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Genomic and molecular landscape 
of homologous recombination 
deficiency across multiple cancer 
types
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Homologous recombination deficiency (HRD) causes faulty double-strand break repair and is a 
prevalent cause of tumorigenesis. However, the incidence of HRD and its clinical significance in pan-
cancer patients remain unknown. Using computational analysis of Single-nucleotide polymorphism 
array data from 10,619 cancer patients, we demonstrate that HRD frequently occurs across multiple 
cancer types. Analysis of the pan-cancer cohort revealed that HRD is not only a biomarker for ovarian 
cancer and triple-negative breast cancer, but also has clinical prognostic value in numerous cancer 
types, including adrenocortical cancer and thymoma. We discovered that homologous recombination–
related genes have a high mutation or deletion frequency. Pathway analysis shows HRD is positively 
correlated with the DNA damage response and the immune-related signaling pathways. Single 
cell RNA sequencing of tumor-infiltrating lymphocytes reveals a significantly higher proportion of 
exhausted T cells in HRD patients, indicating pre-existing immunity. Finally, HRD could be utilized 
to predict pan-cancer patients’ responses to Programmed cell death protein 1 immunotherapy. 
In summary, our work establishes a comprehensive map of HRD in pan-cancer. The findings have 
significant implications for expanding the scope of Poly ADP-ribose polymerase inhibitor therapy and, 
possibly, immunotherapy.
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PD-1	� Programmed cell death protein 1
TPM	� Transcripts per kilobase million
IE/F	� Immune-enriched, fibrotic
IE	� Immune-enriched
F	� Fibrotic
D	� Immune-depleted
HRP	� Homologous recombination proficient
AUC​	� Precision-recall
TME	� Tumor microenvironment
IM	� Immune-enriched fibrotic/non-fibrotic
tSNE	� T-distributed stochastic neighbor embedding
TMB	� Tumor mutational burden
OS	� Overall survival
HR	� Hazard ratio
CI	� Confidence interval
SNVs	� Single nucleotide variants
VUS	� Variants of unknown clinical significance
cGAMP	� Cyclic GMP-AMP
PD-L1	� Programmed death-ligand 1 expression
LAML	� Acute myeloid leukemia
ACC​	� Adrenocortical carcinoma
BLCA	� Bladder urothelial carcinoma
BLCA	� LGG brain lower grade glioma
BRCA​	� Breast invasive carcinoma
CESC	� Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL	� Cholangiocarcinoma
LCML	� Chronic myelogenous leukemia
COAD	� Colon adenocarcinoma
ESCA	� Esophageal carcinoma
GBM	� Glioblastoma multiforme
HNSC	� Head and neck squamous cell carcinoma
KICH	� Kidney chromophobe
KIRC	� Kidney renal clear cell carcinoma
KIRP	� Kidney renal papillary cell carcinoma
LIHC	� Liver hepatocellular carcinoma
LUAD	� Lung adenocarcinoma
LUSC	� Lung squamous cell carcinoma
DLBC	� Lymphoid neoplasm diffuse large B-cell lymphoma
MESO	� Mesothelioma
MISC	� Miscellaneous
OV	� Ovarian serous cystadenocarcinoma
PAAD	� Pancreatic adenocarcinoma
PCPG	� Pheochromocytoma and paraganglioma
PRAD	� Prostate adenocarcinoma
READ	� Rectum adenocarcinoma
SARC​	� Sarcoma
SKCM	� Skin cutaneous melanoma
STAD	� Stomach adenocarcinoma
TGCT​	� Testicular germ cell tumors
THYM	� Thymoma
THCA	� Thyroid carcinoma
UCS	� Uterine carcinosarcoma
UCEC	� Uterine corpus endometrial carcinoma
UVM	� Uveal melanoma

DNA damage is repaired through a network of interconnected pathways, one of which is the homologous recom-
bination repair (HRR) pathway, the most precise and accurate DNA damage repair system responsible for double 
strand break (DSB) repair1,2. Homologous recombination deficiency (HRD) refers to the cellular level dysfunction 
of HRR. In the presence of HRD, DSBs become dependent on non-homologous end joining (NHEJ), microho-
mology mediated end joining (MMEJ)3,4, or low-fidelity and high-error-prone alternative DNA damage repair 
pathways such as single-strand annealing (SSA)5, which are likely to cause nucleic acid sequence insertion/dele-
tion, abnormal copy number, and chromosomal cross-linking, resulting in genomic and chromosomal instability. 
HRD can be caused by many factors, including germline or somatic mutations in HRR-related genes, as well as 
epigenetic inactivation of HRR-related genes6. HRR is a multi-step signal transduction pathway in which the key 
protein is the breast cancer susceptibility gene (BRCA​). It has been reported that carriers of germline BRCA1/2 
gene variants have an increased risk of breast, ovarian, pancreatic, and prostate cancer7–9. At present, new genes 
or mechanisms are still found to be involved in HRR regulation, such as UBQLN4 and RBBP810,11.
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Tumor genome-specific alterations identified by HRD clinical testing are also referred to as “genomic scars.” 
Loss of heterozygosity (LOH)12, telomeric allelic imbalance (TAI)13, and large-scale state transition (LST) have 
been used as biomarkers to quantify the extent of genomic scars since 201214. Three indicators, LOH, TAI, and 
LST, each of which has its own definition, may provide insight into the degree of cellular HRD status. Compared 
to a single index description, the comprehensive calculation score of the three can more precisely reflect the 
state of genomic scars and then evaluate the state of genomic instability13,15. The presence of HRD renders tumor 
cells more sensitive to platinum-based drugs that induce DNA cross-linking16 and augments the antitumor 
response to synthetic lethality of PARP inhibition (PARPi)17. HRD is currently being developed as an impor-
tant biomarker for precision tumor treatment, and clinical detection of HRD is gaining popularity. Therefore, 
it’s critical to investigate the clinical prognostic value of HRD as well as the changes in biological mechanisms 
caused by HRD in pan-cancer.

To gain a comprehensive understanding of HRD as a biomarker in Pan-cancer, we analyzed the genomic, 
epigenomic, and transcriptomic landscapes of HRD patients across 33 cancer types in The Cancer Genome Atlas 
(TCGA) database. We discovered that HRD has clinical prognostic value in a variety of cancer types, imply-
ing that the HRD could be used to identify patients who are likely to respond to platinum chemotherapy or 
PARPi. Using scRNA-seq and immunotherapy cohort data, we also identified that HRD is associated with tumor 
immunity and predicts immunotherapy response. The comprehensive analysis of HRD and its consequences in 
human cancer is provided below (Fig. 7). Both mechanistic and therapeutic investigations into the role of HRD 
in pan-cancer can be guided by our findings.

Results
Heterogeneity and clinical significance of HRD across patients with a given cancer type.  The 
median HRD score varied by more than a 100-fold between the 33 cancer types (Fig. 1A). The median HRD 
score for THCA and LAML is as low as 0 (roughly no change across the entire genome), whereas the median 
HRD score for OV, UCS, LUSC, and ESCA is over 30. Surprisingly, HRD scores varied significantly between 
patients with the same type of cancer. In OV, the frequency ranged between 1 and 99, whereas in UCS, it ranged 

Figure 1.   Illustrates the distribution of HRD scores across 33 different cancer types. (A) The median HRD 
scores for each cancer type are plotted. (B) The association between HRD and survival in the Pan-cancer cohort 
was delineated using a forest plot representation of the univariate Cox regression model. odds ratio: OR (C) 
Kaplan–Meier survival estimates for patients with HRD or HRP tumors in the ACC, KICH, and THYM cohorts. 
ROC curves and the corresponding AUC values for HRD in the ACC, KICH and THYM cohorts.
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between 2 and 77. in spite of the low median value (0) for LAML, patient-specific frequencies ranged from 0 to 
20.

The distribution of HRD scores in various types of cancer follows a normal distribution, indicating that it can 
reflect the heterogeneity of tumors in different patients and therefore has the potential to serve as a molecular 
marker. Consistent with previous findings18, we discovered that patients with HRD had a favorable prognosis in 
OV (HR = 0.58, P < 0.001) and TNBC (HR = 0.49, P < 0.001) (Fig. 1B). Simultaneously, GBM patients with HRD 
have a significantly better prognosis than homologous recombination proficient (HRP) patients (HR = 0.73, 
P = 0.0012). In contrast, we discovered that HRD patients had a worse overall prognosis than HRP patients in 
other cancer types, including ACC (HR = 14.12, P < 0.001), KICH (HR = 12.46, P < 0.001) and THYM (HR = 11.90, 
P < 0.001) (Fig. 1C and Supplementary Table 6). Furthermore, as a prognostic factor, its predictive accuracy has 
improved over time: The high area under the precision-recall (AUC) curves (5 years, AUC = 0.81, 0.88, and 0.84, 
respectively) demonstrated HRD’s excellent performance (Fig. 1C).

The landscape of somatic genetic alterations in HRR‑related genes across cancer types.  Cur-
rently, it is known that genetic mutations and epigenetic inactivation of HRR-related genes can cause HRD. We 
began by calculating the mutation frequency and CNV (heterozygous deletion) in a pan-cancer cohort contain-
ing 33 distinct types of cancer. As previously described19, DNA alterations were classified as the following: mis-
sense, frame-shift, splice site, nonstop, nonsense, fusions, deletions, and changes in the translation start site. The 
mutation rate of HRR-related genes varied between 2 and 28% (Fig. 2A). Over half of the patients had at least 
one type of HRR-related gene mutation (Fig. 2A). ARID1A was the most frequently mutated HRR-related gene, 
followed by ATRX, ATM, and BRCA1/2. The mutation frequency of HRR-related genes was increased in UCEC, 
BLCA and LUSC (Fig. 2B and Supplementary Fig. 1A). The mutation landscape of HRR-related genes revealed 
several possible recurrent hotspot driver mutations in ARID1A, ATRX, ATM, and BRCA1/2, including R1989* 
in ARID1A, which was carried by over 30 tumor patients (Supplementary Fig. 1B).

To identify the CNV alteration, the SNP array data of HRR-related genes from the TCGA database were 
analyzed. The CNV heatmap distribution revealed that the deletion of HRR-related genes is a frequent occur-
rence in Pan-cancer. CNV analysis indicated that heterozygous deletion of ARID1A was prevalent in ESCA and 
KICH; BRCA2 CNV deletion was more common in Pan-cancer than BRCA1 CNV deletion. Furthermore, the 
frequency of HRR-related gene deletion in UCS, OV, LUSC, and KICH was significantly higher than in other 
cancers (Fig. 2C). The high frequency of somatic alterations in HRR-related genes suggests that the HRR signal-
ing pathway and tumorigenesis are linked. The landscape of methylation in HRR-related genes also revealed an 
abnormal methylation signature of HRR-related genes such as ARID1A, whose methylation levels were signifi-
cantly higher in tumor tissues compared to normal tissues (Supplementary Fig. 2A).

Gene expression analysis of HRD patients reveals up‑regulation of DDR and immune‑related 
signatures across cancers.  To advance our understanding of the biology of HRD tumors, GSEA was per-
formed on each cancer type to investigate HRD-associated pathways, with a particular emphasis on up-regulated 
signaling pathways. The UpSetR plot demonstrated the overlapped of transcriptomic changes in HRD tumors 
with various types of cancer (Fig. 3A). As a result, we discovered that DNA damage response (DDR) pathways 
such as mismatch repair and homologous recombination pathways were positively associated with HRD in more 
than 16 cancer types, confirming that DDR maintained genome integrity by detecting damage and activating 
a complex signaling network that promotes DNA repair (Fig. 3B). Intriguingly, we observed that HRD tumors 
activate a large number of immune-related pathways. HRD tumors activate pathways such as toll-like receptor 
signaling, chemokine signaling, and infection-related immune signaling in many cancers of epithelial origin 
(BRCA, ESCA, SARC, OV, KICH, and ACC) (Fig. 3B). As illustrated in Fig. 3C, these immune-related pathways 
were up-regulated in the HRD group compared to the HRP group in BRCA and SARC. It has been reported 
that in cancer cells with HRD, the DNA substrates generated by HRD cannot be resolved, triggering the release 
of genomic DNA from the nucleus to the cytoplasm and activating cytosolic DNA-sensing and innate immune 
responses. According to the UpSetR map, the hub genes of these up-regulated immune-related signal pathways 
in HRD patients overlap with cytosolic DNA-sensing system genes (Supplementary Fig. 2B). Furthermore, the 
correlation heatmap revealed that type I IFN expression, which is one of the downstream targets of the cytosolic 
DNA-sensing pathway, was linked to a higher HRD score in a variety of cancer types, including BRCA, GBM, 
OV, and THYM (Supplementary Fig. 2C).

Underlying extrinsic immune landscapes of HRD patients.  Transcriptome analysis revealed that 
immune-related signaling pathways were activated in HRD patients, implying that their tumor microenviron-
ment (TME) may differ from that of HRP patients. To gain a better understanding of the relationship between 
the TME and HRD in Pan-cancer, we analyzed the immune infiltration of patients with CIBERSORT (Fig. 4A). 
Comparing the two groups showed that the HRD group had a higher proportion of T lymphocytes than the 
HRP group (Fig. 4B). Specifically, the proportion of immune-stimulatory cells (including follicular helper T 
cells, CD4+ memory activated and CD8+ T cells) was significantly higher in the low-risk group than in the 
high-risk group (Wilcoxon signed-rank test, P < 0.001 and P < 0.01, respectively) (Fig. 4B). The signals of tumor-
infiltrating myeloid cells also vary significantly between the HRD and HRP groups. The proportion of M2 and 
Mast cells in the HRP group was significantly higher than in the HRD group, while the proportion of activated 
dendritic cells was significantly lower (P < 0.001) (Fig. 4C).

To further validate the above findings, we analyzed the TME differences between the HRD and HRP groups 
using the Alexander et al. TME algorithm and the Thorsson et al. Immune-subtype algorithm20,21. TME analysis 
results demonstrated that nearly half of HRD patients were classified as Immune-Depleted, which was consistent 
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Figure 2.   The landscape of somatic genetic alterations in HRR-related genes across cancer types. (A) Mutation 
landscape of HRR-related genes across different cancer types. Oncoprint plot on the left illustrates the overall 
frequency of mutations in HRR-related genes (rows, with gene names listed to the left) across 9140 samples. The 
color key at the bottom indicates the type of cancer. (B) Histogram showing the mutation frequency of HRR-
related genes in different cancer types. (C) A heatmap illustrating the variable frequency of CNV deletion in 
different cancer types. Cancer types (columns) and genes associated with the HRR (rows).
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with the findings from the melanoma immunotherapy cohort22. The majority of the remaining HRD patients 
were classified as Immune-Enriched Fibrotic/non-Fibrotic (IM) (Fig. 4D). Around 80% of HRD patients were 
classified as C2 (IFN-dominant) using the Immune-subtype algorithm. The results of the Immune subtype 
analysis matched those of the correlation heat map analysis, indicating that tumors with high HRD scores had 
high type I IFN expression (Supplementary Fig. 2C). BRCA, HNSC, OV, ESCA, and PAAD are the top five cancer 
types in terms of patient numbers in the IM subgroup (Fig. 4E). In addition, the distribution of immune land-
scape in HRD and HRP groups for a number of cancer types with larger cohorts was analyzed. Intriguingly, the 
distribution of immune subtypes varies greatly between different types of cancer. For instance, in breast cancer, 
the proportion of immune-Enriched subtype in the HRD group is greater than 50%, whereas in HNSC, it is less 
than 15%. (Supplementary Fig. 3A).

Single‑cell RNA sequencing elucidates the biology of HRD tumors in BRCA and the tumor‑infil-
trating T cells in KIRC.  To study the cellular biology of HRD tumors, we analyzed single-cell sequencing 
data from four normal breast tissues and four breast cancer tissues with BRCA1 pathogenic mutations that were 
collected during surgery. After quality control and filtering, 55,463 high-quality transcriptomes were obtained 
(Sample information was listed in Supplementary Table 3). Analysis and visualization by t-Distributed Stochas-
tic Neighbor Embedding (tSNE) showed that single-cell transcriptomes of different tissue types or patients inter-
mingled in many clusters and partly formed tumor- or patient-specific clusters, indicating underlying biological 
differences (Fig. 5A). We classified single cells into breast epithelial cells (KRT8/18, ACTA2, CNN1), immune 
cells (PTPRC +), fibroblasts (DCN), and endothelial cells (PECAM1) based on previous research23 (Fig. 5A and 
Supplementary Fig.  3B). Epithelial transcriptomes were then subsetted and reclustered to better understand 
interpatient variability within the breast epithelial cell compartment. Comparing proportion of cells in a cluster 
to all epithelial cells for tumor and normal separately: clusters overrepresented in normal samples are supposed 
to be cells of normal breast epithelial cells, all other clusters are supposed to be malignant cells (Supplementary 
Fig. 3C), which was largely congruent with the copy-number status of cells (Fig. 5B). Malignant cell clusters were 

Figure 3.   HRD correlated pathways and immunomodulators in the given cancer type. (A) The UpSetR plot 
depicts the overlap of GSEA pathways enriched for up-regulated genes in various cancers. (B) Chord plot 
illustrating the relationship between cancer types and signaling pathways that overlap. Different colors were 
used to indicate signaling pathways that crossed. (C) GSEA revealed that in BRCA and SARC, immune-related 
signaling pathways were upregulated in the HRD group compared to the HRP group. ES: enrichment score; NP: 
Nominal P value.
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Figure 4.   Immune profiles of the HRD patients in the TCGA cohort. (A) Bar charts illustrating the proportions 
of 22 different types of immune cells estimated using the CIBERSORT method from RNA sequencing data for 
each patient, and a Sankey diagram illustrating how the TCGA cohort was classified into HRD and HRP groups. 
(B) Comparison of T lymphocytes estimated using the CIBERSORT method using RNA sequencing data from 
the HRD and HRP groups (Wilcoxon signed-rank test). (C) Comparison of myeloid cells estimated using the 
CIBERSORT method using RNA sequencing data from the HRD and HRP groups (Wilcoxon signed-rank test). 
(D) Sankey plot comparing HRD and HRP patients (left) per TME subtype to immune subtypes (right) across 
all TCGA patients. C1: wound healing; C2: IFN-g dominant; C3: inflammatory; C4: lymphocyte depleted; C5: 
immunologically quiet; C6: TGF-b dominant. (E) Pie charts were used to depict the proportions of various 
cancer types within the IM subtype.
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segregated from normal cell clusters and were mainly patient-specific, indicating intertumoral heterogeneity. 
Gene Ontology analysis demonstrated that DEGs between malignant and normal cells are enriched in immune-
related signals (Fig. 5C), similar to the results of GSEA analysis of bulk RNA-seq data from TCGA samples: that 
is, HRD tumors upregulate the immune-related signaling pathway.

To further characterize T lymphocytes in HRD tumors further, we analyzed scRNA-seq data from tumor-
infiltrating T lymphocyte suspensions extracted from HRD and HRP specimens in KIRC. T lymphocytes were 
classed as CD8+ (ISG+, NME1+, Tex, Trm) and CD4 + regulatory by scType algorithm (Fig. 5D). CD8 + Tex cells 
were characterized by expression of both cytotoxicity marker genes, such as GZMA/B/K and IFNG, and immune 
checkpoint marker genes, such as LAG3 and PDCD1 (Fig. 5E). The proportions of tumor-infiltrating lymphocytes 
were then compared between HRD and HRP tumors. As shown in Fig. 5F, when HRD tumors were compared 
to HRP tumors, CD8 + Tex cells were significantly increased (60% vs. 6.2%, P < 0.001) and CD4 + regulatory cells 
were significantly decreased (0.1% vs 17.2%, P < 0.001).

Recent evidence indicates that terminal Tex cells in tumors are derived specifically from tumor-specific T 
cells24,25, whereas T cells responsible for acute infections do not produce Tex cells26. Consequently, a terminal Tex 
subset can serve as a proxy for a compartment of tumor-reactive T cells27. Importantly, the data provide direct 
evidence that intratumoral T cells in the patients with HRD were distinct from those in the patients with HRP.

Data from mouse model suggest that HRD might serve as a prognostic marker for immuno-
therapy.  To determine if HRD can serve as a predictive biomarker of immunotherapy response, HRD was 
examined in a well-validated mouse model of mammary tumors28–31. As shown in Table 1, in the absence of 

Figure 5.   Single-cell RNA sequencing of HRD tumors. (A) tSNE is based on the top twenty principal 
components of all single-cell transcriptomes after filtering, and is color-coded according to tissue type or 
primary cell type. (B) The chromosomal landscape of inferred large-scale copy number variations (CNVs) 
differentiates malignant from benign cells. Amplifications (red) and deletions (blue) were inferred by averaging 
expression across 100-gene segments on the respective chromosomes. (C) KEGG and Gene Ontology 
enrichment analysis of DEGs. The outermost ring represented the signaling pathways’ names; the second outer 
ring represented the number of genes in signaling pathways; the column heights in the inner ring indicated 
the proportion of DEGs in the total number of genes in the signaling pathway; and the color depth indicated 
the number of differential genes. (D) tSNE calculated from the top ten principal components of tumor-
infiltrating lymphocytes after filtering, and color-coded according to tissue type or major cell type. (E) Dot plot 
demonstrating the expression of five tumor-infiltrating lymphocytes’ signature genes. (F) Quantification of 
tumor-infiltrating lymphocytes in HRD or HRP patients (Fisher extract test, P < 0.01).
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immunotherapy, the median survival time of mice in the HRD group was nearly double that of the HRP group 
(Supplementary Table 7). With the administration of immunotherapy, this discrepancy became even more pro-
nounced. And when the tumor is HRD, further augmentation of the tumor’s genomic instability (such as over-
expression of Apobec3 or UV irradiation) can boost the immunotherapy’s effectiveness.

Using transcriptome data, we discovered that innate immune signals, such as the chemokine signaling path-
way and the cytosolic DNA sensing pathway, are enriched in the HRD subtype (Fig. 6A), which is consistent 
with our analysis of bulk RNA and scRNA data from patient tumor tissue. Using the xCell technique, we next 
calculated the scores for the nine T lymphocyte subtypes in order to examine the link between HRD sub-
group and immune cell invasion. Before and throughout immunotherapy, the HRD group had a considerably 
increased amount of lymphocytes, including CD8 + T cells, CD4 + Tem cells, CD8 + Tcm cells, and CD8 + Tem 
cells (Fig. 6B). These findings show that HRD might be a crucial indicator of immunotherapy success in the 
mouse models investigated here.

Immunotherapy could be beneficial in the treatment of patients with HRD.  Previously pub-
lished clinical research has established a link between immunotherapy response, particularly immune check-
point blockade, and T cell infiltration32,33, high tumor mutational burden (TMB)34,35, neoantigen burden36, and 
TME37. To test the clinical value of HRD as a biomarker for predicting response to immunotherapy, we examined 
the clinical outcomes of HRD patients treated with immune checkpoint inhibitors. We obtained complete clini-
cal, tumor-normal paired sequencing data of 1,661 patients across 11 different cancer types from the MSKCC 
database35. These patients were either treated with PD-1/PD-L1 inhibitors or with CTLA-4 blockade, or with a 
combination of immunotherapy and chemotherapy (Supplementary Table 2). To determine whether a patient’s 
tumor tissue was HRD or HRP, we examined the mutational status of HRR-related genes in these patients: 
those with HRR-related gene driver mutations were classified as HRD, whereas the remaining patients were 
classified as HRP. As demonstrated in Figs. 6C, ~ 20% of patients were classified as having HRD. This frequency 
is comparable to previous research on the mutation rate of HRR-related genes in pan-cancer38. The most fre-
quently observed HRR-related variants in this cohort were ARID1A mutations (8%), followed by ATM (2.6%), 
ATRX (2.6%), and BAP1 (2.4%). The driver mutation was predominantly an inactive truncating mutation, which 
makes sense given that all HRR-related genes are tumor suppressor genes (Figs. 6C). According to a comparison 
of TMB between the two groups, HRD patients had significantly higher TMB than HRP patients, which was 
confirmed in the TCGA cohort (Figs. 6D and Supplementary Fig. 3D). Furthermore, compared to HRP patients 
in the cohort, HRD patients had a significantly longer overall survival (OS) (Figs. 6E, P = 0.0073, hazard ratio 
(HR) = 0.78, 95% confidence interval (CI) = 0.65–0.95).

Discussion
Several studies have explored HRD in various cancer types. However, prior research has the following limitations:

1.	 The lack of clinical prognostic information and insufficient cancer type coverage 39.
2.	 HRD is defined by the presence of known pathogenic variants in HRR-related genes, which rules out HRD 

caused by epigenetic alterations or other unknown causes40.
3.	 Previous pan-cancer studies on HRD patients focused solely on genomics, with no in-depth research on 

other omics, such as the transcriptome and TME41.
4.	 Up until now, HRD has been used primarily as a marker of genomic instability in order to facilitate the use 

of platinum and PARP inhibitors, and its relevance to immunotherapy has not been extensively studied42.

By analyzing 10,619 tumors representing 33 different cancer types, we examined the clinical significance and 
biological characteristics of HRD in Pan-cancer. These findings establish the largest clinical reference resource 
for HRD research (Fig. 7). We demonstrate that HRD is not only prevalent in ovarian and breast cancer, but also 
occurs frequently in other epithelial malignancies, such as LUSC, LUAD, and SARC. The prevalence of HRD 
across cancer types may indicate the existence of a distinct but identifiable subpopulation of cancer patients who 
could benefit from genotoxic therapy but are not currently receiving it as standard of care.

Table 1.   Response statistics to combination immunotherapy in mouse models.

PDX cell name Genetics background HRD subgroup Median survival untreated Median survival aPD1/aCTLA4 Response

2225L TP53−/− HRP 10 9.5 Resistant

2336R TP53−/− HRP 19 18 Resistant

2224L TP53−/− HRP 9 9 Resistant

9263-3F TP53−/− HRP 9 9 Resistant

KPB25L Brca1 f./f HRD 21 28 Sensitive

KPB25L-Apobec Brca1 f./f; Apobec3

Overexpressed HRD 43 64 Sensitive

KPB25L-UV Brca1 f./f; Short-wave UV exposure HRD 37 74 Sensitive
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Figure 6.   Immunotherapy could be beneficial in the treatment of HRD tumors. (A) GSEA showed that 
compared with HRP group, the immune related signal pathway in HRD group was up-regulated in mouse 
model. (B) Comparison of T lymphocytes estimated using the xCell method from the HRD and HRP groups 
(Wilcoxon signed-rank test). (C) HRR-related gene driver mutation landscape in an MSKCC immunotherapy 
cohort. Oncoprint plot displays the overall frequency of deleterious mutations, deletions, and epigenetic 
silencing events for each significantly silenced HRR-related gene. Cancer type is shown in the color key to the 
bottom. (D) Violin plot of TMB in the HRD or HRP group (Wilcoxon signed-rank test, P < 0.001). (E) Kaplan–
Meier survival curves for OS of MSKCC immunotherapy cohort in the HRD group versus the HRP group. Log 
rank test P values are displayed in the bottom left-hand corner of the plot.



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8899  | https://doi.org/10.1038/s41598-023-35092-w

www.nature.com/scientificreports/

We discovered shared activated signaling pathways in HRD patients with various cancer types through GSEA. 
The widespread activation of DDR signaling pathways supports the notion that HRD serves as a biomarker for 
assessing genomic instability. Additionally, HRD patients exhibit activation of immune-related signaling path-
ways, including microbial infection and immune chemokine signaling pathways. To confirm that these activated 
immune-related signaling pathways originate from HRD tumor cells, we conducted scRNA-seq analyses. The 
results of scRNA-seq directly proved that HRD tumor cells up-regulated the immune-related signaling path-
ways in BRCA. Endogenous DNA has been shown to activate innate immune responses, which were originally 
characterized as the first line of defense against pathogens43,44. Genotoxic stress, induced by inactivation of HRR-
related genes, results in the formation of chromosomal fragments that are recognized by the nucleic acid sensor 
cyclic GMP-AMP (cGAMP) synthase45,46. Furthermore, activation of innate immune signals causes changes in 
TME, as evidenced by our immune cell enrichment signals and scRNA-seq results. While the scRNA-seq data 
were derived from a small number of patients, they replicate the cohort-level findings and provide additional 
evidence for immunotherapy in HRD patients. However, it is important to note that the TME subtype of the 
tumors of many HRD patients is immune-depleted. Recent research has demonstrated that activation of STING 
signaling results in the expansion of Breg cells with immunosuppressive properties. Breg cells promote tumor 
growth by inducing the formation of immunosuppressive TME by secreting IL-10 and IL-35 in response to the 
activation of STING signaling47.

The observation that HRD is associated with increased TMB and immune-related signaling pathways, which 
lends credence to the possibility of an expansion of the immune-responsive patient population42,44. The scientific 
rationale for PARPi and immunotherapy is related to immune activation, not only because error-prone repair 
may result in an increase in point mutations and neoantigen load, but also because innate cytosolic DNA can 
activate type I immunity via the cGAS-STING pathway48. Additionally, several critical HRR pathway genes, 
such as ATM, ATR​, and CHK1, play critical roles in cell cycle regulation, which can result in an increase in 
programmed death-ligand 1 expression (PD-L1)49,50. And in breast and ovarian cancer, PARPi increases PD-L1 
expression in tumor cells. These indications suggest that some cancer patients may benefit from the combination 
of PARPi and immunotherapy51–53.

We propose a model based on published data and our findings that elucidates the mechanism by which 
HRD activates the cGAS-STING pathway, thereby facilitating immunotherapy. In a cohort of 1661 patients 
undergoing immunotherapy for 11 different cancer types, we examined the association between HRD and 

Figure 7.   TCGA Pan-Cancer analysis of HRD in cancer. Through integrative genomic and molecular analyses, 
frequent HRD alterations are identified across 33 cancer types. This work also demonstrates the correlation 
between gene- and pathway-level alterations of HRD. Furthermore, the prognostic utility of HRD is highlighted, 
providing valuable insights into the potential prognostic value of HRD in cancer.
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immunotherapy. The findings indicated that immunotherapy-treated HRD patients had a significantly better 
prognosis than immunotherapy-treated HRP patients. Given that some HRP patients have pathogenic HRR-
related gene mutations defined as VUS or epigenetic variants in the HRR-related genes, the clinical significance 
of HRD as an immunotherapy prognostic marker may be underestimated. Further research should be conducted 
to assess HRD status on a genome-wide scale to determine whether HRD can be used effectively as a predictive 
biomarker for patients who may benefit from combination therapy with DNA damaging agents and immune 
checkpoint inhibitors.

To summarize, our findings establish a critical benchmark for the standardization of HRD detection, and its 
application prospects are promising. In the future, with the rapid advancement of genetic testing technology, 
the continuous improvement of HRD evaluation methods, and the involvement of an increasing number of 
clinicians, pathologists, molecular testing personnel, clinical pharmacists, and tumor biology experts in tumor 
precision medicine, we believe that accurate HRD assessment will further improve the level of tumor diagnosis 
and treatment, benefiting more tumor patients.

Materials and methods
Data collection and processing.  We obtained Affymetrix SNP6 genotyping data and for 10,619 unique 
cancer samples representing 33 distinct cancer types from the TCGA data portal (https://​portal.​gdc.​cancer.​gov). 
The genotyping data for TCGA from Affymetrix SNP assay used the hg19. Patients’ clinical information, RNA 
sequencing data (as TPM units, the version of genecode for gene annotation is genecodeV22), somatic mutation 
data and corresponding copy number variation (CNV) data were captured from the USCS XENA portal https://​
xenab​rowser.​net/​datap​ages/?​cohort=​TCGA%​20Pan​Cancer%​20(PANCAN)​&​remov​eHub=​https%​3A%​2F%​
2Fxena.​treeh​ouse.​gi.​ucsc.​edu%​3A443, which are listed in Supplementary Table 1. The DNA sequencing data 
and corresponding clinical follow-up information from immunotherapy cohorts were extracted from Memorial 
Sloan Kettering Cancer Center (MSKCC) https://​www.​cbiop​ortal.​org/​study/​summa​ry?​id=​tmb_​mskcc_​201835, 
which are listed in Supplementary Table 2. Patients with multiple tumor RNA-Seq samples or clinical annotation 
gaps were eliminated. The sample information of scRNA-seq data were listed in Supplementary Table 3.

HRD score analysis.  Pairs of tumor and normal samples were normalized and preprocessed with the 
Aroma Affymetrix CRMAv2 algorithm54. The B-allele fraction (BAF) was adjusted with the CalMaTe and Tumor 
Boost algorithms, and the number of B-alleles was changed with the Tumor Boost algorithm55. The HRD score 
that includes NtAI, LST, and LOH (Supplementary Table 1).

Somatic mutation and copy number variation (CNV) analysis.  The HRR-related genes were down-
loaded from Molecular Signatures Database56. The following are the specific genes: ARID1A, ATM, ATRX, BAP1, 
BARD1, BLM, BRCA1, BRCA2, BRIP1, CHEK1, CHEK2, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, 
FANCL, MRE11A, NBN, PALB2, RAD50, RAD51, RAD51B, WRN38. CNV data was extracted from the TCGA 
database and analyzed using web tools for 33 cancer types (http://​bioin​fo.​life.​hust.​edu.​cn/​GSCA/#/)57. Supple-
mentary Table 9 shows the mutation landscape of HRR-related genes.

Methylation analysis.  Illumina Human Methylation 450 k-level 3 methylation data were obtained from 
UCSC Xene database (https://​xenab​rowser.​net/​datap​ages). The methylation signature of HRR-related genes was 
analyzed by GSCA web tools (http://​bioin​fo.​life.​hust.​edu.​cn/​GSCA/#/).

Survival analysis and receiver operating characteristic curves calculation.  We conduct univari-
ate survival analysis using the R package survival. Survival differences were assessed using log-rank test58. The 
straightforward method for determination of a prognostic cutoff point is to optimize the significance of the split 
in the Kaplan–Meier plot. R package PRROC that were used to estimate the ROC curve59.

GSEA analysis.  GSEA was used to identify differential signaling pathways in different groups using GSEA 
software from the Broad Institute (MIT, Cambridge, MA)60. The plots of the overlapping GSEA results were cre-
ated using the R package UpSetR61.

Evaluation of immune infiltration with CIBERSORT.  CIBERSORT is a deconvolution algorithm that 
is based on gene expression and uses support vector regression to infer cell type proportions in data from mixed 
cell type cancer samples62. Based on normalized gene expression data (TPM), the proportions of different types 
of infiltrating immune cells were estimated using the CIBERSORT method (Permutations = 200) or × Cell63. The 
reference signature immune cell type for CIBERSORT is in (Supplementary Table 8).

Evaluation of TME and Immune subtype.  A tumor’s four TME subtypes identified using the classifica-
tion platform’s TME subtypes. The four TME subtypes are: Immune-enriched, fibrotic (IE/F), Immune-enriched 
(IE), Fibrotic (F), Immune-Depleted (D)64. The six immune subtypes were retrieved from the immune landscape 
publication65. The TME and Immune subtypes of each sample are detailed in Supplement Table 4. The input 
matrix was quantified as TPM; Scripts used to generate results are available at https://​github.​com/​Bosto​nGene/​
Kassa​ndra ; https://​github.​com/​CRI-​iAtlas .

scRNA‑seq data processing and quality control.  We conducted pre-processing of scRNA-seq fastq 
files using Cell Ranger (10 × Genomics), aligning the reads to the GRCh38 reference genome and generating 

https://portal.gdc.cancer.gov
https://xenabrowser.net/datapages/?cohort=TCGA%20PanCancer%20(PANCAN)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20PanCancer%20(PANCAN)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20PanCancer%20(PANCAN)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://www.cbioportal.org/study/summary?id=tmb_mskcc_2018
http://bioinfo.life.hust.edu.cn/GSCA/#/)
https://xenabrowser.net/datapages
http://bioinfo.life.hust.edu.cn/GSCA/#/
https://github.com/BostonGene/Kassandra
https://github.com/BostonGene/Kassandra
https://github.com/CRI-iAtlas


13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8899  | https://doi.org/10.1038/s41598-023-35092-w

www.nature.com/scientificreports/

a count matrix of cell barcodes by genes using the Cell Ranger count function. To normalize the number of 
confidently mapped reads per cell across libraries from different samples, we used the “Cell Ranger Aggr” func-
tion. Poor-quality cells were excluded based on specific criteria, such as a low number of detected genes (< 500) 
or a high number of detected genes (> 10,000), a low number of unique molecular identifiers (UMI) (< 1000) 
or a high number of UMIs (> 100,000), and a high percentage of molecules mapped to mitochondrial genes 
(≥ 10%)66. To remove heterotypic doublets, we preprocessed the dataset using DoubletFinder v2.0.267 (assuming 
6% of barcodes represent doublets). After filtering, we normalized the library with SCTransform68, We con-
ducted principal component analysis (PCA) on all single-cell transcriptomes using genes expressed in at least 
two cells. To correct for batch effects, we used Harmony69. We then applied the k-means algorithm to clus-
ter cells based on the PCA results, and visualized cell distances in a reduced two-dimensional space using the 
t-distributed stochastic neighbor embedding (t-SNE) method. Cell type annotation was conducted by using 
scType70 and the cell markers used in this work were extracted from previous studies71 (Supplementary Table 5). 
To identify differentially expressed genes (DEGs) between two groups of clusters, we used edgeR72 to evaluate 
the significance of each gene (FDR < 0.01; fold change |log2FC|> 1).

Data and code availability
The RNA-seq data of Patient-Derived Xenograft (PDX) model are available at GEO Datasets: GSE124821, 
GSE136206. The single cell datasets generated during this investigation are accessible through the Zenodo data-
base (https://​zenodo.​org/​record/​79055​11#.​ZFhcu​nZBwQ8). Source of the original data are provided with this 
paper. The study did not produce any new bioinformatics methods, the code supporting the current study is 
available from the corresponding authors on request.
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