure, high tem-
perature; and washing for 5min in 1xTBS-T. A hydrophobic pen was used
to create a closed barrier on the slides. All incubations were performed in a
black humidity chamber. Slideswere blocked (BufferW, 1 h, RT); incubated
with antibody cocktail diluted in Buffer W (overnight, 4 °C); washed in
1xTBS-T (3 x 10min);fixedwith 4%PFA (30min,RT);washed in 1xTBS-T
(2x5 min). Finally, slides were stained with Syto13 (500 nM in TBS, 15min
RT), and dip-washed twice in 1xTBS-T.

Sample processing
The two TMA slides (TMA1 and TMA2) were scanned and processed in
the GeoMx instrument on two separate days. Immediately after scan-
ning, 1-3 Regions of Interest (ROIs) were selected per tumor. Typically,
one ROI was sampled per tumor core, and no tumor had more than two
ROIs placed in the same core. All ROIs were circular with 300 µm dia-
meter. ROIs were segmented into tumor (PanCk+ Syto13+ CD45-)
and, when possible, immune (CD45+ Syto13+ PanCk-) Areas of Illu-
mination (AOIs). Thresholds for segmentation were adjusted for each
ROI. Guided by the segmentation masks, each AOI was sequentially
exposed to UV-light to cleave off oligos coupled to antibodies that had
bound in that specific segment and aspirate the oligos to separate wells in
GeoMx collection 96-well plates (Fig. 1c). Aspirates were dried at 65 °C
in a thermal cycler, rehydrated in 7 µL DEPC water and spun down.
Probes were hybridized with GeoMx hyb codes according to the GeoMx
DSP Protein nCounter Readout scheme, incubated overnight at 67 °C
and stored at 4 °C. Hybridized products were pooled by columns into
strip tubes, in volumes related to the total segment area collected
according to the GeoMx protocol. Quantification was performed using
the nCounter (Nanostring) system, followed by transfer of readout data
back to the GeoMx instrument (Fig. 1d).

DSP data processing and analysis
The GeoMx analysis suite was used for data quality control (QC), using
default QC settings. This step also normalized the data to the positive
hybridization controls, to adjust for inherent variability across the lanes of
the nCounter cartridge used for probe quantification. Data was filtered (Fig.
1a) by assessing AOIs that were flagged in the QC process as having either
low nuclei count (<20 cells) or high positive control normalization factor
(>3), by visual inspection of scan images and by principal component
analysis to check sample biomarker data in relation to distribution of
dataset. FollowingQCandfiltering, immune and tumordatawere separated
into two datasets in order to avoid scaling bias during biomarker signal
normalization due to inherent differences in AOI size (immune segments
were generally smaller than tumor segments) (Supplementary Fig. 1). Both
immune and tumor data were (separately) normalized by scaling each AOI
with the geometric mean of housekeeper proteins GAPDH and S6 for that
specific AOI. Following QC, data was exported from the GeoMx analysis
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suite and imported to RStudio (2022.02.03) for downstream processing and
analysis in R (R-4.1.2). Linear mixed models (LMM) with Patient ID as
random effect were used to identify biomarkers differing between groups of
samples, to adjust for patient dependency from samplingmultiple ROIs per
tumor, using the lmerTest package (3.1-3)47. The coxme (2.2-16) package
was used for mixed effects models identifying biomarkers associated to
survival. The survival (3.2-13) R package were used for Kaplan-Meier (KM)
analysis. P < 0.05 were considered significant for all three types of tests
(LMM, CoxME, KM).

Image analysis
ROI tiff images were exported from the GeoMx analysis suite and pre-
processed in ImageJ for splitting hyperstacks to individual images, per-
forming background subtraction with rolling ball radius set to 100 pixels,
and recombining to composite images. Processed images were imported to
Qupath (v. 0.3.2). Cell segmentation was performed using a pretrained
StarDist model (dsb2018_heavy_augment.pb) followed by training of two
RTrees classification models, first for stroma and tumor (PanCk channel),
and second for immune (CD45 channel). Models were combined into a
composite classifier and applied on all ROI images. Cell class and coordi-
nates were then exported from QuPath to python (3.10). The networkX
(3.0) package was used for graph analysis, with weighted edges using
Euclidean distance band using libpysal (4.6.2). Thresholds of 30 pixels
(=;12 µm) and 50 pixels (= 20 µm) were applied. The original grey-scale tiff
images were overlayed with the resulting network graph for visualization.
Image derived spatial statistics were extracted from each ROI, including
number of nodes per class, class ratio, degree centrality (fraction of tumor
cells connected to immune cellswithin a given ratio)31, attribute assortativity
coefficient (relativedegree of connections to same class (e.g. immune) versus
different class (e.g. tumor) cells)48, cluster co-occurrence ratio (ratio of
connections between nodes compared to randomized data with equal
number of nodes of each class) between cells within a class (tumor-tumor;
immune-immune) and between classes (immune-tumor))15.

Data availability
The datasets used and/or analysed during the current study are available
from the corresponding author on reasonable request.

Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers on reasonable request from the corre-
sponding author.
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