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The design strain sensitivity 
of the schenberg spherical resonant 
antenna for gravitational waves
V. Liccardo 1*, C. H. Lenzi 2, R. M. Marinho Jr. 2, O. D. Aguiar 1, C. Frajuca 3, F. da Silva Bortoli 4 & 
C. A. Costa 1

The main purpose of this study is to review the Schenberg resonant antenna transfer function and to 
recalculate the antenna design strain sensitivity for gravitational waves. We consider the spherical 
antenna with six transducers in the semi dodecahedral configuration. When coupled to the antenna, 
the transducer-sphere system will work as a mass-spring system with three masses. The first one is 
the antenna effective mass for each quadrupole mode, the second one is the mass of the mechanical 
structure of the transducer first mechanical mode and the third one is the effective mass of the 
transducer membrane that makes one of the transducer microwave cavity walls. All the calculations 
are done for the degenerate (all the sphere quadrupole mode frequencies equal) and non-degenerate 
sphere cases. We have come to the conclusion that the “ultimate” sensitivity of an advanced version 
of Schenberg antenna (aSchenberg) is around the standard quantum limit (although the parametric 
transducers used could, in principle, surpass this limit). However, this sensitivity, in the frequency 
range where Schenberg operates, has already been achieved by the two aLIGOs in the O3 run, 
therefore, the only reasonable justification for remounting the Schenberg antenna and trying to place 
it in the sensitivity of the standard quantum limit would be to detect gravitational waves with another 
physical principle, different from the one used by laser interferometers. This other physical principle 
would be the absorption of the gravitational wave energy by a resonant mass like Schenberg.

Gravitational waves (GW) are ripples in the fabric of space-time generated by the acceleration of massive cosmic 
objects. These ripples move at the speed of light and can excite quadrupolar normal-modes of elastic bodies. The 
first detection of GWs from the inward spiral and merger of a pair of Black Holes (BH) (GW150914) has been 
widely discussed in the literature1–4. Furthermore, the recent simultaneous detection of the electromagnetic 
counterpart with GWs from a binary Neutron Star (NS) merger (GW170817) has officially begun the era of 
multi-messenger astronomy involving GWs5,6. Studying the universe with these two fundamentally different 
types of information will offer the possibility of a richer understanding of the astrophysical scenarios as well as 
of nuclear processes and nucleosynthesis. For the first time in the GW astronomy, it has been possible to deter-
mine the position in the sky of the source thanks to the detection, at the same time, of the three interferometers 
of the LIGO/Virgo collaboration5.

The Mario Schenberg Brazilian detector is based on the detection of five quadrupole modes relative to the 
mechanical vibrations of a spherical resonant-mass of MS = 1124 kg and radius R = 32.33 cm (Fig. 1). The oper-
ating frequency band is 3.15–3.26 kHz. The antenna is made of a CuAl(6%) alloy, which has a high mechanical 
quality factor Q ∼ 2× 106 at 4 K. The system is suspended by a vibration isolation system, capable of attenuat-
ing external vibrations by about 300 dB7,8. The instrument will be maintained at low temperatures ( ∼ 4 K) by 
cryogenic chambers (dewars), cooled down by a He flow9. The antenna is coupled to parametric transducers that 
will monitor the vibrations of the quadrupolar/monopolar normal modes of the sphere10–14. One of the main 
advantages of a GW spherical resonant antenna is its omnidirectional sensitivity, which makes it equally respon-
sive to all wave directions and polarizations15. Spherical resonant-mass antennas have been already intensively 
studied16–18. The designed antenna transduction system consists of nine transducers fixed on the surface of the 
sphere, six of which follow the truncated icosahedron configuration proposed by Johnson and Merkowitz19. This 
configuration presents some benefits and allows the simplification of the equations of motion, the determination 
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of the GW direction in the sky, and facilitates the interpretation of the signal. For more details on the Schenberg 
antenna, the reader is referred to20,21 and references therein. It is important to mention that, in addition to being 
a device to try to detect gravitational waves, the Schenberg antenna could also be used to test the hypothesis that 
the ripples in the curvature of the fabric of space-time can be scaled by a more minute “action”, whose detection 
requires sensitivities beyond the standard quantum limit22. On the other hand, the Schenberg detector can also 
be used to test alternative theories of gravitation, such as the reference23 which, having a massive graviton, has 
six polarization states. The plan of the paper is as follows: in section “Gravitationalwaves from NS-BH binary 
systems”, we consider the emission of GWs from the spiraling of a NS-BH binary system and we discuss the 
detectability of this system by the Schenberg antenna. Then, we discuss the interaction of GWs with matter in 
section “The interaction of GW with matter”. The detector model is introduced in section “The detector model”, 
which is followed by the calculation of the response function of the antenna. All the calculations are done for 
the degenerate (all the sphere quadrupole mode frequencies equal) and non-degenerate sphere cases. For the 
degenerate case, the degenerate frequency was chosen as the average of the five quadrupole frequencies meas-
ured at 2 K. Final considerations as well as the discussion of the results are presented in section “Discussions 
and conclusions”.

Gravitational waves from NS‑BH binary systems
Coalescence of NS-BH binaries is one of the most promising GW sources for ground-based antennas. NS-BH 
systems are believed to be formed as a result of two supernovae in a massive binary system24,25. GWs from bina-
ries involving NS represent a tool to study NS properties like the radius, compactness, and tidal deformability. 
Knowledge of NS properties will allow constraining the equation of state of nuclear-density matter26, giving us 
valuable information on nuclear physics. After the formation of the system, the orbital separation decreases 
gradually due to the long-term gravitational radiation reaction (i.e., two objects are in an adiabatic inspiral 
motion), and eventually, the two objects merge into a BH. The final fate of the binary depends primarily on the 
mass of the BH and the compactness of the NS. However, a detailed analysis has shown that the BH spin and the 
NS equation of state also play an important role in determining the final fate25. The effective-one-body (EOB) 
formalism was introduced27,28 as a promising approach to describe analytically the inspiral, merger, and ringdown 
waveforms emitted during a binary merger. Among the candidates of electromagnetic counterparts, a short-hard 
Gamma-Ray Burst (GRB) and its afterglow are vigorously studied both theoretically and observationally29,30. For 
a deeper analysis of NS-BH binaries, see25.

In this section, we discuss the GW signal produced by the coalescence of a non-spinning 1.4–3.0 M⊙ NS-BH 
binary system, disregarding finite-size effects such as tidal deformation. The narrow frequency window of the 
antenna constrains the BH mass to be � 3 M⊙ . Compact binary systems emit periodic GWs, whose frequencies 
sweep the spectrum until they reach their maximum values when they are close to the coalescence. The charac-
teristic amplitude and the frequency of GWs near the last orbit are given by25

Figure 1.   The Schenberg antenna where nine parametric transducers monitor the fundamental modes of 
vibration of the resonant spherical mass (credit: Xavier P. M. Gratens).
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where ω is the angular velocity, M = MBH + MNS , and r and D are the orbital separation and the distance to 
the source, respectively. The binary system studied may be in principle detected since the frequency of the 
gravitational signal ∼ 1 ms before coalescing falls in the band of the Brazilian antenna. NS-BH mergers are also 
potential targets of interferometers GW detectors. Since these kinds of antennas are sensitive in a much broader 
frequency range ( ∼ 10–4000 Hz) they will detect the signal before the Schenberg antenna (during the inspiral 
phase). It is worth noting that due to the truncated icosahedron configuration the antenna is able to determine 
the polarization and the position of astrophysical sources of the GW31–34. There are a large number of waveform 
families in the literature, obtained from considerations about the type of source and approximation procedures 
used for the simulation (numerical relativity (NR), EOB formalism, post-Newtonian (PN) approximation, etc.). 
The gravitational signal for our analysis was generated using the PyCBC software package35,36. The waveform 
employed is one of those that are used by LIGO/Virgo, that is, the effective-one-body model tuned to numerical 
relativity (EOBNRv2). PN results are good as long as the velocities of the objects are not extreme relativistic. 
However, as the two objects orbit around each other, they lose energy through the emission of GWs, and their 
distance shrinks along with an increase in velocity. Consequently, PN predictions become more and more inac-
curate the closer the binary gets to the merger, while the EOB approach, close to the merger, provides better 
accuracy by calibrating higher-order vacuum terms to NR waveforms. The EOBNRv2 waveform is believed 
to be sufficiently accurate to search for signals from non-spinning coalescing compact binaries in the aLIGO 
sensitive band. The EOB formalism has been refined several times to incorporate additional information from 
NR. Depending on the number of available NR waveforms as well as the modifications introduced to the EOB 
description, various versions of such EOBNR models have been developed37,38. It is beyond the scope of this 
paper to show the technical details of the EOB formalism and its extensions. Figure 2 also shows the waveform 
of the non-spinning NS-BH binary considered here. The waveform has also been re-sampled to be compatible 
with the sampling rate of the Schenberg antenna.

The coalescence rate of this type of system is very small and can be calculated indirectly. Upper limits 
( ∼ 103 Gpc−3 year−1 ) were given assuming that all short GRBs/kilonovae are linked with NS-BH mergers29 and 
from the assumption that all the r-process material were produced in NS-BH coalescences39.

There are indications that NS-BH binary has been directly observed40 and an estimated rate density of 
∼ 0.04 × 103 Gpc−3 year−1 can also be derived from stellar evolution synthesis41,42. In the present work, to evalu-
ate the event rate related to NS-BH mergers, we follow Li et al.43 and Abbott et al.44, who constrain the merger 
rate to be less than 6500 Gpc−3 year−1 , assuming a population of binary systems of 1.4–3 M⊙ . This estimate is 
sensitive to physical parameters, such as the equation of state of NS material and the mass/spin distribution of 
the BH. The upper limit of the rate decreases for BHs with larger masses. The expected rates for other transient 
sources are smaller and/or less reliable. In order to be detected, the amplitude of the GW signal needs to be 
compatible with the sensitivity of the antenna.

For an advanced version of the Schenberg antenna (aSchenberg), which would operate around the standard 
quantum limit (section “The detector model”), gravitational signals with amplitude h ∼ 10−22 could be detected 
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Figure 2.   The GW strain signal produced by the coalescence of a non-spinning 1.4–3.0 M⊙ NS-BH binary 
system (Top), phase (Middle) and frequency (Bottom) are plotted as function of the time before merging.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17706  | https://doi.org/10.1038/s41598-023-43808-1

www.nature.com/scientificreports/

at the nominal frequency of the antenna. In this case, a signal could be produced in GWs whose characteristic 
amplitude is ∼ 3 × 10−22 at distances of the order of 0.1 Gpc (Fig. 2). In this volume, the event rate would be 
∼ 3.6 year−1 at a SNR ∼ 1. This conclusion relies on the validity of the assumption that all observed kilonovae 
were associated with NS-BH coalescences. In addition, many statistical studies based on the stellar evolution 
synthesis and supernova rates predict the rates at which NS-BH merge in the Milky Way and the nearby uni-
verse, assuming that Milky Way-like galaxies dominate, to be 1–10% of that of NS-NS binaries (every ∼ 106–107 
years)45–47. If we consider the contribution of elliptic galaxies the total coalescence rate of the universe could be 
increased by a significant fraction48. These estimates show that the prospect for the detection of NS-BH mergers 
of 1.4–3.0 M⊙ by the Schenberg antenna can be very promising.

The interaction of GW with matter
As it is well known, a GW produces a tidal density force at time t and at position x given by (sum over repeated 
indices implied)

where ρ is the mass density and ḧ the second time derivative of the GW amplitude. Since the Schenberg antenna 
has a resonant frequency about 3 kHz, the wavelength of the GW detectable is about 100 km so we can use the 
value of hij(t) at the center of the sphere. Equation (3) can be written in terms of the gradient of a potential

where

where n is the unit vector in the radial direction and r the magnitude. We can expand �(x, t) in terms of the real 
spherical harmonics, always used in this paper, YR

ℓm(ϑ ,ϕ) , defined in terms of the traditional spherical harmonics

The spherical harmonics obey the normalization condition

From now on we will omit the superscript R and write YR
ℓm = Yℓm . After the expansion we have (only terms 

with ℓ = 2 , quadrupolar modes, survive)

where the hm are the expansion coefficients so called spherical amplitudes given by

The spherical amplitudes hm for a GW coming from the direction defined by the polar and azimuthal angles 
(θ ,φ) as seen from the lab frame is given by (see Appendix D):
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In matrix notation and after making the rotation around the polarization angle ψ , we have

which in a more compact form becomes,

Using Eq. (8) and the vector spherical harmonics (see Appendix C we obtain the expression of the GW density 
force

In the case where f  in the right hand side of Eq. (32) is only of GW origin, the overlap integral

is the effective force on each mode of the sphere and

are the eigenfunctions of the uncoupled sphere modes, Eq. (33), repeated here for convenience. After the integra-
tion over the angular part this integral reduces, in the case of Schenberg antenna, to

where

For the Schenberg antenna we have χ1 = −0.6004.
We have calculated χ1 = χ using the expression

Its worth mention that a similar expression is used by Maggiore49

with the difference that in49 in the definition of the spherical amplitude hm is included the factor 
√
16π/15.

The detector model
As discussed above, the mechanical oscillations of the Schenberg antenna are monitored by a set of parametric 
transducers coupled on its surface. From a mathematical point of view, Johnson and Merkowitz50 proposed a 
model in which the output data from six transducers coupled to the antenna surface are related by decomposing 
them into the quadrupolar modes of the sphere. This method allows the reconstruction of the parameters that 
characterize the incident GW.

The movement equation for the displacement vector field u(x, t) of a solid subjected to external forces density 
f (x, t) is given by51
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where �L and µL are the tangential and volumetric Lamé coefficients of the material respectively. The initial 
conditions are u(x, 0) = 0 and u̇(x, 0) = 0 . The solution of (26) is obtained expanding the displacement vector 
u(x, t) in series of the eigenfunctions �N (x) of the equation

subjected to the boundary condition of tension free at the surface of the sphere49

The displacement vector field can be expanded as

where N is a set of indices, aN (t) is the time-dependent mode amplitude and �N obeys the normalization 
condition

The integration is over the volume V of the sphere. After substituting (27) and (29) in (26), multiplying by �N ′ 
and integrating over the volume of the sphere using (30), we obtain

with κS being the elastic constant.
At this point it is convenient to introduce a damping term in Eq. (31)

where CS = wN/QN , wN the natural angular frequency of mode N and QN the mechanical quality factor Q for 
mode N. The values of the parameters are given in Table (1).

The uncoupled sphere
The solution of (27) subjected to the boundary condition of tension free at its surface are the natural modes of the 
sphere. They consist of two families of solution, the toroidal modes �T

nℓm and the spheroidal modes �nℓm (see52). 
We rewrite here this solution in terms of the vector spherical harmonics defined in Appendix C. Regarding the 
toroidal modes, in the case of a coupled sphere, they do not impart radial motion on the transducers, and the 
Schenberg detector is not sensitive to them, besides the fact that GWs do not excite these modes.

Spheroidal modes
The spheroidal modes are given by

where

The transverse wave vectors knℓ , the longitudinal wave vectors qnℓ and the natural angular frequencies wnℓ = 2π fnℓ 
are the solution of the system of equations
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(31)MSäN (t)+ κSaN (t) =
∫

V
�N (x) · f (x, t)d3x
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The coefficients cl and ct are respectively the longitudinal

and transversal

velocities of the elastic waves. We define the ratio

here ρ is the density of the sphere and σ the Poisson ratio. The Poisson ratio can be written in terms of the ratio 
of the longitudinal and transversal sound velocities

The solution of the system of Eqs. (36–38) only depends on cl and ct , in this way using the measured values of 
the monopole and quadrupole frequencies we were able to determine them. The results are given in Table 1.

The relationship between the Poisson ratio and the Young modulus E with the Lamé coefficients �L and µL are

Antenna parameters at 4 K
The linear thermal expansion as a function of temperature is given by53,54

where α0 is a constant such that αlin(273.15) = 1.75× 10−5 K−155, A is the weighted average of CuAl6 atomic 
mass in kg, B is the bulk modulus

and γ is the weighted average of the CuAl6 Gruneisen coefficient. The lattice specific heat is

where RG is the gas constant, �D is the weight average of CuAl6 Debye’s temperature. The Debye’s function is
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The electrons specific heat is given by

with TF being the weight average of CuAl6 Fermi temperature. Then the radius at 4 K will be given by

After calculating cl and ct , based on its measured values at 300 K and 2 K and using the frequency of the monopo-
lar mode and the mean frequency of the quadrupolar modes, we are able to calculate the radius of the sphere at 
4 K. The solution must take into account that the coefficient of linear expansion depends on the Poisson’s ratio 
as well as the Eqs. (36–38) depends on it. With this methodology it is possible to calculate physical constants of 
CuAl6. The results are given in Table 1.

The antenna coupled with transducers
In order to detect GWs, six two stage transducers are coupled to the Schenberg antenna10. Each stage of the 
transducers has the same resonance frequency of the first quadrupole mode f0 = 3205.94Hz (average of the 
five quadrupole frequencies measured at 2 K, also chosen as the degenerate frequency) and are sensitive only to 
the radial movement of the sphere. Transducers are devices that monitor the motion of the antenna surface. If a 
hypothetical GW excites the sphere quadrupolar modes, the corresponding mechanical energy will be transferred 
from the antenna to the transducers. Jonhson and Merkowitz19 discovered that if we use six transducers and 
locate each of them at the center of a pentagonal face of a truncated icosahedron projected onto one hemisphere 
of the sphere, then by a suitable linear combination of the output of the transducers, the so called mode channels, 
we can obtain a direct correspondence between the spherical amplitudes hm(t) of the GW and the quadrupolar 
modes of the sphere a2m(t) . The angles of each of these transducers are given in Table 2. The Schenberg antenna 
makes use of two-modes parametric transducers. In this model the transducer motion is exclusively radial and 

(54)celV (T) = RG
π2

2

T

TF

(55)R = R0 + R0

∫ 4

300
αlin(T)dT .

Table 1.   Parameters of the Schenberg antenna.

Description Value Method

Quadrupole frequencies at 2 K 3172.485, 3183.000, 3213.623, 3222.900, 3240.000 ± 0.001Hz Measured

Quadrupole frequencies at 300 K 3045, 3056, 3086, 3095, 3102 ± 0.5Hz Measured

Monopole frequency at 300 K f10 = 6443.0± 0.5Hz Measured

Antenna’s radius at 300 K R0 = 0.3233m Measured

Antenna mass MS = 1124 kg Measured

Antenna’s density at 300 K ρ = 7938.523± 19 kg/m3 Measured

Transducer first stage mass M1 = 59.7100± 0.5mg Measured

Transducer second stage mass M2 = 12.0± 0.5mg Measured

Monopole frequency at 4 K f10 = 6713.42Hz Calculated

Mean quadrupole frequency at 4 K f̄12 = 3205.94Hz Calculated

Longitudinal sound velocity at 4 K cl = 4937.6m/s Calculated using (36–38)

Transversal sound velocity at 4 K ct = 2448.2m/s Calculated using (36–38)

Linear thermal expansion coefficient at 273.15 K α0 = 1.75× 10−5 K−1 Reference55

Weight average of CuAl6 Debye temperature �D = 319.74 K Reference53

Weight average of CuAl6 Fermi temperature TF = 84449.46K Reference53

Weight average CuAl6 Gruneisen coefficient γ = 1.912 Reference56

Sound velocities ratio r = 2.016847 Calculated using (47)

Poisson ratio σ = 0.337010 Calculated using (48)

Sphere radius as 4 K R = 0.32213m Calculated using (36–38, 55)

Sphere density at 4 K ρ = 8025.04 kg/m3 Calculated

Volumetric Lamé coefficient µL = 48.100GPa Calculated using (46)

Tangential Lamé coefficient �L = 99.455GPa Calculated using (49)

Young modulus E = 128.621GPa Calculated using (49)

Bulk modulus B = 131.522GPa Calculated using (51)

Chi factor χ = −0.6004 Calculated using (25)

Radial component factor at r = R α = 2.88345 α = A12(R)

Antenna equivalent mass Meq = 340 kg Meq = 4π
5α2

MS

Antenna effective mass Meff = 283 kg Meff = 5
6Meq

Transducer amplification factor amp =
√

Meff
M2

= 4740
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only the m quadrupole modes are of interest. In an homogeneous sphere the modes are degenerated but in the 
real antenna they are not. The forces acting on the sphere (Fig. 3) are the GW force given by

the spring back reaction of the six transducers over the sphere at the positions xa

(56)f GW =
√

4π

15
ρrḧm(t)

(

YL
2m +

√
6

2
YE
2m

)

,

Table 2.   Polar and azimuthal angles (θ ,φ) of the transducers positions, ϕ = (1+
√
5)/2.

Transducer θ φ

T3 acos
(

1√
3ϕ

√
ϕ+2

)

= 79.18◦ 0°

T6 acos
(

ϕ+1√
3
√
ϕ+2

)

= 37.37◦ 60°

T2 acos
(

1√
3ϕ

√
ϕ+2

)

= 79.18◦ 120°

T5 acos
(

ϕ+1√
3
√
ϕ+2

)

= 37.37◦ 18°

T1 acos
(

1√
3ϕ

√
ϕ+2

)

= 79.18◦ 24°

T4 acos
(

ϕ+1√
3
√
ϕ+2

)

= 37.377◦ 30°

Figure 3.   Schematic drawing representing in 2D the 3D coupling of the first five quadrupole (independent) 
modes of the Schenberg spherical antenna (left) with the six two-mode transducers (right). Each transducer 
more or less couples with each quadrupole mode of the sphere, depending on its position on the surface of 
the sphere in relation to the quadrupole mode in question. Due to these couplings, each transducer outputs 
information from all 17 modes. Only external forces and noises are represented in the figure. f 0, f 1 and f 2 are 
the resultant of all external forces and noises on the masses. Internal forces of action and reaction due to springs, 
f κ
i
 and f C

i
 are not represented in the figure.
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the damping back reaction of the resonators of the six transducers over the sphere at the positions xa

where C1 is the damping term of the first resonator. The noise coming from the interaction with the resonator 1 is

where x1a is the displacement of the first resonator from its equilibrium position, ea is the radial unit vector at the 
position xa over the sphere and ua the deformation of the sphere at xa given by (repeated here for convenience)

The equation for �m , Eq. (33), is rewritten here with n = 1 , ℓ = 2 , A12(r) = α(r) and B12 = β(r)

so that we have for ua

In matrix notation this is

where α = α(R) and the bold letters are matrices in which each entry of u is related to a transducer and each 
entry of a is related to a mode of the sphere. The movement equation for the displacement of the sphere surface 
u is given in Appendix B.

The forces over the first resonator are the noise forces coming from the interaction of itself with the sphere, 
f n1  , and with the second resonators, f n2  , and the action and reaction of the restoration and damping forces of the 
first and second springs over it. The forces over the second resonator are the back action forces coming from 
the interaction with the microwave system, f bk2  , the interaction with the resonator 1, f n2  , and restoration and 
damping forces of the second springs over it, (Fig. 3).

The equations for the system are

where f (x, t) = f κ1 (x, t)+ f C1 (x, t)− f n1(x, t)+ f GW (x, t) are the surface forces over the sphere and the GW 
force. The transducers frequencies are tuned with the frequency of the quadrupole mode of the homogeneous 
sphere w0 such that

For the real antenna we take w0 as the mean value of the measured quadrupole mode frequencies wm . For the 
maximum energy transfer from the sphere to the resonators the masses obeys the relation57

where the effective mass of the antenna Meff  is calculated in the Appendix A. The integral in Eq. (64) can be 
written as

(57)f κ1 =
6

∑

a=1

κ1(x1a − ua)δ(x − xa)ea,

(58)f C1 =
6

∑

a=1

C1(ẋ1a − u̇a)δ(x − xa)ea,

(59)f n1 =
6

∑

a=1

f n1aδ(x − xa)ea,

(60)ua =
2

∑

m=−2

am(t)�m(xa) · ea.

(61)�m(x) = α(r)YL
m(θ ,φ)+ β(r)

√
6YE

m(θ ,φ),

(62)ua = α(R)

2
∑

m=−2

am(t)Ym(θa,φa) = α(R)

2
∑

m=−2

am(t)Bma.

(63)u = αBTa,

(64)MSäm(t) = −CSȧm(t)− κSa(t)+
∫

�m(x) · f (x, t)d3x

(65)M1ẍ1a = f n1a − f n2a − κ1(x1a − ua)− C1(ẋ1a − u̇a)+ κ2(x2a − x1a)+ C2(ẋ2a − ẋ1a)

(66)M2ẍ2a = f n2a − f bk2a − κ2(x2a − x1a)− C2(ẋ2a − ẋ1a),

(67)
κS

MS
= κ1

M1
= κ2

M2
= w2

0 .

(68)
M1

Meff
= M2

M1
= µ2 and

MS

Meff
= ν2,
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The first integral on the right hand side gives

Similarly the second gives

and the third

where q1a = x1a − ua and q2a = x2a − x1a , the fourth is the Eq. (25). The result is

From now on we will use the column matrix

The equations in the new variables and in matrix notation are

In block matrix notation we have

These equations can be rewritten in terms of the block matrices

From now on we use sanserif boldface letters for block matrices. Here q is the displacement matrix

where a5×1 is the antenna’s mode amplitude, q1 6×1 and q2 6×1 are vectors of the relative displacements for the 
first and second resonators of each transducer. The mass matrix is

where B5×6 is the model matrix. Let us rewrite this matrix in term of the effective mass using the mass ratios µ2 
and ν2 given in Eq. (68). We have

(69)

∫

�m(x) · f (x, t)d3x =
∫

�m · f κ1d3x +
∫

�m · f C1 d3x

−
∫

�m · f n1d3x +
∫

�m · f GWm d3x.

(70)
∫

�m · f κ1d3x = κ1α

N
∑

a=1

Ym(θa,φa)q1a = κ1α

N
∑

a=1

Bmaq1a = κ1α[Bq1]m.

(71)
∫

�m · f C1 d3x = C1α

N
∑

a=1

Ym(θa,φa)q̇1a = C1α[Bq̇1]m

(72)
∫

�m · f n1d3x = α

N
∑

a=1

Ym(θa,φa)f
n
1a = α[Bfn1 ]m,

(73)
∫

�m(x) · f (x, t)d3x = κ1α[Bq1]m + C1α[Bq̇1]m − α[Bfn1 ]m + f GWm (t).

(74)fGW (t) =













f GW−2 (t)
f GW−1 (t)
f GW0 (t)
f GW1 (t)
f GW2 (t)













.

(75)

MSä + CSȧ + κSa − C1αBq̇1 − κ1αBq1 = fGW − αBfn1

M1αB
T ä +M1q̈1 + C1q̇1 − C2q̇2 + κ1q1 − κ2q2 = fn1 − fn2

M2αB
T ä +M2q̈1 +M2q̈2 + C2q̇2 + κ2q2 = fn2 − fbk2 .

(76)





MS I 0 0

M1αB
T M1I 0

M2αB
T M2I M2I





�

ä
q̈1
q̈2

�

+
�

Diag(CmS) − C1αB 0
0 C1I − C2I
0 0 C2I

��

ȧ
q̇1
q̇2

�

+
�

Diag(κmS) − κ1αB 0
0 κ1I − κ2I
0 0 κ2I

��

a
q1
q2

�

=
�

I − αB 0
0 I − I
0 0 I

��

f0
f1
f2

�

.

(77)M′q̈+ C′q̇+ K′q = Pf.

(78)q =
[

a
q1
q2

]

,

(79)M′ =





MS I 0 0

M1αB
T M1I 0

M2αB
T M2I M2I



,
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The stiffness matrix is

and using κmS = MSw
2
m , κ1 = M1w

2
0 , κ2 = M2w

2
0 and the mass ratios µ2 and ν2 it reads

The damping matrix is

and using CmS = MSwm/Qm , C1 = M1w0/Q1 , C2 = M2w0/Q2 and the mass ratios µ2 and ν2 it reads

where Qm , Q1 and Q2 are respectively the quality factor of the modes of the sphere, the first and second resona-
tors. In our case Qm = Q where Q is the measured value of the quality factor of the sphere, but we leave at it is 
for generality. The movement equation then reads

We will need to diagonalize the matrix M−1K , but this matrix is not symmetric. In order to symmetrize it we 
change the coordinates defining q = Ny where

and pre-multiply by N

Multiplying both sides of the equation by

and defining 2β = w0
Q  we get

Let us define the variables My , Ky and Py , where the subscript is the indicative that these matrices are of the 
equation for y . The equation then reads

whose Fourier transform is

This can be rewritten

In case of brute force solution we invert for each w the matrix in the lhs of this equation, using q = Ny giving

(80)M′ = Meff





ν2 I 0 0

µ2αBT µ2I 0

µ4αBT µ4I µ4I



 = MeffM.

(81)K′ =
[

Diag(κmS) − κ1αB 0
0 κ1I − κ2I
0 0 κ2I

]

(82)K′ = Meffw
2
0







ν2Diag
�

w2
m

w2
0

�

− µ2αB 0

0 µ2I − µ4I
0 0 µ4I






= Meffw

2
0K

(83)C′ =
[

Diag(CmS) − C1αB 0
0 C1I − C2I
0 0 C2I

]

.

(84)C′ = Meff
w0

Q







ν2Diag
�

wmQ
w0Qm

�

− µ2 Q
Q1

αB 0

0 µ2 Q
Q1

I − µ4 Q
Q2

I

0 0 µ4 Q
Q2

I






= Meff

w0

Q
C.

(85)MeffMq̈+Meff
w0

Q
Kq̇+Meffw

2
0Kq = Pf.

(86)N =





I/ν 0 0
0 I/µ 0
0 0 I/µ2





(87)MeffNMNÿ+Meff
w0

Q
NKNẏ+Meffw

2
0NKNy = NPf.

(88)(NMN)−1 =





I 0 0

−γBT I 0
0 − µ I





(89)Meffÿ+ 2βMeff(NMN)−1NCNẏ+Meffw
2
0(NMN)−1NKNy = (NMN)−1NPf.

(90)Meff

(

ÿ+ 2βCy ẏ+ w2
0Kyy

)

= Pyf,

(91)Meff

(

−w2I+ 2βjwCy + w2
0Ky

)

ỹ = Py f̃.

(92)MeffLBF(w)ỹ = Py f̃
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where GBF(w) is the brute force transfer function of the input f̃

The matrices are

where γ = αµ/ν and

with 1 a matrix full of ones. The matrix Py is

We need to solve Eq. (91), to do this we have two tracks to follow: the first one is the traditional method of 
finding eigenvalues and eigenvectors to diagonalize the matrix in the lhs of this equation, the other is that we 
call brute force, we solve this equation inverting the matrix for each value of the angular frequency w. The first 
one is easier to find the eigen frequencies of the system. For the sensibility calculation we have done using both 
methods with identical results, the relative error is of the order of 10−7 in the degenerate case and of the order 
of 10−3 in non degenerate case.

For the solution using the traditional method, we need to do some approximations in the matrix Ky and in the 
matrix Cy . First of all they must be symmetric and according to Caughey and O’Kelley in (1965)58, the general 
condition to uncouple the modal equations with M , K  and C respectively as mass matrix, stiffness matrix and 
damping matrix is that KM−1C = CM−1K .

One reason that we can do approximations in the damping matrix is that we often have little information 
about the precise form for this matrix, so we are free to choose it in a way that simplifies the analysis. For this 
purpose, in our case, we make the approximations: from now on we use the measured value of the quality factor 
Q = Qm , and given that

in the entries Ky21 and Cy21 we approximate Diag
(

wm
w0

)

= I , in the entry Cy11 we approximate 

Diag
(

wm
w0

)

= Diag
(

w2
m

w2
0

)

 and use Q = Q1 = Q2 in the entries Cy12 , Cy22 , Cy23 , Cy32 , Cy33 . So that we end with 
Cy = Ky . Then we can use the same modal matrix U to diagonalize both matrices.

Let the matrix U diagonalize Ky and let us define y = Uz and pre-multiply by UT , then Eq. (91) reads

As U diagonalize Ky and D being the diagonal matrix such that D = UTKyU this equation becomes

We omit the w dependence in some cases to leave the notation cleaner.
If we define the diagonal matrix

we get

(93)q(w) = GBF(w)f̃(w)

(94)GBF(w) =
1

Meff
NL−1

BF (w)Py .

(95)Ky =(NMN)−1NKN =









diag
w
2
m

w
2
0

−γB 0

−γBTdiag
w
2
m

w
2
0

3γ 2

2π Ŵ + I −µI

0 −µI (µ2 + 1)I









,

(96)Cy =(NMN)−1NCN =







diag wmQ
w0Qm

− γ Q
Q1

B 0

−γBTdiag wmQ
w0Qm

3γ 2

2π
Q
Q1

Ŵ + Q
Q1

I − µ Q
Q2

I

0 − µ Q
Q1

I (µ2 + 1) Q
Q2

I







(97)Ŵ = I− 1

6
1

(98)Py = (NMN)−1NP =









1
ν
I − γ

µ
B 0

− γ
ν
BT 3γ 2

2πµŴ + 1
µ
I − 1

µ
I

0 − I
�

1+ 1
µ2

�

I









.

(99)Diag

(

wm

w0

)

≈ Diag

(

w2
m

w2
0

)

≈ I,

(100)Meff

(

−w2UT IU+ 2βjwUTCyU+ w2
0U

TKyU
)

z̃ = UTPy f̃.

(101)Meff

(

−w2I+ 2βjwD+ w2
0D

)

z̃ = UTPy f̃,

(102)L(w) = Meff

(

−w2I+ 2βjwD+ w2
0D

)

(103)L(w)z̃(w) = UTPy f̃(w).
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We invert to find z̃

where

Returning to the old variables we have

The transfer functions for the input f̃  will be

where the block matrix G can be written as

Then, we can write Eq. (106) as

Classical noise power spectrum matrix
In this work we will assume that the noise is an ergodic wide sense stationary stochastic process being analysed 
in an interval of time To . Let x(t) with Fourier transform x̃(w) be a process satisfying these conditions, then the 
Power Spectral Density (PSD) of x is calculated as (see Whalen Chap.(2)59 and Maggiore49 for details)

Our system is contaminated with forces of thermal noise f th , forces of back action on the membrane f bk , series 
forces f se and phase forces f ph . The measured quantity is the output q2 (transducer membrane) of our system

We have splited the forces on the sencond resonator f̃2 = f̃ ′2 + f̃bk . The PSD of the output q2 is, assuming that the 
noise forces of different kind are non correlated and the forces f̃  are of thermal origin

The thermal noise power spectrum is based on the fluctuation dissipation theorem that stays that given a system 
with equation

the power spectrum of the fluctuation force f  is given by

where  is the impedance of the system given by

In our case we have

But from Eqs. (77) and (83) we have

(104)z̃ = L−1(w)UTPy f̃,

(105)L−1(w) = 1

Meff
Diag

(

1

−w2 + (2jβw + w2
0)D11

, · · · , 1

−w2 + (2jβw + w2
0)D1717

)

.

(106)q̃ = NUL−1(w)UTN−1M−1Pf̃.

(107)G(w) = NUL−1(w)UTN−1M−1P,

(108)G =
(

G00 G01 G02

G10 G11 G12

G20 G21 G22

)

.

(109)

�

ã
q̃1
q̃2

�

=
�

G00 G01 G02

G10 G11 G12

G20 G21 G22

�





f̃0
f̃1
f̃2



.

(110)Sxx = E[x̃(w)x̃(w)∗]To.

(111)q̃2 = G20 f̃0 + G21 f̃1 + G22 f̃
′
2 + G22 f̃bk + f̃se + f̃ph.

(112)

Sqq = G20E
[

f̃0 f̃
†
0

]

G†
20 + G21E

[

f̃1 f̃
†
1

]

G†
21 + G22E

[

f̃ ′2 f̃
′†2

]

G†
22 + G22E

[

f̃bk f̃
†
bk

]

G†
22 + E

[

f̃se f̃
†
se

]

+ E
[

f̃ph f̃
†
ph

]

= G20Sf0f0G
†
20 + G21Sf1f1G

†
21 + G22Sf ′2 f

′
2
G†
22 + G22SbkG

†
22 + Sse + Sph.

(113)L(w)z̃ = f̃

(114)

(115)

(116)Sth = 4kBTRe

[

L(w)

jw

]

.
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The back action noise force acting on the membrane is60

where Pinc is the pump oscillator power, Sa is the amplitude noise spectral density of the pump oscillator, fp is 
the pump oscillator frequency, Qe is the transducer cavity electric Q, and dx is the membrane displacement.

The series noise acting directly on the output is

where Tamp is the amplifier noise temperature, T is the thermodynamic temperature, and kB is the Boltzmann 
constant.

The phase noise also acting directly on the output is

where Sp is the phase noise spectral density.

Standard quantum limit noise
In the following section we will derive the expression of the standard quantum noise. This will allow us to obtain 
the standard quantum limit of the Schenberg detector. The power signal-to-noise ratio ρ2 for an optimum filter 
(matched filter) is61

where M(w) is the Fourier transform of the signal of interest and Sdsnn(w) the double side power spectral density 
of the noise. Our signal is the vector with the spherical amplitudes h(t) . Using the single side power spectral 
density matrix Snn(w) , the expression of the power signal-to-noise ratio becomes

For bursts of duration τg ≈ 1ms the maximum bandwidth frequency is �fmax ≈ 1 kHz and h̃(w) does not change 
very much from its value at the resonant frequency f0 in the band �f  of the detector. We can define a mean power 
spectral density S̄nn such that this integral can be approximated by

where h(w0) = |h(w0)| ˆ̃h,

and

We can obtain |h(w0)| as a function of the energy deposited by the burst on the sphere using the formula62

where f(t) is the external force acting on the harmonic oscillator and M its mass. Starting from the movement 
equation for the sphere modes (Eq. 31), the mass of the mode is MS as a result of the normalization condition 
and the force is f (t) = 1

2MSχRḧm(t) . The integration gives for each mode m

(117)

Sth = 4kBTP
−1C′ = 4kBT





MS
w0
Q I5×5 0 0

0 M1
w0
Q1

I6×6 0

0 0 M2
w0
Q1

I6×6



 =





Sf0f0 0 0
0 Sf1f1 0
0 0 Sf2f2



 [N2/Hz].

(118)Sbk =
P2incSa

2w2
p

(

2Qe

fp

df

dx

)2

I6×6 [N2/Hz],

(119)Sse =
(Tamp + T)kB

Pinc

(

2Qe

fp

df

dx

)−2

I6×6 [m2/Hz]

(120)Sph = Sp

(

2π

w

df

dx

)−2
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while the energy deposited in all modes is

The sensitivity is obtained when ρ2 = 1 . With this value, comparing Eq. (123) with Eq. (128) we obtain the mean 
power density spectrum as a function of the energy deposited in the sphere

The energy deposited in terms of the number of phonons n is Es = n�w0 . The sensitivity at the quantum limit 
is when n = 1

We can write this expression as a function of the longitudinal sound velocity and the longitudinal wave vector 
for the quadrupolar mode w0 = w12 = q12cl

For Schenberg at 4K , f0 = f12 = 3205.94Hz , MS = 1124 kg , χ = −0.6004 , R = 32.214 cm and �f = 110Hz . 
With these values the spectral amplitude is

Sensitivity for classical noise
The spectral amplitude hS(w) represents the input GW spectrum that would produce a signal equal to the noise 
spectrum observed at the output of the antenna instrumentation.

A useful way to characterize the sensitivity of a GW detector is to calculate the hS(w) such that with optimal 
filtering the signal to noise ratio

is equal to 1 for each bandwidth. Here

where q2 are the output of the second transducer’s resonators, † stands for Hermitean conjugate. The sensitivity 
of the detector is obtained by searching for an input GW with amplitude h that mimics the thermal noise at the 
output, with ρ = 1 per bandwidth. In other words we search for an h such that

or

As we do not know the polarization neither the direction of the incoming wave we take the mean over all angles

Then we obtain

and the amplitude spectral density hS(w) =
√

h̃2+ + h̃2×

The sensitivity curves for various kind of noises for each of the six transducers of the real antenna are shown in 
Fig. (4) using the parameters given in Table 3. In the case of a degenerated sphere the sensitivity curves for each 
of the six transducers would be as in Fig. 5.
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The sensitivity of the Schenberg antenna will be better than the sensitivity of each transducer. Assum-
ing that all transducers have the same sesitivity, the sensitivity of the Schenberg antenna ( hS ) would be 
(1/hS)

2 = (1/hT1)
2 + (1/hT2)

2 + (1/hT3)
2 + (1/hT4)

2 + (1/hT5)
2 + (1/hT6)

2 = 6× (1/hT )
2 , which implies 

that hS = hT/
√
6.

Discussions and conclusions
The calculation of the Schenberg antenna design sensitivity for each of the sphere six transducers was revised in 
this work taking into account both the degenerate (perfect sphere) and the non-degenerate sphere (quadrupole 
modes with their different frequencies), due to the symmetry break caused by the machining of the holes for the 
fixation of the transducers and the copper rod for the sphere suspension. As usual, all noises are referenced at 
the “input of the sphere” where the oscillating movement of the sphere surface occurs.

The dominant noises are the Brownian and the series noise, taking into account the parameters available for 
this initial version of the Schenberg antenna. For an advanced version of the Schenberg antenna (aSchenberg), 
which would reach the standard quantum limit of it ( 3.29× 10−23Hz−1/2 ), the sensitivity at each of the six trans-
ducers would be 

√
6 times this or ( ∼ 8× 10−23Hz−1/2 ). To achieve this sensitivity at each niobium transducer 

we have to replace them with sapphire or silicon transducers, and with niobium coating in the microwave cavity 
region. In this way, we could reach mechanical quality factors of the order of 10863. The sphere would have to 

Table 3.   Parameters used in the sensitivity curve.

Description Value

Thermodynamic Temperature T = 100 mK

Sphere mechanical Q Q = 1× 107

Resonator 1 mechanical Q (transducer first mode) Q1 = 1× 106

Resonator 2 mechanical Q (transducer second mode or membrane mode) Q2 = 1× 105

Transducer central frequency FT = 3206.3 Hz

Transducer minus frequency F− = 3172.5 Hz

Transducer plus frequency F+ = 3240.0 Hz

Pump frequency Fpump = 1× 1010 Hz

Electric coupling constant βe = 0.65

Frequency shift due to the displacement of the transducer membrane df
dx = 7.2614 Hz/m

Pump oscillator incident power Pinc = 1× 10−10 W

Amplifier noise temperature Tamp = 10 K

Electrical quality factor of the transducer cavity Qe = 3.8× 105

Phase noise spectral density Sp = 1× 10−13 dBc/Hz

Amplitude noise spectral density Sa = 1× 10−14 dBc/Hz

Loss in the microwave transmission line between transducer and amplifier Lamp = 5

Figure 4.   Sensitivity curves of the various type of noises for one of the six transducers of the Schenberg antenna 
at T = 0.1 K.
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undergo annealing or be replaced by another material, such as beryllium copper. Values of mechanical Qs close 
to 108 have already been reached by Frossati (1996)64 for small copper-beryllium spheres.

Series noise can be minimized by rounding the edges of the transducer microwave klystron cavities, using 
a niobium deposition with less than 100 parts per million impurities, to increase the already achieved 380k 
electrical quality factor by a factor of 10 or more. The loss Lamp in the microwave transmission line that carry 
the signal from the transducer to the cryogenic amplifier (the first line of amplifiers in the system) would need 
to be reduced by a factor of 5. This could be achieved using niobium coaxial cables. Finally, the electronics used 
in the cryogenic amplifiers would need to be replaced by one that would reduce the noise temperature from 10 
K to 1 K, at the operating frequency of 10 GHz.

All these modifications, necessary to reach the standard quantum limit, are challenging, but not impossible 
to achieve for the small spherical antenna of 0.65 m in diameter. As parametric transducers are used, it would 
be possible to perform signal squeezing and exceeds the standard quantum limit, but this would require higher 
mechanical and electrical Qs and even less noisy electronics, which starts to be unfeasible or doubtful to be 
achieved.

Note, however, that the sensitivity achieved by aLIGO in the O3 run has already reached the standard quan-
tum limit of this spherical antenna, therefore, the only reasonable justification for remounting the Schenberg 
antenna and trying to place it in the sensitivity of the standard quantum limit would be to detect gravitational 
waves using another physical principle, different from the one used by laser interferometers. This other physi-
cal principle would be the absorption of the gravitational wave energy by a resonant mass. The question that 
arises, then, is whether gravitational wave signals reach Earth with sufficient amplitude to be detected by the 
spherical antenna operating at the standard quantum limit. To answer this question, we are analyzing aLIGO’s 
O3 data in the range where the Schenberg antenna is most sensitive: 3.15 kHz to 3.26 kHz, looking for any type 
of signal (burst, chirp, continuous or stochastic). We look forward to providing the results of this investigation 
in the near future.

In addition, we would like to point out that the innovations in this work are the sensitivity calculation for 
the non-degenerate case, new relations for the model matrix B, and redefinition of the effective mass. Also was 
inovative to use the experimental values of the monopole and quadrupole mode frequencies at 2 K and 300 K in 
the determination of the elastic constant of the material and as a consequence the value of the transversal and 
longitudinal sound speed.

Data availability
this manuscript has no associated data or the data will not be deposited. All data generated during this study are 
contained in this published article.
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