
Impact of air pollution prevention 
and control on urban green 
economy efficiency: evidence from 
China
Han Zhang & Weijian Dou

One of the Sustainable Development Goals is to enable cities to thrive, improve resource efficiency, 
and reduce pollution. However, balancing economic development with pollution control and fostering 
green growth remains a major challenge for developing countries. This study, using panel data from 
284 prefecture-level and above cities in China from 2006 to 2020, evaluates urban green economy 
efficiency (GEE). Then, adopting implementation of “12th Five-Year Plan for Key Regional Air Pollution 
Prevention and Control” in China as a quasi-natural experiment, this study investigates the impact of 
air pollution prevention and control (APPC) on urban GEE. Findings reveal an overall upward trajectory 
in urban GEE across China, marked by discernible regional differentiations following implementation 
of national Plan. Considering the “hysteresis effect” and spatially “pollution halo effect”, APPC notably 
improves urban GEE, particularly within cities of eastern zone, high-population density cities, large-
sized cities, non resource-based cities and major-APPC cities. Importantly, APPC acts as a catalyst for 
both enhancing green innovation quality and optimizing industrial structures, ultimately fostering 
urban GEE in China. These findings are significant and also provide a valuable supplement to the 
existing study.
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Amidst the rapid industrialization and urbanization in China, environmental pollution has experienced 
a discernible uptick. Notably, air pollution has emerged as a significant impediment to the high-quality and 
sustainable development of the regional economy. The intricate challenges posed by regional atmospheric 
environmental issues present formidable obstacles to environmental governance in China. Compounding this, 
the prevailing industrial structure is strong reliant on fossil fuel resources, with coal being a primary contributor. 
Urgency surrounds the imperative to expedite the shift from energy and resource intensive systems to renewable 
alternatives1–3. In response to rigorous environmental protection inspections and the pursuit of environmental 
assessment objectives, certain regions in China have implemented stringent measures, including power outages, 
work stoppages, and business closures. These measures are particularly pronounced in areas characterized by 
key industries such as steel, cement, coal power, and chemicals.

Some literature indicate that environmental regulations significantly increase enterprises’ production costs 
and reduce their operational efficiency. Under the constraint of short-term profit goals, companies may abandon 
local research and development or technological innovation and move to areas with relatively lax environmental 
regulations, thereby causing the transfer of environmental pollution and creating a “pollution refuge effect”4–6.

Therefore, balancing resource utilization with economic stability, while designing effective tools to improve 
environmental quality and achieve green economic growth, is not only a critical issue for China but also a key 
challenge for developing and emerging countries, particularly those dealing with geopolitical risks and economic 
uncertainty7–11. In 2012, China approved the “12th Five-Year Plan for Key Regions’ Air Pollution Prevention and 
Control (Hereinafter referred to as Plan),” its first comprehensive national plan targeting air pollution. This 
marked a significant shift in focus from merely controlling the total amount of pollutants to improving overall 
environmental quality, addressing both primary and secondary air pollution.

Since then, this plan has been implemented as a stringent environmental regulation policy for many years. 
In particular, in the middle and late periods of China’s “12th Five-Year Plan” (2013–2015) and the entire period 
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of “13th Five-Year Plan” (2016–2020), has the issuance of these Plans helped China achieve its dual goals of 
economic development and environmental governance? Did this improve China’s GEE? Therefore, it is important 
to scientifically evaluate the economic effects of this plan from an efficiency perspective, and examine its impact 
on the GEE through specific channels. Addressing the above questions is crucial for China to realize the green 
transformation of its industrial structure and the high-quality development of its economy and developing 
countries to achieve sustainable economic growth under environmental constraints.

While scholars have extensively examined the environmental impact of China’s atmospheric measures and 
policies, much of the existing literature primarily focuses on the direct environmental effects of these regulations, 
typically measured by individual indicators like PM2.5/PM10 concentrations, or CO2, SO2, O3, and NOx 
emissions, as well as composite indicators such as the Air Quality Index (AQI) and Air Pollution Index (API). 
However, there is comparatively less research assessing the economic impacts of these measures, particularly 
from an efficiency perspective.

Accordingly, utilizing panel data encompassing 284 prefecture-level and above cities spanning from 
2006–2020, this study establishes an evaluation index system that integrates energy consumption and various 
environmental constraints to systematically assess urban GEE in China. The study rigorously analyzes China’s 
APPC tool, the Plan, released in 2012, treating it as a quasi-natural experiment, and employs the DID method 
to evaluate the benchmark and spatial ATE (Average Treatment Effect) of the Plan urban GEE. Furthermore, 
the study endeavors to elucidate the pathways through which the Plan influences urban GEE, considering green 
innovation or industrial structure as potential mediators. The overarching goal is to furnish practical references 
for developing countries aiming to advance a green economy.

The study reveals that the Plan contributes to the enhancement of urban GEE in China, epitomizing the 
achievement of a “win-win” scenario for APPC and economic development. Furthermore, it demonstrates a 
positive spatial spillover effect, coined the “pollution halo effect,” extending to neighboring areas. This empirical 
evidence offers valuable insights to support coordinated inter-regional or joint APPC efforts. In comparison to 
existing research, this study makes marginal contributions in four key dimensions:

 ①  Empirical evidence for the “Porter hypothesis”: In the realm of prefecture-level and above cities, this study 
provides empirical evidence supporting the “Porter hypothesis” by recognizing the positive impact of China’s 
APPC on urban GEE. Unlike prior studies relying on proxy variables for environmental regulations, this 
study treats the Plan issuance as an exogenous shock, employing the DID method to estimate GEE differ-
ences between cities in key regions implementing the Plan and those in non-key regions that did not. This 
quasi-experimental approach effectively mitigates endogeneity bias.

 ②  Identification of spatial ATE: Addressing the oversight in prior studies regarding spatial externalities, this 
study captures the spatial ATE arising from the Plan China’s Plan on urban GEE. Through the incorporation 
of a spatial DID model with heterogeneity, the study includes the “spatial” ATE of the Plan implemented in 
local areas on the GEE of geographically neighboring areas—an aspect less frequently highlighted in previ-
ous studies.

 ③  Comparison of different ATEs: In contrast to previous studies focusing on provincial levels, this study pre-
cisely identifies and compares various ATEs exerted by China’s Plan on GEE in different cities. The emphasis 
on cities, as pivotal spatial carriers of environmental regulation and economic development, enhances the 
practical relevance of clarifying the heterogeneity performance of environmental regulatory tools.

 ④  Impact mechanism analysis: The study delves into the impact mechanism by which China’s APPC influences 
urban GEE from two perspectives: green innovation and industrial structure. By considering green innova-
tion quantity and quality, as well as advanced and rationalized industrial structures, the study proposes and 
empirically verifies corresponding research hypotheses. The insights contribute to a more comprehensive 
understanding of the internal mechanisms of environmental air regulation and green economic develop-
ment, providing theoretical and practical references for formulating targeted regional environmental air reg-
ulation strategies.

The remainder of this paper is organized as follows: Section “Literature review” reviews relevant literature. Section 
“Policy background and mechanism analysis” introduces the background of the Plan. Section “Measurement 
and analysis of urban GEE in China” measures and analyzes the features of the urban GEE in China. Section 
“Methodology and variables” sets up the models, selects variables, and presents statistical descriptions. Section 
“Empirical analysis” includes the benchmark test, robustness checks, heterogeneity tests, spatial spillover tests, 
and mechanism tests. The final Section concludes the paper, presents policy implications and research limitations.

Literature review
In the academic realm, a consensus remains elusive regarding the economic effects of environmental regulations 
on economic efficiency or total factor productivity (TFP). Originally, extensive studies posit that stringent 
environmental policy tend to elevate production and operational costs, displace productive investment, and 
diminish firms’ standing and competitiveness in international markets. This outcome is commonly referred 
to as the “cost compliance effect”12,13. However, Porter14 puts forth a noteworthy departure from conventional 
viewpoints with the introduction of the “Porter hypothesis.” According to this hypothesis, more stringent 
regulations can enhance productivity growth by compelling firms to rationalize their operations. For instance, 
Bhowmik et al.15 highlights the role of stringent policies in promoting sustainable resource use and reducing 
dependency on emissions for economic growth. The study of Caijuan et al.16 also underscores stringent 
environmental policies not only support sustainable green economic growth but also mitigate the adverse effects 
of external uncertainties. Moreover, some literature has delved into this issue, scrutinizing the hypothesis from 
an economic efficiency or TFP standpoint17,18.
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Due to variations in research objects, dimensions, types of environmental regulatory tools, and institutional 
backgrounds, several studies have uncovered an uncertain or nonlinear relationship between environmental 
air regulation and economic efficiency or productivity. Notably,   Wu et al.19 provided evidence for a significant 
U-shaped relationship between environmental regulation and green energy efficiency, dependent on the type 
of environmental decentralization. Plus, Pan et al.20, Guo and Yuan21 reported diverse effects of different 
environmental regulations (command-and-control, market-based, voluntary compliance, etc.) on energy 
efficiency or green productivity across various industries. These findings underscore the nuanced and context-
specific nature of the relationship between environmental air regulation and economic efficiency or productivity, 
emphasizing the need for a comprehensive understanding that considers multiple variables and dimensions.

Recently, among excessive literature on China, scholars have evaluated the impact of various China’s air 
regulation policy, such as the “Two Control Zones” (Control Zone for SO2 Pollution and Control Zone for Acid 
Rain) policy22, the “Low-carbon City Pilot,” the “Air Quality Standards”23–26, the “Air Pollution Prevention and 
Control Action Plan”27,28, the “Clean Air Action”29, and so forth. Moreover, the regulatory effects of China’s 
ambient air policies on TFP or economic efficiency are diverse and inconclusive. For example, on one side, 
using the panel dataset of industrial enterprises, Tang et al.30 found that the “Two Control Zone” policy has a 
lagging and continuous negative effect on the growth of enterprise TFP because of increased costs and resource 
misallocation. The empirical results of Wang and Yuan31 showed that, in the short term, air pollution control has 
a significant inhibitory effect on industrial ecological total-factor energy efficiency; however, in the long run, the 
influence is significantly heterogeneous.

On the flip side, findings of Zhang et al.32 reveal that the “Carbon Emission Trading Market” policy not 
only augments economic dividends but also diminishes industrial CO2 emissions across all trading pilots. 
Concurrently, Peng et al.33 indicate that China’s “SO2 Emissions Trading Pilot” policy has yielded significant 
productivity-enhancing effects. Besides, Bai et al.34 highlighted that China’s market-driven environmental 
regulation, in the form of the “Carbon Market Pilots,” effectively promoted TFP of enterprises in the pilot areas.

Summarily, while existing research has provided valuable insights, certain limitations persist. Firstly, there 
remains a dearth of research on the potential impact of the Plan on urban GEE China. Secondly, the majority of 
existing studies solely rely on provincial data from China when analyzing the effects of ambient air policies on 
green efficiency or TFP, lacking a nuanced examination of heterogeneity across different pilot areas.

Policy background and mechanism analysis
Policy background
Since the beginning of the twenty-first century, China’s economy has maintained a high growth rate. As the Fig. 1 
shows, data from the China Statistics Yearbook, China’s GDP has increased from 11 trillion yuan in 2001 to 101 
trillion yuan in 2020, with an average annual growth rate of 12.4%. However, this rapid economic growth has 
also led to environmental air pollution issues. Also, according to global average annual PM2.5 concentration 
data provided by the CGEG (Center on Global Economy and Governance) of Columbia University, for the same 
period, the annual average concentration of PM2.5 fell from 37 to 22 μg/m3, with an average annual deceleration 
rate 1.2%.

During the China’s “11th Five-Year Plan” period (from 2006–2010), regional air pollution became increasingly 
severe. According to data from the China Environmental Statistics Yearbook, the annual average volume of 
industrial waste gas emissions and SO2 emissions in China were 42 trillion tons and 24 million tons respectively 

Fig. 1. Trends in China’s GDP and PM2.5 from 2001–2020.
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and the annual average concentration of PM2.5 remained high as well, which was about 44 μg/m3 from 2006–
2010. Furthermore, moving into the “12th Five-Year Plan” period (from 2011–2015), China’s industrialization 
and urbanization continued to develop rapidly, leading to increased consumption of resources and energy. This 
put unprecedented pressure on the atmospheric environment.

From an administrative perspective, it is difficult for a single city to effectively solve the problem of air 
pollution. Therefore, as a new regional APPC system, and based on the “Air Pollution Prevention and Control Law 
of the People’s Republic of China” and the “12th Five-Year Plan for National Economic and Social Development 
of the People’s Republic of China”, on December 5, 2012, the “12th Five-Year Plan for Key Regional Air Pollution 
Prevention and Control”, i.e., the Plan, was jointly issued by the Ministry of Ecology and Environmental, the 
National Development and Reform Commission and the Ministry of Finance, and approved by the State 
Council. This is China’s first comprehensive plan for APPC, marking a shift from the goal of controlling total 
pollutant emissions to improving environmental quality, and a shift from mainly addressing primary pollution 
to addressing both primary and secondary pollution.

The Plan, aims to improve the ambient air quality in China by taking the lead in promoting joint APPC in key 
regions. It includes strict environmental access, promoting clean energy utilization, accelerating the elimination 
of outdated production capacity, implementing coordinated control of multiple pollutants, significantly 
reducing pollutant emissions, and establishing an “inducement mechanism” to coordinate China’s regional 
economy and environment, promote the transformation of development mode, and meet the requirements for 
air environmental quality in building a moderately prosperous society by 2020. The Plan covers a total of 13 
key regions for APPC, known as the “Three Zones and Ten Clusters” (The “Three Zones” include the Beijing-
Tianjin-Hebei region, the Yangtze River Delta, and the Pearl River Delta; The “Ten Clusters” include the Central 
Liaoning Cluster, Shandong Cluster, Wuhan and its surrounding Cluster, Changsha-Zhuzhou-Xiangtan Cluster, 
Chengdu-Chongqing Cluster, the west coast of the Taiwan Strait Cluster, the central and northern parts of 
Shanxi Province Cluster, the Guanzhong Plain (or Weihe Plain) in Shaanxi Cluster, Gansu-Ningxia Cluster, and 
the Xinjiang Urumqi Cluster), which involve a total of 19 provinces, autonomous regions, and municipalities 
directly under the central government, 118 prefecture-level cities, and 6 county-level cities, covering an area of 
approximately 1.33 million square kilometers, accounting for 13.81% of China’s land area.

Just as shown in Fig.  1, since the issuance of the Plan, that is, since 2013, the average annual PM2.5 
concentration in China has begun to decrease significantly, indicating that China’s ambient air quality has 
been gradually improved, which also provides a factual basis for this study to empirically identify the “quasi-
experimental” effect of the Plan on urban GEE in China.

Mechanism analysis
Some studies have confirmed that China’s ambient air governance can promote environmental awareness35 
and FDI, induce industrial structure upgrades and technological innovation, and stimulate the willingness and 
motivation of local and central governments for environmental governance36. This study captures the impact 
mechanism by which China’s Plan influences urban GEE from two perspectives: green innovation and industrial 
structure.

Green innovation mechanism
Environmental regulations or policies are acknowledged as catalysts for innovation37,38. Precisely, these 
regulations compel companies to internalize the costs associated with pollution control and reduction, prompting 
increased investments in Research and Development (R&D), the adoption of cleaner technologies, and the 
stimulation of green innovation. This not only diminishes tax payments related to pollution but also alleviates 
environmental degradation, fostering a trajectory towards green and productive growth39,40. In the context of 
China, empirical studies have corroborated these insights. For instance, utilizing panel data from the industrial 
sectors of OECD countries, Wang et al.24 demonstrated that, within a certain level of stringency, environmental 
policies contribute to the growth of green productivity by inducing the “innovation offset effect” or “innovation 
compensation effect.” Furthermore, Wang et al.41 revealed that technological innovation in renewable energy 
significantly enhances the regional green TFP.

Contrarily, Chen et al.42 suggests that air pollution serves as a significant factor influencing population 
movements within China. Regions characterized by poor air quality impede the influx of high-end human capital 
and markedly suppress urban innovation vitality. Additionally, some scholars posit that the promotion of green 
innovation or clean technologies, while fostering economic expansion, can also create new energy demands. 
Consequently, the positive effects of green innovation may be partially or entirely offset, potentially leading to 
environmental degradation and decreased efficiency—a phenomenon referred to as the “rebound effect.”

Empirical studies have further indicated that environmental regulations might not always provide incentives 
for innovation; in some cases, they may even pose obstacles or lead to technical inefficiency43. In the context of 
China, for instance, Shi et al.44 concluded that China’s “carbon emissions and trading pilot” policy significantly 
hinders innovation, resulting in a reduction in enterprise productivity. In light of the above analysis, Hypothesis 
1 (H1) is posited.

H1: Green innovation is a non-ignorable mediating factor between the Plan and urban GEE. However, the 
direction of its impact depends on which need to be tested empirically.

Industrial structure mechanism
Strong evidence has been provided to support that China’s environmental regulations can affect production and 
change industrial structure21,45,46. On the one hand, environmental regulations or policies not only help transform 
energy-intensive industries, especially tertiary and clean industries, but also eliminate resource-based industries 
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and cultivates environment-friendly industries, ultimately upgrading or modernizing industrial structure and 
improving production efficiency in China47–51. On the other hand, although environmental regulations may 
lead to changes or optimizations in industrial structure, it does not necessarily improve economic efficiency, as 
its “cost compliance effect,” “squeezing out effect on investment,” and the resulting industrial redistribution, or 
regional disparities, all of which possibly reduce the economic or production efficiency of some industries52,53. 
Based on the above analysis, Hypothesis 2 (H2) is proposed.

H2: Industrial structure acts as a positive channel between the Plan and urban GEE when factors shift 
from energy-consuming and pollution-intensive industries to technological-driven and environment-
friendly industries. Otherwise, the urban GEE might be impeded.

Measurement and analysis of urban GEE in China
Measurement of urban GEE
Methods for measuring the GEE can be broadly classified into two main categories: parametric and non-
parametric approaches. The parametric approach, typically represented by Stochastic Frontier Analysis (SFA), 
requires the specification of a production function, along with distribution assumptions, and focuses on a single 
output factor. In contrast, the non-parametric approach, exemplified by Data Envelopment Analysis (DEA), 
does not require predefined functional forms and can accommodate multiple output factors. Given that urban 
GEE involves both desirable outputs (e.g., economic growth) and undesirable outputs (e.g., environmental 
pollution), DEA is more commonly employed for GEE evaluation, using a total-factor analytical framework54.

In this study, we adopt the Slack-Based Measure-Global Malmquist Luenberger (SBM-GML) model, as 
proposed by Salman et al.55 and Wang et al.49, to assess GEE. The SBM-GML model comprehensively accounts 
for resource inputs, desirable outputs, and undesirable outputs, providing a more holistic reflection of urban 
GEE across economic, environmental, and resource dimensions. Unlike traditional DEA models, the SBM-GML 
model addresses non-radial slacks, effectively managing non-zero slacks in inputs and outputs. This enhances 
measurement accuracy and helps avoid potential biases. Furthermore, the SBM-GML model is highly flexible, 
allowing it to be applied across various cities, industries, and countries, and can be customized to meet specific 
research needs, making it a robust tool for diverse scenarios56,57.

In the SBM-GML model for measuring urban GEE in China from 2005–2020, the decision-making units 
(DMU) is 284 cities at and above the prefectural level in China. Thus, the GEE of the city i is identified as the 
ratio of the theoretical minimum input factor X (xi1, xi2, …, xiM) to the actual input when the undesirable output 
factor Z (zi1, zi2, …, ziO) is minimized under the given constraints of the desirable economic output factor Y (yi1, 
yi2, …, yiN).

First, the basic production possibility set P(X) is constructed:

 P (X) = {(Y, Z) : X → (Y, Z)} , X ∈ R+, Y ∈ R+, Z ∈ R+ (1)

Also, in period T (t = 1, 2, …, t), the P (X) of city i is expressed as P(X)i = (xt
i, y

t
i, z

t
i) and the production possibility 

set P(X) is expressed:
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)
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where λT represents cross-section observations.

Then, following Tone58, the SBM model is defined as:
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where
∑

λT = 1; λT ≥ 0; SX ≥ 0; SY ≥ 0; SZ ≥ 0

 (3)

where ⃗S
T
C denotes the directional distance function based on constant returns to scale; XT′, YT′, ZT′ denotes input 

factors, desirable output factors, and undesirable output factors, respectively; GX, GY, GZ denotes the direction 
vector of input decrease, desirable output increase, undesirable output decrease, respectively; SX, SY, SZ denotes 
the slack vector of input factors, desirable output factors and undesirable output factors, respectively.

Finally, the GML (Global Malmquist Luenberger) index is established:

 
GMLT∼T+1 =

1 +DG
(
XT, Y T , ZT

)
1 +DG (XT+1, Y T+1, ZT+1)

 (4)

where, DG (XT, YT, ZT) and DG (XT+1, YT+1, ZT+1) denotes global directional distance function for periods T and 
T + 1, respectively. A value of GML > 1 indicates an increase in GEE of city i from period T to T + 1. GML = 1 
indicates unchanged; GML < 1 indicates a decrease.
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Furtherly, the GML index can be decomposed into the GEC (global efficiency change) index, which mean 
and GTP (global technology progress) index. In this case, formula (4) can be transformed into formula (5) as 
following:

 

GMLT∼T+1 = GEC T∼T+1 ·GTPT∼T+1

=
1 +DT

(
XT, Y T , ZT

)
1 +DT+1 (XT+1, Y T+1, ZT+1)

·

[
1 +DG

(
XT, Y T , ZT

)/
1 +DT

(
XT, Y T , ZT

)

1 +DG (XT+1, Y T+1, ZT+1)
/
1 +DT+1 (XT+1, Y T+1, ZT+1)

]
 (5)

where, GECT~T+1 indicates the technical progress changes or technical innovation improvement from period T 
to T + 1; GTPT~T+1 indicates the distance between the gap from the optimal production front in period T and 
the one in period T + 1.

Specifically, the SBM-GML model under environmental air constraints contained three input factors, i.e., labor 
(L), capital stock (K) and energy consumption (E); one desirable output factor, i.e., gross domestic product 
(GDP); and three undesirable output factors, i.e., industrial smoke (powder) dust emissions (SD), industrial SO2 
emissions (SO2) and annual average concentration of PM2.5 (PM2.5).

Input factors of urban GEE
(1) Capital stock (K): is calculated by the method called “perpetual inventory”19,59, with formula as the following:

 Ki,t = Ei,t−1 + (1− d) ∗Ki,t−1 (2005 < t ≤ 2020); Ki,2005 = Ei,2005/(g + d) (6)

where Ki,t is the capital stock of city i in year t, and Ei, t is the total investment in fixed assets on the city i in year 
t, δ is the depreciation rate (5% set in here); g is the geometric average growth rate of investment in fixed assets 
in city i from 2005 to 2020.

(2) Labor (L): is measured by total employment at year-end of each city.
(3) Energy consumption (E): is measured by total calorific value calculation (104 tce) of each city, which 

is converted by total supply of gas (i.e., coal gas, natural gas), liquefied petroleum gas, and annual electricity 
consumption.

Output factor of urban GEE
(1) Desirable output factor is: GDP of each city is regarded as the desirable output factor of SBM-GML model, 
after being deflated based on the price index of year 2000.

(2) Undesirable output factors are as follows: ① industrial smoke (powder) dust emissions (SD); ② industrial 
SO2 emissions (SO2); ③ annual average concentration of PM2.5 (PM2.5) .

The data of both input factors and output factors is obtained from the China Urban Statistical Yearbook and 
the China Statistical Yearbook.

Analysis of urban GEE
Overall analysis
Based on the calculation of the SBM-GML model, the GEE of 284 prefectural levels and above cities in China 
were obtained for 2006–2020. As shown in Fig. 2, the average value of urban GEE in China shows a general 
growth trend, increasing from 0.991 in 2006 to 1.014 in 2020, with an average value of 1.003 and a growth 
rate of 0.17%. Based on the timing of the plan issuance, we divided the sample into two periods: 2006–2012 
and 2013–2020. It can be observed that before the issuance of China’s Plan, from 2006–2012, the urban GEE 
exhibited a fluctuating trend resembling an M-shape, with an average value of 1.001 and a growth rate of 0.13%; 
after the issuance of the Plan, from 2013–2020, the urban GEE shows a growth trend resembling a W-shape, with 
an average value of 1.004 and a growth rate of 0.29%.

Regional analysis
On the one hand, Fig. 3 shows the average value of urban GEE in China’s four economic zones (Eastern, Northeast, 
Central, and Western) from 2006–2020, reflecting that generally, the GEE trends of cities in China’s four zones 
are similar to that in Fig. 1. Specifically, based on the average value of GEE, the ranking from highest to lowest is 
as follows: Eastern zone (1.005), Central zone (1.002), Western zone (1.002), and Northeast zone (1.000). Based 
on the growth rate, the ranking from highest to lowest is as follows: Eastern zone (0.23%), Central zone (0.21%), 
Western zone (0.12%), and Northeastern zone (0.03%). Before the issuance of the Plan, based on the average 
level, the ranking from high to low is as follows: Eastern zone (1.002), Western zone (1.002), Northeast zone 
(1.001), and Central zone (1.000). Based on the growth rate, the ranking from highest to lowest is as follows: 
Eastern zone (0.18%), Western zone (0.15%), Central zone (0.14%), and Northeastern zone (− 0.05%).

Notably, the analysis implies that China’s Plan, as an environmental regulation for APPC, may widen the gap in 
urban GEE between the Eastern/Central zone and Western/Northeast zone and bring more incentives for green 
economic development and transformation for cities in Eastern/Central zone than Western/Northeast zone thus 
exhibiting a potential “Matthew effect.” Consistent with Shuai and Fan60, our findings reveal a rising trend in 
GEE across China’s eastern, central, and western zones, accompanied by pronounced spatial inequalities. While 
environmental policies, such as the Plan, can broadly enhance GEE, they may also intensify regional disparities.

On the other hand, Fig. 4 shows the average value of urban GEE in China’s key regions and non-key regions 
from 2006–2020, reflecting that generally the GEE trends of cities in key and non-key regions are similar to that 
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in Fig. 1 as well. Specifically: ① The average value of urban GEE in key regions and non-key regions is 1.004, 
with a growth rate of 0.22% and 1.002, with a growth rate of 0.13%, respectively. ② Before the issuance of the 
Plan, the average value of urban GEE in key regions and non-key regions is 1.001, with a growth rate of 0.19% 
and 1.001, with a growth rate of 0.10%, respectively. ③ After the issuance of the Plan, the average value of urban 
GEE in key regions and non-key regions is 1.007, with a growth rate of 0.35% and 1.002, with a growth rate of 
0.25%, respectively.

Furthermore, to reflect the urban differences and trends in GEE, Fig. 5 shows the average GEE of the top 10 
cities with its average growth rate in China from 2006–2020, indicating that all of top 10 cities are located in 
key regions. Specifically, based on the average value of GEE, the ranking from high to low is as follows: Beijing 
(1.040) with a growth rate of 0.52%, Xi’an (1.037) with a growth rate of 0.52%, Chengdu (1.033) with a growth 
rate of 1.37%, Guangzhou (1.032) with a growth rate of 0.63%,Changsha (1.029) with a growth rate of 1.22%, 
Hangzhou (1.024) with a growth rate of 0.55%,Xiamen (1.022) with a growth rate of 1.25%, Xianyang (1.018) 
with a growth rate of − 0.04%, Ningbo (1.018) with a growth rate of 0.48%, Fuzhou (1.017) with a growth rate 
of − 1.30%. Summarily, the above results imply that the Plan might widen gap of GEE between the key regions 
and non-key regions, thus presenting a potential environmental regulating effect on key regions, where the air 
pollutant was effectively controlled with the continuous development of the economy.

Fig. 3. Trends of urban GEE in four economic zones from 2006–2020.

 

Fig. 2. Trends of urban GEE in China from 2006–2020.
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Methodology and variables
Model design and variable definition
As a robust quasi-experimental approach, the DID model addresses endogeneity concerns. Given that urban 
GEE is influenced by unobserved factors beyond APPC policies, treating the Plan as a quasi-natural experiment 
allows for a clearer identification of its causal impact on GEE by comparing pre- and post-policy periods across 
treatment group and control group. Furthermore, the DID model effectively controls for potential confounding 
from time-variant factors and city-specific characteristics, enhancing estimate robustness, ensuring a more 
precise assessment of Average Treatment Effect (ATE) derived from APPC on urban GEE. Therefore, referring 
to the Zhang and Zhang61, we regard construct a DID model given by following equation:

 GEEit = α + βTRit +
∑

λXit + µi + δt + εit (7)

where, the subscript, i and t, denotes the city and the year, respectively.

Fig. 5. Top 10 cities in terms of average GEE with growth rate from 2006–2020.

 

Fig. 4. Trends of urban GEE in key regions and non-key regions from 2006–2020.
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The dependent variable, GEEit, denotes the green economy efficiency of city i at year t, which is measured by 
the value of prefecture-level and above cities calculated by the SBM-GML model in section “Measurement and 
analysis of urban GEE in China”.

The treatment variable, TRit, is dummy variable to measure whether city i has been affected by the issuance 
of China’s Plan in year t. Knowing that issued in December, 2012, China’s Plan is implemented in 13 key region, 
covering 4 municipalities directly under the central Government, 112 prefecture-level cities, 6 county-level 
cities, which compose the treatment group. Other cities located in the non-key regions compose the control 
group. Moreover, considering that the issuance time of the Plan is the end of 2012, governments at all levels 
and relevant plants need a certain amount of time to give feedback or take action, so here we set treatment time 
is 2013. That is, we set TR = 1 for the city i located in key regions (i.e., treatment group) after 2012 (i.e., from 
2013–2020). Otherwise, if the city i located in non-key regions (i.e., control group) from 2006–2020 and city i 
located in key regions from 2006–2012 cannot be influenced by the Plan, thus TR = 0. Notably, the coefficient 
β of variable TR can capture the ATE of the Plan on urban GEE, which means that if β is significantly positive, 
there will be a positive ATE made by China’s plan on urban GEE.

The control variables, X, encompass ① Development level (DL), which is measured by the average salary 
of the working staff in each city; ② Financial level (FL). which is measured by the proportion of total deposits 
and loans of financial institutions in GDP of each city; ③ Urbanization rate (UR) , which is measured by the 
proportion of urban resident population in total resident population (urban resident population and rural 
resident population) of each city.

Other variables, μi and δt, denotes the city-fixed and year-fixed effects, respectively, controlling for city-level 
factors that do not vary with time and year-level characteristics that do not vary with city; εit is the residuals. To 
relieve potential heteroscedasticity and serial correlation, we clustered the standard errors at the city-year level.

Statistical description of variables
The final sample consisted of 284 cities at the prefecture level and above in China from 2006–2020, covering three 
periods (i.e., the 11th Five-Year Plan, the 12th Five-Year Plan, and the 13th Five-Year Plan). Missing values were 
filled by linear interpolation. To avoid potential heteroscedasticity and dependence on the DID model setting, 
we took control variables as their natural logarithms. To avoid the influence of extreme values, all variables were 
winsorized by 1% in the empirical analysis. All relevant data were obtained from the China Statistical Yearbook, 
China Urban Statistical Yearbook, and China Environmental Statistical Yearbook. Table 1 presents the descriptive 
statistical of all variables.

Empirical analysis
Benchmark tests
Table 2 reports the ATE of issuing China’s Plan on urban GEE in line with Eq. (7). The results of DID estimation 
are shown in columns (1)–(5). Column (1) and (2) represents the estimated result of DID model based on both 
the city-fixed effect and the year-fixed effect, without and with control variables, respectively. Column (3), (4), 
and (5) represents the result the estimated result of DID model with only on the city-fixed effect, with only the 
year-fixed effect, and without city-fixed effect or the year-fixed, respectively. Obviously, all the coefficients β of 
the variable TR are positive, and crucially, the coefficients β in Column (2) passed the significance test at a 1% 
confidence level. That is, after issuing the Plan, urban GEE of treatment group is significantly higher than that of 
control group cities, indicating that China’s Plan is conducive for improving urban GEE. This finding aligns with 
the studies of Zhou and Qi62, Guo and Hu63, which highlight the role of environmental regulations in promoting 
green growth, and gives evidence to support the “Porter hypothesis.”

Robustness checks
Parallel trend test
Ensuring the presence of a parallel trend between the treatment group and the control group is crucial for the 
proper estimation of the DID model. Therefore, we establish model (8) to investigate the parallel trend of the 
ATE driven by the Plan on urban GEE. This is formulated through the following equation:

 
GEEit = α0 +

5∑
j=−4

γt · TRi t0+j +
∑

λXit + µi + δt + εit (8)

where TRito+j is a year dummy variable representing whether the city i has been subject to the Plan for j years 
since the reference year t0. Specifically, it takes the value of 1 for the city i that has been issued the Plan for j years 

Variables Meaning (units) Obs Mean Sd Min Max

GEE Green economy efficiency (–) 4260 1.003 0.034 0.847 1.168

TR Whether be affected by the “Plan” (–) 4260 0.408 0.492 0.000 1.000

ln_DL Logarithm of development level (Yuan) 4260 10.628 0.514 9.479 11.616

ln_FL Logarithm of financial level (–) 4260 0.730 0.424 − 0.143 1.910

ln_UR Logarithm of urbanization rate (%) 4260 3.886 0.350 2.721 4.549

Table 1. Statistical description of variables.
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before or after the reference year, and 0 otherwise. The coefficient γ estimated the ATE of the Plan in the jth year 
before and after its issuance. If the significance of coefficient γ coefficient is confirmed through statistical tests, it 
implies a statistically significant difference in GEE between the treatment group and control group. All control 
variables X remain consistent with those in Eq. (7).

As shown in Fig. 6, before the issuance of China’s Plan (j < 0), the coefficients γ of variable TR are not significant, 
reflecting no significant difference in GEE between the treatment and control groups. After the issuance of 
China’s Plan (j > 0), the coefficients γ of variable TR are all positive, yet significant only in the third, fourth and 
fifth years (j = 3, 4, 5). The results manifest the “hysteresis” ATE of the Plan on urban GEE, possibly because there 
is path dependence on traditional production mode, therefore a lag in the ATE.

Placebo test
To ensure the validity of employing the DID method, it is crucial to establish that there are no significant 
differences in the trends of urban GEE between the treatment and control groups before the issuance of the Plan. 
Following the methodology outlined by Cai et al.64, a placebo test is conducted. In this test, one year is randomly 
selected as the time-point for the issuance of the Plan for a new treatment group, consisting of cities randomly 
chosen from the sample. To enhance the statistical power of the placebo test, this random generation process is 
repeated 500 times.

As illustrated in Fig. 7, the Kernel density estimated coefficients β of the variable TR with corresponding P 
values exhibit a normal distribution centered around 0. Importantly, these observations suggest that the ATE 
value (0.005) of the issuing Plan significantly deviates from the placebo test results (0). This outcome rules out 
the possibility that differences in the ATE of environmental air regulation between the treatment and control 
groups are caused by random factors. It underscores the robustness of the benchmark results.

PSM-DID estimation
To mitigate potential systematic differences between the treatment group and the control group, the PSM 
(Propensity Score Matching) method is employed. This involves selecting control variables, such as DL, FL, UR) 
in Eq. (7), as matching covariates. Cities with the closest matching scores are then chosen as the control group for 
the subsequent DID estimation. The outcomes of the PSM-DID estimation are presented in columns (1) of Table 
3 and the positive value of the coefficient β is consistent with estimated results of the benchmark DID regression 
in Table 2, reflecting that the Plan is conductive to urban GEE robustly.

Deleting sample of municipalities and provincial capitals
Considering that there are some cities with higher administrative level in APPC regions, which have higher 
air quality and better economic foundation, we exclude the samples of 4 municipalities directly under the 
Central government of China and 29 provincial capitals and then makes DID estimation, further eliminating 
the interference of “non-random” factors on the DID regression results. According to the report in Column (2) 
of Table 3, the coefficient β is still significantly positive.

Excluding the interference of other regulatory policy
Issued in 2010, the China “Low-Carbon Pilot Projects” (LCPP) in provinces, regions, and cities, identifying the 
first batch of LCCP in five provinces and eight cities. In 2012, the LCPP extended to a second batch in other cities 
or provinces, including Beijing, Shanghai, and Shijiazhuang. To account for the potential impact of China’s LCPP 

Fig. 6. The dynamic ATE of China`s Plan on urban GEE.
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on urban GEE, the interaction term LC × TM of the LCPP dummy variable (LC) and the time trend variable 
(TM) for the low-carbon pilot cities is added in Eq. (7). As indicated in Column (3) of Table 3, the coefficient β 
of variable TR remains significantly positive, while the coefficient of the interaction term LC × TM is negative 
and statistically insignificant. This suggests that the Plan is the dominant policy influencing urban GEE in China.

Furthermore, in 2012, to enhance ambient air quality, the Ministry of Environmental Protection of China 
and the General Administration of Quality Supervision, Inspection, and Quarantine jointly released stricter 
“Ambient Air Quality Standards” (AAQS), which was gradually implemented in 74 key cities in 2012, and later 
in 113 another key cities in 2013. Thus, the interaction term AS × TM of the dummy variable (AS) and the time 
trend variable (TM) for the key cities is incorporated into Eq. (7). The results in Column (4) of Table 3 show that 
the coefficient β of variable TR remains significantly positive, and the coefficient of the interaction term AS × TM 

Variables

PSM-DID estimation Delete sample of municipalities and provincial capitals Eliminate interference of the LCPP Eliminate interference of the AAQS

(1) (2) (3) (4)

TR 0.006*** 0.006*** 0.006*** 0.004*

(0.002) (0.002) (0.002) (0.002)

LC × TM − 0.0003

(0.000)

AS × TM 0.0004

(0.000)

L1.GEE

L2.GEE

_cons 0.914*** 0.936*** 1.158*** 0.557**

(0.078) (0.057) (0.195) (0.255)

Control 
variables YES YES YES YES

City-Fixed Effect YES YES YES YES

Year-Fixed 
Effect YES YES YES YES

Obs 3591 3795 4260 4260

R2 0.126 0.115 0.119 0.119

Table 3. Robustness checks results. The standard error value of coefficients is in parentheses; *, **, and *** 
denotes the significance levels of 10%, 5%, and 1%, respectively.

 

Fig. 7. The kernel density of 500 estimates in placebo test. Notes: The X-axis represents the coefficient β of 
the variable TR from 500 random estimation of placebo test; the Y-axis represents the P values and K-density 
coefficients from each random regression. The gray solid line is the kernel density distribution curve of all 500 
estimated coefficients, whereas the gray dots are corresponding P values. The left and the right red vertical dash 
line is the value of zero and coefficient β in Column (2) of Table 2, respectively.
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is statistically insignificant. This implies that the Plan continues to be the predominant policy improving urban 
GEE.

Heterogeneity tests
Note that the regions of China exhibit distinct characteristics in terms of economic conditions, urban population, 
resource endowment, and environmental constraints. These variations can influence the effectiveness of 
environmental air regulations on green economy41,62,65,66. Consequently, this section aims to validate the 
heterogenous ATEs of issuing a plan on urban GEE, considering four aspects: cities in the four economic zones, 
population density, city size, resource constraints, and regulation intensity (see Tables 4 and 5).

Heterogeneity of economic zones
The analysis, segmented by China’s economic zones, divides the overall samples into four sub-samples, including 
eastern cities, western cities, central cities, and northeast cities. This segmentation aims to explore whether there 
are heterogeneous ATEs of the Plan. The coefficients β of columns (1)–(4) in Table 4 indicate that the Plan leads to 
a significant improvement in urban GEE specifically for the eastern economic zone. Possibly, compared to other 
economic zones, the eastern region has faster economic growth and is generally dominated by technology- and 
capital-intensive industries. It has relatively strong innovation capabilities and abundant innovation resources, 
providing favorable conditions for industries to transform, upgrade, or eliminate outdated production capacity. 
In addition, residents in the eastern zone have a higher awareness of environmental protection and requirements 
for environmental quality. Therefore, the “innovation incentive effect” brought by the Plan is higher than its 
“cost compliance effect,” ultimately helping increase urban GEE in the eastern zone. Contrarily, the central 
and northeastern economic zones are focused on heavy or resource-intensive industries lacking in technology 
and path dependence, while the western region has a relatively backward economy and weak innovation and 
industrial foundations. It is labor-intensive and has a relatively extensive production pattern. Most cities in these 
zones have long faced talent outflow. Moreover, they have taken on high-energy-consuming and high-polluting 

Variables

City size Resource constraint Regulation intensity

Large-sized
(1)

Small-sized
(2)

Non resource-based
(3)

Resource-based
(4)

Major-APPC
(5)

General-APPC
(6)

TR 0.007* 0.004 0.008*** − 0.002 0.007** 0.005*

(0.004) (0.002) (0.003) (0.003) (0.003) (0.002)

_cons 0.953*** 0.931*** 0.997*** 0.875*** 0.904*** 0.866***

(0.122) (0.064) (0.074) (0.083) (0.061) (0.059)

Control 
variables YES YES YES YES YES YES

City-Fixed Effect YES YES YES YES YES YES

Year-Fixed 
Effect YES YES YES YES YES YES

Obs 1515 2745 2550 1710 3225 3585

R2 0.149 0.096 0.139 0.093 0.114 0.104

Table 5. Heterogeneity test of city size, resource constraints, and regulation intensity. The standard error value 
of coefficients is in parentheses; *, **, and *** denotes the significance levels of 10%, 5%, and 1%, respectively.

 

Variables

Economic zone Population density

Eastern zone
(1)

Central zone
(2)

Western zone
(3)

Northeast zone
(4)

High-density
(5)

Low-density
(6)

TR 0.018** 0.003 0.001 0.008 0.005** − 0.000

(0.008) (0.005) (0.005) (0.005) (0.002) (0.007)

_cons 1.285*** 0.731*** 0.860*** 0.936*** 0.968*** 0.856***

(0.151) (0.113) (0.088) (0.117) (0.057) (0.173)

Control 
variables YES YES YES YES YES YES

City-Fixed Effect YES YES YES YES YES YES

Year-Fixed 
Effect YES YES YES YES YES YES

Obs 1290 1200 1260 510 3900 360

R2 0.161 0.147 0.096 0.144 0.126 0.103

Table 4. Heterogeneity test of economic zones and population density. The standard error value of coefficients 
is in parentheses; *, **, and *** denotes the significance levels of 10%, 5%, and 1%, respectively.
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industries from other zones for local economic development. The issuance of the Plan might accelerate the 
transfer of polluting plants to cities of western zone.

Heterogeneity of population density
The Aihui-Tengchong Line, or Hu Line, is a boundary that separates China’s population level from its economic 
and social structure. The eastern side of Hu Line accounts for only 43.8% of China’s territory, with over 90% 
of the population. This region primarily consists of plains, water networks, and gentle hills. It has a relatively 
high average temperature and has historically relied on agricultural economies. In contrast, the western side 
of Hu Line has a population of less than 10% and a very low population density. This region is characterized 
by grasslands, deserts, and snow-covered plateaus. It has a cold and harsh climate and has relied on nomadic 
economies. Thus, the Hu Line is also known as China’s ecological and environmental boundary. The overall 
sample is divided into two subsamples: cities on the eastern side of the Hu Line (i.e., the high-population density 
cities) and cities on the western side of the Hu Line (i.e., the low-population density cities). The coefficients β 
of columns (5)–(6) in Table 4 show that national Plan significantly benefits the GEE of cities on the eastern side 
of the Hu Line, namely, the high-population density cities. This is possible because compared to cities on the 
western side of the Hu Line, those on the eastern side have a large pool of innovative talent. Communicating and 
aggregating continually, they achieved knowledge spillovers and economies of scale. This provides a strong labor 
force and technological reserve for green innovation and industrial upgrading in that region. Plus, the intensity 
of China’s environmental information supervision has gradually weakened from east to west67,68. In this sense, 
under the stimulation and promotion of China’s APPC they could have a higher urban GEE.

Heterogeneity of city size
Based on household population size, the overall sample is divided into two sub-samples: large-sized cities 
(household population > 5 million) and small-sized cities (household population ≤ 5 million). According to the 
value of coefficients β in columns (1)–(2) of Table 5, implementing national Plan has a positive effect on the GEE 
of large-sized cities, but no significant effect on small-sized cities. A possible explanation is that China’s large-
sized cities tend to have more diversified industrial sectors and relatively complete industrial systems, making 
the transition from pollution-heavy production to green, intensive growth more efficient with economies of 
scale63. In contrast, small-sized cities often have a more homogeneous industrial structure and face higher levels 
of industrial isomorphism, which limits the effectiveness of the APPC in boosting their GEE.

Heterogeneity of resources constraints
Recognizing that various resource constraints can influence the impact of environmental regulations69, a 
segmentation based on resource constraints is considered. Referring to the National Plan for Sustainable 
Development of Resource-based Cities (2013–2020) (The website of the file is:  h t    t p : /  /  e n  g  l i s  h . w  w w .  g  o v .  c n  /  a  r c h  i 
v e / s t a t  e _ c o u n c i l _ g a z e t t e / 2 0 1 5 / 0 6 / 0 8 / c o n t e n t _ 2 8 1 4 7 5 1 2 3 3 2 1 1 5 7 . h t m     ) issued by the State Council of China in 
2013, the resource-based cities were identified. Thus, the overall samples are divided into two sub-samples: 
non-resource-based cities and resource-based cities. The coefficients β of variable TR in columns (3)–(4) of 
Table 5 reveal that China’s APPC exerts a significant positive ATE on GEE of non-resource-based cities, while 
the insignificant ATE on GEE was observed in non-resource-based cities. Conversely, an insignificant ATE 
on GEE is observed in resource-based cities. This discrepancy may be attributed to the fact that, compared to 
resource-based cities, non-resource-based cities have lower dependence on resources and lower costs associated 
with environmental air regulation. Faced with the environmental pressure induced by the Plan, non-resource-
based cities are compelled to upgrade green technology or explore new energy sources to address air pollution. 
Plants with high energy consumption or significant pollution in these cities have a strong incentive to invest in 
green R&D and enhance green innovation. Inversely, resource-based cities face a serious “resource curse” and 
even “race to the bottom” among governments at all levels for the depletion of resources70–73. This has added 
resistance to green economic transformation and development, ultimately resulting in the inability of the Plan to 
effectively promote the GEE of resource-based cities.

Heterogeneity of regulation intensity
Based on geographical features, socio-economic development level, atmospheric pollution level, urban spatial 
distribution, and the regional transport law of atmospheric pollutants, all key regions mentioned in China’s Plan 
(i.e., the “Three Zones and Ten Clusters”) is divided into two types: major-APPC cities and general-APPC cities. 
For different regions, the differentiated control requirements are implemented, and targeted APPC strategies are 
formulated. Thus, the overall samples are divided into two sub-samples: cities in major APPC cities (i.e., cities 
with high regulation intensity) and cities in general APPC cities (i.e., cities with low regulation intensity). The 
coefficients β of variable TR in columns (5)–(6) of Table 5 reveal that China’s Plan exerts a significant positive 
impact on GEE of both major-APPC and general-APPC cities, especially the high ones. Possibly because for 
cities with high regulation intensity or major-APPC cities, more stringent environmental access conditions are 
implemented, and special emission limits for targeted industry pollutants are enforced, along with more effective 
pollution control measures. Furthermore, major-APPC cities also possess a high reserve of high-end talent and 
a relatively strong economic foundation. Additionally, there is a prevalent “race to the top” among various levels 
of government, which leads to the more efficiency derived from national Plan in promoting GEE of major-APPC 
cities.

Mechanisms tests
The above analysis demonstrates that implementing China’s Plan enhances urban GEE significantly. Then, what 
are the specific transmission mechanisms or pathways involved? Based on the two hypotheses raised in Section 
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"Policy background and mechanism analysis" (i.e., H1 and H2), we use green innovation and industrial structure 
as the two key mediators to construct the Mediating Effects Models (MEM) to identify the mechanisms of 
China’s Plan driving urban GEE, including the roles played by either green innovation or industrial structure 
in this process. To check H1 and H2, we refer to Hicks and Tingley74 and derive the following MEM equations:

 MEit = α0 + α1TRit +
∑

λXit + µi + δt + εit (9)

 GEEit = γ0 + γ1TRit + γ2MEit +
∑

λXit + µi + δt + εit (10)

where ME denotes the mediating variable through which the Plan makes the ATE on urban GEE, including ① 
Green innovation with green innovation quantity, GIT and green innovation quality, GIL (In the MEM estimation, 
the values of GIT and GIL are characterized by adding 1 to the number of green invention patent applications 
and grants, respectively, and then taken in the logarithmic form. The data on green invention patent applications 
and grants is obtained from the Chinese Research Data Services (CNRDS) Platform.). GIT and GIL represent the 
number of green invention patent applications and grants, respectively. ② Industrial structure, comprises two 
essential components: Industrial Structure Rationalization (ISR) (ISR is measured by the Thiel index or Theil’s 
entropy measure, the equation of which is ISR =

∑3
i=1 (yi) ln (yi/li), where yi means the proportion of the 

added values of the primary ( i = 1), secondary (i = 2), or tertiary (i = 3) industry in GDP, and li means the ratio 
of the employees in the primary (i = 1), secondary (i = 2) or tertiary (i = 3) industry to the total employees. In the 
MEM estimation, the values of ISR are taken in the logarithmic form. The data on ISR is obtained from the China 
Urban Statistical Yearbook) and Industrial Structure Optimization (ISO) (ISO is calculated by the following steps. 
First, the ratio of value added by the primary, secondary or tertiary industries to GDP is considered a component 
in the vector, thus getting three-dimensional vectors X0 = (x1,0, x2,0, x3,0). Then, calculate the angle θj (j = 1, 2, 3) 
of each industry between vectors X0 and the vectors X1 = (1, 0, 0), X2 = (0, 1, 0), X3 = (0, 0, 1) arranged from low 

to high, as following equation: θj = arccos

( ∑3
i=1 (xi,j ·xi,0)

∑3
i=1

(
x2
i,j

)1/2
·
∑3

i=1

(
x2
i,0

)1/2

)
. Finally, we get the value of SO according 

to the equation ISO =
∑3

k=1

∑k
i=1 θj. In the MEM estimation, the values of ISO are taken in the logarithmic 

form. The data of ISO is obtained from the China Urban Statistical Yearbook). ISR gauges the adaptability of 
industrial structure to shifts in science and technology, and resource conditions. On the other hand, ISO reflects 
the evolution of industrial structure from elementary to advanced stages.

The proportion of total ATE that is mediated by ME between the Plan and urban GEE is measured by the 
equation: The proportion of total ATE mediated = Indirect ATE/Total ATE = Indirect ATE/(Direct ATE + Indirect 
ATE) = (γ2 × α1)/(γ1 + γ2 × α1), where γ1 and γ2 × α1 denotes Direct ATE and Indirect ATE, respectively (see in 
Fig. 8). The test results for green innovation and industrial structure mechanisms are presented in Tables 6 and 
7, respectively.

Green innovation mechanism tests
Columns (1)–(2) and Columns (3)–(4) of Table 6 report the mediating mechanisms of the GIT and GIL, 
respectively, as estimated by MEM. First, according to Eq. (9), the coefficient α1 of variable TR in column (1) is 
not significant, while coefficient α1 in column (3) is significantly positive, testifying that China’s Plan facilitates 
green innovation quality rather than green innovation quantity. Next, according to Eq.  (10), after adding a 
mediating variable (i.e., GIT/GIL), the coefficient γ1 of variable TR in columns (2) and (4) remains significantly 
positive. Moreover, the coefficients γ2 of both variable GIT in column (2) and GIL in column (4), reflecting 
either green innovation quantity or quality, are conducive to promoting urban GEE in China. In other words, 
as mentioned in the “Porter Hypothesis,” implementing the Plan forces or induces polluting plants in the city to 

Fig. 8. MEM analysis diagram.
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engage in green R&D or innovation to obtain innovation competitiveness and excess profits. This becomes the 
driving force for improving urban GEE.

Consequently, China’s Plan makes positive ATE on green innovation quality, pushing the urban GEE further. 
That is, the ATE of the Plan on urban GEE is positively mediated by green innovation quality, which is an indirect 
or mediating effect of GIL, with a value of 0.0006. Correspondingly, the proportion of total ATE mediated by GIL 
is 11.76%. Thus, H1 is partially verified.

Independent Variables

Dependent variables

(Plan → ISO → GEE) (Plan → ISR → GEE)

ISO
(1)

GEE
(2)

ISR
(3)

GEE
(4)

TR 0.008*** 0.003** 0.156*** 0.006***

(0.001) (0.001) (0.026) (0.002)

ME 0.033** − 0.001

(0.016) (0.001)

_cons 1.567*** 0.894*** 0.298 0.975***

(0.034) (0.028) (0.944) (0.058)

Control variables YES YES YES YES

City-Fixed Effect YES YES YES YES

Year-Fixed Effect YES YES YES YES

Obs 4260 4260 4260 4260

R2 0.944 0.071 0.838 0.119

Indirect ATE (γ2 × α1)
0.0003** − 0.0002

(0.000) (0.000)

Proportion of total 
ATE mediated (%) 7.39% − 3.68%

Table 7. Results of industrial structure mechanism tests. Note: (1) *, **, and *** denotes the significance levels 
of 10%, 5%, and 1%, respectively; (2) the standard error values are in parentheses; (3) The method of Sobel-
Goodman Mediation Tests (SGMT) is used to obtain standard error and confidence interval of indirect ATE; 
(4) the variable ME is used to refer uniformly to mediating variables ISR and ISO in corresponding MEM.

 

Independent variables

Dependent variables

(Plan → GIT → GEE) (Plan → GIL → GEE)

GIT
(1)

GEE
(2)

GIL
(3)

GEE
(4)

TR − 0.007 0.005*** 0.266*** 0.005**

(0.031) (0.002) (0.034) (0.002)

ME 0.002** 0.002**

(0.001) (0.001)

_cons − 0.096 0.974*** 3.847*** 0.963***

(0.928) (0.058) (1.056) (0.058)

Control variables YES YES YES YES

City-Fixed Effect YES YES YES YES

Year-Fixed Effect YES YES YES YES

Obs 4260 4260 4260 4260

R2 0.930 0.119 0.907 0.120

Indirect ATE (γ2 × α1)
0.0000 0.0006**

(0.000) (0.000)

Proportion of total 
ATE mediated (%) − 0.27% 11.76%

Table 6. Results of green innovation mechanism tests. Note: (1) *, **, and *** denote significance levels of 10%, 
5%, and 1%, respectively; (2) the standard error values are in parentheses; (3) the Sobel-Goodman Mediation 
Tests (SGMT) method is used to obtain the standard error and confidence interval of indirect ATE; and (4) the 
variable ME is used to refer uniformly to mediating variables GIT and GIL in the corresponding MEM.
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Industrial structure mechanism tests
Columns (1)–(2) and Columns (3)–(4) of Table 7 report the mediating mechanism of the ISO and ISR 
estimated by MEM, respectively. First, the coefficients α1 of variable TR in column (1) and column (3) are both 
significantly positive, expressing that the issuance of China’s Plan promotes industrial structure optimization and 
rationalization. Then, after add mediating variable (i.e., ISO/ISR), the coefficient γ1 of variable TR in column (2) 
and (4) still keep significantly positive as well. Plus, the coefficient γ2 of variable ISO in column (2) is significantly 
positive, while that of variable ISR in column (4) did not pass the significance test, demonstrating that urban 
GEE benefit from industrial structure optimization rather other industrial structure rationalization. In other 
words, the implementation of the Plan places pressure on the environmental management of air pollution 
control in cities and provides impetus for the transformation of industrial structure. It effectively guides the 
flow of factors and resources towards sectors with higher green productivity, and promotes the transition of 
industrial structure from “low-end, highly pollution, and energy-intensive” to “high-end, green, and intensive.” 
This becomes another driving force for improving urban GEE.

Consequently, the China’2s Plan makes positive ATE on industrial structure optimization, which then 
helps improve urban GEE. That is, the positive impact of APPC on urban GEE in China is mediated positively 
by industrial structure optimization, i.e., indirect effect of ISO, value of which is 0.0003. Correspondingly, 
proportion of total ATE mediated by ISO is 7.39%. Until now the H2 is partly testified.

Further analysis: spatial spillover
Additionally, not only the efficiency or TPF per se of different regions may have spatial correlation25,59, and 
the regulatory effects of various environmental measures may also have spatial spillover among areas or even 
countries, which is often overlooked or ignored. Partly because some polluting plants move from areas with 
stringent environmental regulations to areas with lax or without environmental regulation, then bringing 
damage to the local environment, i.e., negative externality, which is also known as the “pollution haven 
effect”17,75,76. Correspondingly, the relocation or investment of eco-friendly resource-saving and enterprise, may 
help improve the local energy conservation and emission reduction via FDI inflows or green innovation, i.e., 
positive externality, which is also known as the “pollution halo effect”77–79.

Therefore, taking into account the potential local ATE induced by the Plan on GEE of geographical adjacent 
cities, i.e., the spatial spillover of ATE, we extend Eq. (7) by constructing a Dynamic Spatial-Dubin DID (DSD-
DID) model given by the following equation:

 GEEit = ξGEEit−1 + βTRit + ρ
∑

Wij ×GEEjt + θ
∑

Wij × TRjt + λ
∑

Xit + µi + δt + εit (11)

In this equation, the coefficient ξ measures the dynamic impact of urban GEE in the t − 1 year on that in the t year. 
If ξ = 0, the DSD-DID model will transform into a Static Spatial-Durbin DID model (SSD-DID); ρ represents 
the spatial coefficient, indicating spatial correlation or spillover of GEE among cities; the coefficient θ of the 
interaction W × TR measures the spatial spillover of the ATE; Here, Wij denotes the spatial weight matrix, which 
is the inverse of the spherical geographical distance between cities i and j. Other variables remain the same as 
Eq. (7).

Columns (1)–(2) and Columns (3)–(4) in Table 8 show the regression results for the SSD-DID model 
and DSD-DID models. All coefficients β of the variable TR are significantly positive. This verifies that after 
considering the spatial correlation, the issuance of the Plan still benefits urban GEE, confirming the robustness 
of the benchmark results. Also, the spatial coefficients ρ are significantly positive in all columns of Table 6, 

Variables

(1) (2) (3) (4)

SDM-DID SDM-DID DDM-DID DDM-DID

L.GEE − 0.012 − 0.017

(0.054) (0.054)

TR 0.005** 0.006** 0.005* 0.005**

(0.003) (0.003) (0.003) (0.003)

W × TR − 0.004 − 0.011* − 0.005 − 0.011*

(0.004) (0.006) (0.004) (0.006)

Spatial ρ 0.752*** 0.718*** 0.756*** 0.738***

(0.043) (0.049) (0.044) (0.049)

Control 
variables NO YES NO YES

City-Fixed Effect YES YES YES YES

Year-Fixed 
Effect YES YES YES YES

Obs 4260 4260 3976 3976

R2 0.005 0.010 0.002 0.002

Table 8. Results of spatial spillovers of ATE test. The standard error values of coefficients are in parentheses; *, 
**, and *** denote the significance at the 10%, 5%, and 1% levels, respectively.
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indicating that the GEE among cities produces a positive spatial spillover to neighboring cities. Notably, all the 
coefficients θ of the interaction term W × TR are significantly positive, displaying that implementing the Plan 
locally significantly improves the GEE of neighbors geographically. This suggests that the Plan’s implementation 
can have a positive spatial spillover of ATE on the GEE of nearby cities, demonstrating a “pollution halo effect” 
and expanding upon the findings of Bhowmik et al.15, which show that APPC policies can foster GEE spillovers 
beyond policy boundaries and potentially inspire adjacent regions to adopt greener practices.

According to the plan requirements, the lead in promoting the joint prevention and control of air pollution in 
key areas is undertaken. Furthermore, taking a holistic perspective, cities in the key regions implement regional 
strategies for APPC, to improve air quality, and strictly regulate environmental access, promote clean energy 
utilization, implement coordinated control of multiple pollutants, significantly reduce pollutant emissions, and 
establish an “incentive mechanism” that promotes environmental optimization and economic development. 
This facilitates the transformation of economic development and promotes the coordinated development of the 
regional economy and environment. Consequently, the local issuance of the Plan helps improve not only the 
local GEE but also the GEE of neighboring cities.

Conclusions, policy implications, and research prospects
Conclusions
The “12th Five-Year Plan for Key Regional Air Pollution Prevention and Control” is China’s first comprehensive 
plan for APPC, initiated in December 2012, serves as a significant environmental air regulatory tool. It represents 
a shift from the regulatory focus on controlling total pollutant emissions to improving environmental quality, 
aiming for a harmonious balance between economic development and environmental regulation.

This study, utilizing panel data from 284 prefecture-level and above cities spanning 2006 to 2020 and 
employing the SBM-GML model, measures and analyzes urban GEE (GEE) in China. The study further employs 
DID models and mediating effect models to explore whether and how China’s APPC policy promotes urban 
GEE. The key findings include:

① Overall, urban GEE in China shows a general growth trend. The issuance of national Plan for APPC may, 
however, contribute to widening the gap in urban GEE between the Eastern/Central and Western/Northeast 
zones and between key APPC regions and non-key APPC regions. ② The Plan significantly improves GEE in 
cities within key APPC regions, with a noticeable “hysteresis effect.” Robustness checks, including placebo tests 
and PSM-DID, further enhance the objectivity of the conclusions. Also, the positive spatial spillovers of the 
ATE induced by the Plan on urban GEE are also captured, revealing a “pollution halo effect”. ③ Heterogeneity 
tests indicate that the Plan predominantly benefits GEE in within cities of eastern zone, high-population density 
cities, large-sized cities, non resource-based cities and major-APPC cities. ④ Mechanism tests reveal that the 
Plan for APPC can favorably impact GEE through two mediating channel, either by promoting green innovation 
quality or by optimizing industrial structure in China.

Policy implications
Building on these findings, three policy recommendations are proposed:

 ①  Promoting Multi-Regional and Cross-Regional Collaboration: The study empirically demonstrates that the 
Plan has a significant positive ATE on urban GEE with a lag and spatial spillover effect. Therefore, there is a 
need to support collaborative efforts in air pollution prevention and control across multiple regions. Policy-
makers should discourage the transfer of polluting plants across regions, strictly prohibit practices such as 
“shifting the burden to others,” and establish clear responsibility for environmental pollution based on the 
principle of “who pollutes, who controls.” This collaborative approach can synergistically promote urban air 
pollution control and enhance green economy efficiency.

 ②  Tailoring Implementation to Regional Characteristics: Acknowledging the heterogeneous ATE of the Plan 
on GEE across different types of cities, policymakers should implement the Plan in a manner that considers 
the economic characteristics and environmental constraints of each region. Long-term strategies should be 
developed to balance sustainable economic development and air pollution prevention. For example, cities 
in the western and northeastern zones or areas with low population density should establish mechanisms 
compatible with their incentives and constraints, focusing on environmental protection while ensuring sus-
tainable development. Resource-based cities should accelerate green reforms to upgrade industries and seize 
opportunities for green development presented by the Plan.

 ③  Leveraging Environmental Regulatory Tools for Green Innovation and Industrial Upgrading: To address the 
challenge of short-term environmental deterioration and achieve long-term green development, the positive 
role of environmental regulatory policy tools should be fully utilized. Cities can introduce fiscal incentives 
and subsidies to encourage polluting plants to invest in green research and development. This approach 
aims to stimulate green innovation and achieve energy conservation and emissions reduction. Addition-
ally, diverse industrial support policies should be formulated to promote overall industrial transformation 
and upgrading, fostering synergistic linkages between different industries. This comprehensive strategy will 
contribute to a new path of environmental governance that focuses on overall industrial collaboration and 
upgrading, providing robust support for urban green economies.

Research forecast
The mechanism between environmental air regulation and urban green development is undoubtedly complex. 
While this study focuses on the mediating effects of green innovation and industrial structure, we recognize the 
significance of other key factors, such as resource allocation, intergovernmental dynamics, and foreign direct 
investment. Future research should explore these overlooked mechanisms to offer a more holistic understanding 
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of the relationship, potentially incorporating insights from more finer granularity, such as county-level or 
micro-level. Additionally, it highlights the need for more comprehensive selection and measurement of control 
variables, emphasizing the importance of a scientific and cautious approach in subsequent studies, given the 
limitations of quantitative methods and data availability.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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