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A quantum walk simulation 
of extra dimensions with warped 
geometry
Andreu Anglés‑Castillo* & Armando Pérez

We investigate the properties of a quantum walk which can simulate the behavior of a spin 1/2 particle 
in a model with an ordinary spatial dimension, and one extra dimension with warped geometry 
between two branes. Such a setup constitutes a 1+ 1 dimensional version of the Randall–Sundrum 
model, which plays an important role in high energy physics. In the continuum spacetime limit, the 
quantum walk reproduces the Dirac equation corresponding to the model, which allows to anticipate 
some of the properties that can be reproduced by the quantum walk. In particular, we observe that 
the probability distribution becomes, at large time steps, concentrated near the “low energy” brane, 
and can be approximated as the lowest eigenstate of the continuum Hamiltonian that is compatible 
with the symmetries of the model. In this way, we obtain a localization effect whose strength is 
controlled by a warp coefficient. In other words, here localization arises from the geometry of the 
model, at variance with the usual effect that is originated from random irregularities, as in Anderson 
localization. In summary, we establish an interesting correspondence between a high energy physics 
model and localization in quantum walks.

Quantum walks (QWs) constitute an interesting possibility for simulating physical phenomena from many 
fields. The discrete time version describes the motion of a spin 1/2 particle on a lattice. For instance, by simply 
incorporating suitable position-dependent phases on the unitary operator that implements the time evolution, 
one can mimic the effects of an external electromagnetic  field1–8. In the continuum limit (when both the time step 
and the lattice spacing tend to zero), the Dirac equation in presence of such fields is recovered. In an analogous 
way, the motion of a Dirac particle in presence of a gravitational field can be simulated by an appropriate choice 
of the operator that drives the evolution, either on a rectangular or other types of  lattices3,9,10. Other scenarios 
include vacuum or matter neutrino  oscillations11–13, and one can even establish some connections to lattice field 
 theories14.

There is also a different connection of QWs with quantum field theories, namely the possibility to explore 
some models which include extra dimensions, which are only manifested at very high energies. The possibility of 
extra dimensions of space was first suggested by Theodor Kaluza and Oscar  Klein15,16 seeking an unified theory 
of electromagnetic and gravitational fields into a higher dimensional field, with one of the dimensions compac-
tified. Experimental data from particle colliders restrict the compactification radius to such small scales that it 
becomes virtually impossible to explore these extra dimensions. Different ideas have been proposed to overcome 
this difficulty, for example the domain wall model introduced by Rubakov and  Shaposhnikov17, in which the 
particle couples to an external scalar field. The motion of a spin 1/2 particle moving inside such a geometry was 
analyzed in Ref.18. In addition to recovering the corresponding Dirac equation in the continuum limit, the QW 
shows, at finite spacetime spacing, localization of the particle within the brane due to the coupling to the field.

Spatial localization is an important phenomenon in physics, which appears within the context of diffusion 
processes in lattices. It can arise from random noise on the lattice sites, giving rise to Anderson  localization19 
and causing a metal-insulator transition, but it can also be the consequence of the action of an external periodic 
potential (see e.g. Refs.20–22). Similarly, one obtains localization for the 1-dimensional QW when spatial disorder 
is  included23–25, non-linear  effects26, or by the use of a spatially periodic  coin27. The results in Ref.18 show, however, 
that localization can also appear as a consequence of the interaction with a smooth external potential, instead of 
a random, or even periodic, perturbation.

In this paper, we investigate localization effects that arise within a different context, which is also inspired 
on high energy physics, and was originally proposed to address the hierarchy problem (the observed difference 
between the Higgs mass, and the Planck scale, in many orders of magnitude), and is commonly referred to as 
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the Randall–Sundrum  model28. This model assumes an extra dimension which extends between two branes 
(with a topology that will be discussed later). Here we consider a simplified version with one ordinary spatial 
dimension and one extra dimension, and define a QW that reproduces the dynamics of a spin 1/2 particle in the 
continuum spacetime limit.

Unlike the Rubakov and Shaposhnikov model, there is no coupling to an external scalar field. Instead, this 
model presents a warped geometry along the extra dimension. As we will show, this curvature is at the root of 
a localization effect of the QW towards the second (low energy) brane. The stationary states of the model in 
the continuum limit become concentrated close to the low energy brane for high values of the warp coefficient, 
which quantifies the strength of the localization. The localization of the QW can be analyzed by quantifying its 
overlap with these stationary states. This allows us to tailor the dynamics of the QW, showing a different behavior 
as the value of the warp coefficient is changed. In this way, we arrive at a QW model with a rich phenomenology, 
where some properties are inherited from the continuum field theoretic model. There is, in this sense, a mutual 
multidisciplinary benefit: one can design a QW which simulates an important high energy physics model. In 
exchange, the knowledge of the continuum properties is useful to understand, and to control, the dynamics of 
the QW in different regimes.

This paper is organized as follows. We first define the Randall–Sundrum model in 1+ 1 spatial dimensions, 
along with its main properties. We pay special attention to the stationary states of the Hamiltonian, which play a 
crucial role in understanding the dynamics of the proposed QW. Next, we define a QW which allows to recover 
the dynamics of the Randall–Sundrum model for a spin 1/2 particle, and we study its phenomenology. Namely, 
we show that the distribution probability, as well as the expected value of the position along the extra dimen-
sion, approaches the lower brane at large time, and that this approaching proceeds more slowly for larger values 
of the warp coefficient, which turns out to be the main parameter in controlling the dynamics. We also analyze 
the entanglement entropy between spatial and internal degrees of freedom, exhibiting a complex behavior as a 
function of that parameter, which can be attributed to the different sharpness of the probability distribution. We 
finally conclude by collecting and discussing our main results.

The model
Orbifold S1/Z

2
 and background geometry. As described in the “Introduction”, we consider the Ran-

dall–Sundrum model (RSM)28 with a single extra dimension y, together with a 2-dimensional ordinary space-
time, whose coordinates are denoted by xµ = {t, x} . The total spacetime possesses D = 3 dimensions. The extra 
dimension y is compactified on a circle of radius R, and subject to a Z2 symmetry. These features are captured 
by the equivalences

which define the orbifold S1/Z2 describing this extra dimension. Along the y dimension, the orbifold is a finite 
segment with two fixed points at y = 0 and y = πR ≡ L . The RSM assumes that there is a (D − 1)-brane of ordi-
nary dimensions at each fixed point, see Fig. 1 for a sketch of the space configuration and the orbifold symmetries.

The matter fields are supposed to reside on the brane at y = L , which is referred to as the “visible brane”, while 
the brane at y = 0 is the “hidden brane”. Both branes contribute to the bulk background geometry through their 
tensions, or vacuum energies, Tvis and Thid  respectively28,29. The total background action is

where the first term is the usual Einstein–Hilbert action of the total space, with � the bulk cosmological constant, 
α a constant and |g| the absolute value of the metric determinant, while

(1)S1 : y ∼ y + 2πR ,

(2)Z2 : y ∼ −y,

(3)S =
∫ L

−L
dy

∫

dxµ
√

|g|
(

2αR −�
)

+ Svis + Shid,

Figure 1.  Schematic representation of the extra dimension in the Randall–Sundrum model.
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are the action contributions of the branes tensions, with the induced metrics gvis(xµ) = g(xµ, y = L) and 
ghid(x

µ) = g(xµ, y = 0) . To address the hierarchy problem, the following metric was proposed

where e−2A(y) is a warp factor, a rapidly changing function along the additional dimension, and ηµν is the 
Minkowski metric with signature (+,−) . The metric in Eq. (6) obeys Einstein’s equations that are obtained from 
the action (3): We refer the reader to the Supplementary Information for the standard computation particular-
ized to this lower-dimensional spacetime. We also show that, as a consequence of these equations, the function 
in the exponent is given by

where k is the so called warp coefficient.

Fermions in the Randall–Sundrum model. We now focus on the study of spin 1/2 fermions, whose 
evolution equation is the Dirac equation in curved spacetime

The γ a are the Dirac gamma matrices in a local rest frame, and the covariant derivative is

where ωab
µ  is the spin connection. The vierbeins eµa  allow to express the Dirac matrices in a rest frame, that is, 

they perform a change of basis to a non-coordinate system in which the metric becomes the Minkowski metric

Equation (8) defines the vector current

whose conservation ∂µjµ = 0 imposes the normalization condition

In the case of 2 spatial dimensions, the Dirac equation (8) can be reduced, after some algebra, to

where the γa matrices become Pauli matrices. A simple choice of the vierbein obeying relation (10) is

which yields the following expression for the Dirac equation

This expression can be rewritten in Hamiltonian form as

with

where the change of variable χ = e−A(y)/2� was performed, and we defined

The symbol {·, ·} represents the anticommutator of two operators. There is some freedom in the choice of the 
gamma matrices. For convenience, we choose

(4)Svis = −
∫

dxµ
√

|gvis|Tvis,

(5)Shid = −
∫

dxµ
√

|ghid|Thid,

(6)ds2 = e−2A(y)ηµνdx
µdxν − dy2,

(7)A(y) = k|y|,

(8)(iγ aeµa Dµ −m)� = 0.

(9)Dµ = ∂µ − i

4
ωab
µ σab, with σab =

i

2
[γa, γb],

(10)gµνe
µ
a e

ν
b = ηab.

(11)jµ =
√

|g|eµa �γa� ,

(12)
∫

dxµ
√

|g|e00�†� = 1.

(13)iγ a

[

eµa ∂µ� + 1

2
√

|g|
∂µ(e

µ
a

√

|g|)�
]

−m� = 0,

(14)e0 = (eA(y), 0, 0), e1 = (0, eA(y), 0), e2 = (0, 0, 1),

(15)i∂t� = −iγ 0γ 1∂x� − iγ 0γ 2∂y(e
−A(y)�)+ γ0e

−A(y)m� .

(16)i∂tχ = Hχ ,

(17)H = − i

2
{Bx , ∂x} −

i

2
{By , ∂y} + γ0e

−A(y)m,

(18)Bx = γ 0γ 1 , By = e−A(y)γ 0γ 2.
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Boundary conditions for fermionic fields. The periodic condition (1) simply implies that the fermionic 
fields need also to be periodic

but the Z2 needs a deeper consideration, since it has to leave the fermionic action invariant. We can write the 
fermionic action as

which is extremized by the Dirac equation (15). Under Z2 , the fermionic action becomes

The general boundary condition for a fermionic field under Z2 is given by χ(xµ,−y) = Tχ [Z2]χ(xµ, y)
30,31, where Tχ [Z2] is the matrix representation for the action of Z2 . We rename it to Tχ [Z2] = M to alleviate 
the notation. We then need to find an operator M that keeps the action invariant. The action (22) is therefore 
transformed as

and establishes the following restrictions for M to keep the action (21) invariant,

where the first 2 conditions come from the kinetic terms of the action, and the last one arises from the mass term. 
There does not exist a solution for M that solves all conditions simultaneously, although M = ησz is a solution 
for the first 2, with η = ±1 (since M2 = I ). This means that a constant mass term is forbidden. In the following 
we restrict ourselves to the case where the “bulk mass” m vanishes. The action of the fermionic field is therefore

and the fermionic field has to obey the boundary condition

with η = ±1.

Stationary solutions. In this model, the Dirac field satisfies a complicated equation, Eq. (15), which is dif-
ficult to address even numerically. In order to obtain some insight, we first look for stationary solutions, which 
are defined as the eigenstates of the Hamiltonian. For m = 0 , and with our choice of the gamma matrices, the 
Hamiltonian takes the form

where pk = −i∂k is the momentum operator along the k direction ( k = x, y ). The stationary states φn(x, y) cor-
responding to energy En satisfy

It is convenient to introduce a Fourier transform on the ordinary dimension x:

since the field is free to move along this direction. We found the energies

where

(19)γ 0 = σx , γ 1 = iσy , γ 2 = iσz .

(20)χ(xµ, y + 2L) = χ(xµ, y),

(21)SF =
∫

dxµ
∫ L

−L
dyχ(xµ, y)

(

iγ µ∂µ + iγ 2∂ye
−A(y) − e−A(y)m

)

χ(xµ, y).

(22)SF =
∫

dxµ
∫ L

−L
dyχ(xµ,−y)

(

iγ µ∂µ − iγ 2∂ye
−A(−y) − e−A(−y)m

)

χ(xµ,−y).

(23)SF =
∫

dxµ
∫ L

−L
dyχ(xµ, y)γ 0M†γ 0

(

iγ µ∂µ − iγ 2∂ye
−A(y) − e−A(y)m

)

Mχ(xµ, y),

(24)γ 0M†γ 0γ µM = γ µ,

(25)γ 0M†γ 0γ 2M = −γ 2,

(26)γ 0M†γ 0M = I,

(27)SF =
∫

dxµ
∫ L

−L
dyχ(xµ, y)

(

iγ µ∂µ + iγ 2∂ye
−A(y)

)

χ(xµ, y),

(28)χ(xµ,−y) = ησzχ(x
µ, y),

(29)H = −σz p̂x +
σy

2

(

e−A(y)p̂y + p̂ye
−A(y)

)

,

(30)Hφn(x, y) = Enφn(x, y).

(31)φ̃n(q, y) =
∫

dxe−iqxφn(x, y),

(32)En = ±
√

q2 + (kαn)
2,
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The eigenfunctions associated with this spectrum that satisfy the boundary condition (28), for the particular 
case with η = 1 , are

where the components of the spinor field are φ̃n = (φ̃
↑
n , φ̃

↓
n )

T . The particular case n = 0 only has an upper 
component, which is given by

and is undefined for energy and momentum with different sign. The procedure to obtain the eigenfunctions 
is detailed in the Supplementary Information, as well as the solution for η = −1 . The probability distribution 
associated to these wavefunctions is concentrated around y = L for high values of the warp coefficient k. We 
illustrate this behavior in Fig. 2, where we have plotted the probability density for the first modes with positive 
energy, and momentum q = 10 , for a value of the warp coefficient kL = 3 and kL = 7 , respectively.

A quantum walk for the Randall–Sundrum model
Once we have discussed the main properties of the RSM in the continuum spacetime, we focus on the main goal 
of our work, which consists in constructing a QW that is able to simulate the dynamics of a spin 1/2 particle 
subject to the geometric effects and symmetries of the model. To incorporate the metric, we adapt the scheme 
introduced in Ref.9, which allows to reproduce (in the continuum limit) a Dirac equation of the form Eq. (16).

The QW is defined on a 2-dimensional discrete grid with x and y axis, with discrete positions labeled by 
r and s, respectively. The grid points are equally spaced by ε , so that the spatial coordinates can be related to 
the grid points by x = εr and y = εs . The Hilbert space that corresponds to these spatial degrees of freedom, 
Hspatial is spanned by the basis {|x = εr, y = εs�}/r, s ∈ Z . Time steps are labeled by j ∈ N , and are also equally 
spaced by ε . The coin (or internal) space is a 2 dimensional Hilbert space Hcoin , so that the total Hilbert space 
is Htot = Hspatial ⊗Hcoin . At a given time step, the state of the walker will be represented by a two component 
spinor |χj� ∈ Htot . The one step evolution of the QW is given by

where we made use of the general operator introduced in Ref.9. The structure of U consists on alternating dis-
placement operators along each direction, together with unitary operators which are functions of some angle 
that is allowed to be spacetime dependent. Since the displacement operator and the position-dependent unitaries 
do not commute in general, a term containing the spatial derivative of those unitaries appears in the continuum 
limit, which is needed for a construction that takes the form of Eq. (17). The angles appearing in this general 
expression have to be chosen to reproduce the appropriate operators Bx and By given by Eq. (18) that correspond 

(33)αn = nπ

ekL − 1
, n = 0, 1, . . .

(34)φ̃↑
n (q, y) =

√

2k

ekL − 1

En + q
√

(En + q)2 + (kαn)2
e
k|y|
2 cos

[

αn

(

ek|y| − 1
)]

,

(35)φ̃↓
n (q, y) =

√

2k

ekL − 1

kαn
√

(En + q)2 + (kαn)2
e
k|y|
2 sin

[

αn

(

ek|y| − 1
)]

sign(y),

(36)φ̃
↑
0 (q, y) =

√

k

ekL − 1
e
k|y|
2 sign(En + q),

(37)|χj+1� = U |χj�,

Figure 2.  Plots of the probability distribution for the first four stationary states, with positive energy and a value 
of q = 10 , for kL = 3 on the left and for kL = 7 on the right.
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to the metric (or vierbein) of the model. Some of these angles are trivial in our case, so that one arrives to a 
simplified expression, given by (details are given in the Supplementary Information):

where Sk(ε) = exp(−iσzpkε) are spin-dependent shift operators in the direction ±k (with k = x, y),

with c(y) = e−A(y) , s(y) =
√

1− e−2A(y) , and

where f (y) =
√

1+c(y)
2 + i

√

1−c(y)
2  . At each position (r, s) we introduce

which represents the amplitude (given a component of the spin) for the particle to be localized at the position 
labeled by (r, s) and time step j. In this way, the time step defined by (37) can be recast as a recursive formula for 
χj,r,s , which is provided in the Supplementary Information. In order to implement this QW to simulate fermions 
in the RSM, appropriate conditions have to be set to comply with the boundary conditions (20) and (28). It can 
be explicitly shown, from the recursive formula for χj,r,s , that this QW dynamics respects (28), in the sense that, 
if the walker obeys the condition

at time j, it is also obeyed at time j + 1 . For the simulations, we discretize the y coordinate along the segment 
[−L, L] with a spacing ε , and impose an initial condition which satisfies Eq. (42). We use the same lattice spacing 
in the x direction, together with an strategy that adapts its effective extension to the time step. We also impose 
periodic boundary conditions on the grid to respect condition (20), taking into account that functions evaluated 
at y = L+ ε should be identified with functions at y = −L+ ε to respect the periodicity in the range [−L, L].

As discussed above, the parameter that governs the amount of warp in the extra dimension is given by the 
product kL. One can wonder how the ordinary spacetime limit (corresponding, in our case, to just one spatial 
dimension x) can be recovered. To this end, we consider two different lattice spacing εx and εy along the x and 
y directions, respectively. We first impose the limit kL → 0 , so that the vierbein becomes trivial (or, in other 
words, the metric gµν becomes the Minkowski metric). Still, U will contain the displacement operator Sy(−εy/2) 
along a hidden closed dimension y. To get rid of it, we just need to further take the limit εy → 0 , which yields

The above unitary operator can be interpreted as a QW which describes, in the continuum limit, the one-
dimensional Dirac equation of a massless particle, as a special case of the model.

Results
The QW defined in the previous section is guaranteed to reproduce (in the continuum limit) a Dirac equation 
of the form (16), such as the one corresponding to the RSM. The question that arises concerns the dynamics 
appearing at a finite lattice and time step spacing. Of course, one does not expect the QW to behave exactly as 
the continuum field but, to what extent do they differ? Are there any new features that appear in the discrete 
case? In particular, we are interested in looking for some kind of probability concentration towards the visible 
brane, for a given initial condition. In this Section we explore all these features.

Stationarity of the eigenstates solutions on the quantum walk. As an initial comparison, we start 
by considering the discretized version of the eigenstates corresponding to the continuum limit Hamiltonian, 
obtained before. Such states remain stationary within this limit (i.e. they just evolve by adopting a trivial phase). 
How do they evolve under the action of the QW? We consider an initial state which corresponds to an eigenstate 
of the continuum, with fixed momentum q, and check whether the QW evolution of this state is stationary. The 
initial condition of the walker is therefore

which represents a constant probability density along the ordinary dimension x. As expected, the QW evolution 
does not remain stationary, although it keeps a close resemblance to the initial state. This can be observed from 
Fig. 3, where we represented the normalized marginal probability along the y direction of the walker (after sum-
ming over x) at different time steps, for an initial stationary state solution with n = 2 , and warp coefficient kL = 3.

Localization in the QW. We now investigate the localization capability of the above defined QW, i.e., 
whether it shows a tendency to concentrate the walker towards the visible brane at y = L . We consider an initial 
walker which is fully localized

(38)U = R−1(y)
[

�(y)Sy(−ε/2)
]2
R(y)Sx(−ε),

(39)�(y) =
(

−c(y) is(y)
−is(y) c(y)

)

,

(40)R(y) = 1√
2

(

f ∗(y) if (y)
−f ∗(y) if (y)

)

,

(41)χj,r,s ≡ �x = εr, y = εs|χj� =
(

χ
↑
j,r,s

χ
↓
j,r,s

)

,

(42)χj,r,−s = ησzχj,r,s ,

(43)U → Sx(−εx).

(44)χ0,r,s = φ̃n(q, εs)e
iqεr ,
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where C0 is the initial coin state, and we recall that x = εr and y = εs . We explore the evolution of a walker which 
is initially localized at the center of the extra dimension, that is at y0 = L

2 , and we study the probability distribu-
tion for different values of the warp coefficient, at a given time step. In Fig. 4 we show the surface plot of the 
probability density with the above initial conditions, and C0 = 1√

2
(1, i)T , which induces a symmetric evolution 

in the ordinary dimension. The blue (red) color of the surface represents dominance of the upper (lower) coin 
component, while yellow stands for a superposition of both components.

We notice that most of the probability distribution in the x direction is concentrated along a freely propagating 
front which moves at the maximum speed ( x = ±t ), consistently with the fact that the QW simulates massless 
fermions. We also notice that most of the right propagating distribution (positive values of x) is dominated by the 
upper coin component, while the part propagating to the left (negative values of x) mainly contains the lower coin 
component, a fact that can also be inferred from the explicit evolution of the QW (see Supplementary Informa-
tion for details). The propagation of the walker along the extra dimension y strongly depends on the value of the 
warp coefficient. At t = 5L , the distribution with the lowest value of kL possesses non-zero values on the visible 
brane y = L , while the other two do not. In fact, the displacement of the probability distribution towards y = L 
is slower for the highest kL. In other words, a larger value of the warp coefficient dramatically increases the time 
scale of the dynamics along the extra dimension, and makes it prohibitively expensive (in terms of computational 
cost) to explore larger values of kL than those considered here.

In order to investigate whether the QW exhibits the same behavior as the stationary states, in the sense that 
a higher value of the warp coefficient induces a stronger localization near the visible brane, we study the distri-
bution of the freely propagated parts of the walker (the regions around x = ±t ), where most of the probability 
density is concentrated, as can be readily seen in Fig. 4. The probability distribution associated to these two zones 

(45)χ0,r,s = δx,0δy,y0C0,

Figure 3.  Snapshots of the probability density starting from an initial eigenstate with n = 2 and positive 
energy, for a value of kL = 3 , and q = 10 . The simulation grid has 100 points along the y direction, and enough 
points have been taken in the x direction to ensure that the total probability density does not leak outside the 
boundaries.

Figure 4.  Probability density distribution, at t = 5L , of an initial localized walker centred at (x0, y0) = (0, L/2) 
for different values of kL with initial coin components C0 = 1√

2
(1, i)T . The height of the curve represents the 

probability of finding the walker in that position, and the colors indicate the coin state. The red (blue) color 
indicates a predominance of the upper (lower) component, while yellow stands for a superposition of both 
components. The simulation grid has 100 points along the y direction, and enough points have been taken in the 
x direction to ensure that the total probability density does not leak outside the boundaries.
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will be referred to as the “freely propagating distribution” (FPD). In terms of the spinor components, those are 
the probability density distributions obtained from χR

j,s ≡ χj,j,s and χL
j,s ≡ χj,−j,s , where r = ±j restricts the wave-

function to the two freely propagating peaks. In Fig. 5 we represent the expected value for these distributions 
along the y dimension, which can be defined as

where t = εj , for different values of kL. First of all we notice that this quantity reaches an asymptotic value, which 
is closer to L for higher warp coefficients. Secondly, as discussed above, the warp coefficient induces a change in 
the time scale of the dynamics, so that lower values of the warp coefficient show a faster convergence towards 
the asymptotic state, consistently with the features already observed in Fig. 4.

Mode decomposition of the freely propagating distribution. Our simulations indicate that the FPD 
reaches a steady state along the extra dimension, in a similar fashion as the expected value (46). This evolution 
can be appreciated from the plots of Fig. 6. Al late times (lower row), the probability distribution resembles the 
probability density of a stationary state with positive energy and momentum in one of the lowest modes: n = 0 
for the right FPD, and n = 1 for the left FPD. It is important to recall that, as discussed above, the right (left) 
FPD is predominantly composed by the upper (lower) component of the spinor, and that n = 0 has no lower 
component: see Eq. (36). This causes a fundamental difference when comparing the left and right contributions. 
In order to investigate these features on the time evolution, we introduce a decomposition on the wavefunction 
of the walker as a combination of the stationary states basis. This allows us to write

where the temporal dependence is included on the βn(q, t) coefficients. In the Supplementary Information we 
detail how these factors can be computed, and define their normalization conditions. In particular, we are inter-
ested on the contribution of each value n, therefore we integrate out the dependence in the quasi-momentum q. 
In other words, we are interested on the following (time-dependent) coefficients:

The different mode components Bn(t) of Fig. 6 have been included as an inset in those plots. On the one 
hand, it can be observed that, at long times, when a steady state has been reached, the FPDs are mostly composed 
by the lowest possible mode ( n = 0 or n = 1 , as discussed above). On the other hand, at short times, the FPDs 
contain additional higher modes.

Entanglement entropy. Finally, we study the entanglement properties that the QW exhibits between the 
coin and position degrees of freedom for the already considered, initially localized state. The entanglement can 
be quantified using the von Neumann entropy of the reduced density matrix in the coin space

where ρc(t = εj) =
∑

r,s χj,r,sχ
†
j,r,s is the reduced density matrix in the coin space, i.e. after tracing out the spa-

tial degrees of freedom. In the simple case of a QW on a line with a constant coin operator, the entanglement 
primarily arises as a consequence of the presence of the spin-dependent displacement operator S in the unitary 
U, although it can be modulated by both the angle of the coin operator and by the initial  state32,33. For the same 

(46)�yR(L)(t)� =
∑

s

εs χ
R(L)†
j,s χ

R(L)
j,s ,

(47)χj,r,s =
∫ π/ε

−π/ε

dq

2π

∑

n

βn(q, t)φ̃n(q, εs)e
−iqεr ,

(48)Bn(t) =
∫ π/ε

−π/ε

dq

2π

∣

∣βn(q, t)
∣

∣

2
.

(49)S(t) = −Tr
{

ρc(t) log2 ρc(t)
}

,

Figure 5.  Expected value of the probability distribution along the extra dimension y, as calculated from the 
FPD, for different values of the warp coefficient kL. The initial condition is the same as in Fig. 4.
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reason, we also expect entanglement to be produced in our model, although an analytical calculation, similar to 
previous references, is probably unfeasible for a 2D spatial case which, moreover, includes position-dependent 
unitaries, as in Eq. (38).

In Fig. 7 we plot the evolution of the entanglement entropy of a fully localized initial state for different values 
of the warp coefficient, with a coin state C0 = 1√

5
(1, 2i)T . Notice that this choice is different from that one used 

in the previous section, for reasons that are explained below. It can be seen that the entanglement entropy reaches 
lower values as kL increases, an effect that can probably be due to the fact that the probability density in between 

Figure 6.  Probability distributions of the FPDs along the extra dimension y, for the value kL = 3 . The inset is 
a histogram showing the value of the Bn(t) coefficients, as defined by Eq. (48): see the text for an explanation. 
The left (right) panels show the left (right) FPD. The top panels are calculated at a shorter time t = 50L and the 
bottom ones at a longer time t = 1000L . The initial condition is the same as in Fig. 5, and the simulation grid 
has 200 points along the y direction.

Figure 7.  Evolution of the entanglement entropy with the initial condition Eq. (45) centred at y0 = L/2 for 
different values of the warp coefficient and initial coin components C0 = 1√

5
(1, 2i) . The dotted line represent the 

minimum value the entropy can reach for very high values of kL, which is computed in the Supplementary 
Information. This simulation grid has 50 points along the y direction.
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the FPDs becomes more spread (and therefore “less ordered”) at lower values of kL. This can be observed in 
Fig. 8, where we plotted a zoomed version of Fig. 4, but obtained with the above initial coin components 
C0 = 1√

5
(1, 2i)T . One can see that, for lower values of the warp coefficient, a significant part of the probability 

distribution is scrambled in the intermediate region between both parts of the FPD. This diffusion effect can be 
totally mitigated for extreme values of the warp coefficient, leading to a minimum value of the entropy which is 
completely dominated by the FPD, and can be obtained from the initial coin components. In the Supplementary 
Material we show this limiting situation, and how the corresponding entropy can be computed. The initial coin 
state C0 = 1√

2
(1, i)T previously used produces values of the entropy which are very close to unity in all cases, 

making it difficult to appreciate the effects that are discussed above.

Conclusions
We have investigated a quantum walk which allows to simulate the Randall–Sundrum model of extra dimensions, 
while satisfying the constrains imposed by the symmetries of that model. This model has played an important 
role in high energy physics, aiming to solve the hierarchy problem, by introducing one finite extra dimension that 
possesses two branes at its extremes. The matter fields are confined in the visible brane, while gravity is allowed 
to span along this whole dimension. We worked it out for the case of spin 1/2 fermions in a two dimensional 
space, composed by an ordinary dimension and an orbifolded one, apart from time, and obtained the Dirac 
equation in this spacetime configuration. The boundary conditions of the orbifold on the fermionic field forced 
it to be massless on the bulk. In this lower dimensional space we were able to obtain the eigenenergies of the 
fermionic field, as well as the corresponding eigenstates, showing a probability density which is concentrated 
near the visible brane, a phenomenon that bears an analogy with the localization effect that can be found in 
many  scenarios19–21,23,24,26,27.

This analogy motivated us to seek localization effects on the QW that we introduced to simulate the RSM. 
The QW is defined in such a way that, in the continuum limit, the Dirac equation of the fermionic field for 
the RSM metric is recovered. We investigated the confining capabilities of the QW, by considering an initially 
localized walker away from the visible brane. We concluded that the freely propagating parts of the probability 
distribution, where the probability is mostly concentrated, reach an asymptotic value of the expected position 
along the extra dimension. Moreover, the asymptotic value gets closer to the visible brane for higher values of 
the warp coefficient, which therefore drives the strength of localization, and also noticed that it had an effect on 
the timescale of the dynamics, by delaying them for higher values of the coefficient.

At long time steps, the probability densities show an asymptotic shape, with a resemblance with the eigenstates 
that were obtained in the continuous model, which suggested a study based on the decomposition of the wave-
function in terms of these stationary states. We found that the freely propagating parts of the QW are dominated, 
in the asymptotic regime, by the lowest possible (i.e., compatible with the symmetries of the model) modes. At 
intermediate time steps, the same decomposition manifests a combination of multiple modes with higher energy.

Finally, we found that the entanglement between coin and spatial degrees of freedom is reduced for stronger 
warp coefficients. We associated this result to the higher spreading of the density distribution for the lower values 
of the warp coefficient.

We conclude that quantum walks are suitable candidates for simulating models of field theories with extra 
dimensions that rely on the curvature of the spacetime. Not only the model is interesting from the point of view 
of the field theory: It allows to design a quantum process that can be tailored to exhibit very rich dynamics, show-
ing free propagation in one dimension, and an asymptotic confining behavior on the other one, with rates that 
can be tuned by an appropriate choice of the parameters. In this way, the interplay between high energy physics 
and quantum simulations can be of mutual benefit.

Figure 8.  Probability density distribution, at t = 5L , for an initially localized walker centered at 
(x0, y0) = (0, L/2) , and different values of kL, with initial coin components C0 = 1√

5
(1, 2i)T . The vertical axis 

has been zoomed in to show that the probability density between the two regions of the FPD is more scrambled 
for lower values of the warp coefficient. The colors and grid parameters are the same as in Fig. 4.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1926  | https://doi.org/10.1038/s41598-022-05673-2

www.nature.com/scientificreports/

Received: 12 May 2021; Accepted: 5 January 2022

References
 1. Cedzich, C. et al. Propagation of quantum walks in electric fields. Phys. Rev. Lett. 111, 160601. https:// doi. org/ 10. 1103/ PhysR 

evLett. 111. 160601 (2013).
 2. Arnault, P. & Debbasch, F. Landau levels for discrete-time quantum walks in artificial magnetic fields. Phys. A Stat. Mech. Appl. 

443, 179–191 (2016).
 3. Di Molfetta, G., Brachet, M. & Debbasch, F. Quantum walks in artificial electric and gravitational fields. Phys. A Stat. Mech. Appl. 

397, 157–168 (2014).
 4. Yalç ınkaya, idI. & Gedik, Z. Two-dimensional quantum walk under artificial magnetic field. Phys. Rev. A 92, 042324. https:// doi. 

org/ 10. 1103/ PhysR evA. 92. 042324 (2015).
 5. Bru, L. A., Hinarejos, M., Silva, F., de Valcárcel, G. J. & Roldán, E. Electric quantum walks in two dimensions. Phys. Rev. A 93, 

032333. https:// doi. org/ 10. 1103/ PhysR evA. 93. 032333 (2016).
 6. Arnault, P. & Debbasch, F. Quantum walks and discrete gauge theories. Phys. Rev. A 93, 052301. https:// doi. org/ 10. 1103/ PhysR 

evA. 93. 052301 (2016).
 7. Márquez-Martín, I., Arnault, P., Di Molfetta, G. & Pérez, A. Electromagnetic lattice gauge invariance in two-dimensional discrete-

time quantum walks. Phys. Rev. A 98, 032333. https:// doi. org/ 10. 1103/ PhysR evA. 98. 032333 (2018).
 8. Cedzich, C., Geib, T., Werner, A. H. & Werner, R. F. Quantum walks in external gauge fields. J. Math. Phys. 60(1), 2019 (2019) 

arXiv: 1808. 10850 v1.
 9. Arnault, P. & Debbasch, F. Quantum walks and gravitational waves. Ann. Phys. 383, 645–661 (2017).
 10. Arrighi, P., Di Molfetta, G., Marquez-Martin, I. & Perez, A. From curved spacetime to spacetime-dependent local unitaries over 

the honeycomb and triangular quantum walks. Sci. Rep. 9, 10904. https:// doi. org/ 10. 1038/ s41598- 019- 47535-4 (2019).
 11. Molfetta, G. D. & Pérez, A. Quantum walks as simulators of neutrino oscillations in a vacuum and matter. N. J. Phys. 18, 103038 

(2016).
 12. Mallick, A., Mandal, S. & Chandrashekar, C. M. Neutrino oscillations in discrete-time quantum walk framework. Eur. Phys. J. C 

77, 85. https:// doi. org/ 10. 1140/ epjc/ s10052- 017- 4636-9 (2017).
 13. Jha, A. K., Chatla, A. & Bambah, B. A. Quantum simulation of oscillating neutrinos. In 5th International Conference on Particle 

Physics and Astrophysics (2020). arXiv: 2010. 06458 v2.
 14. Arnault, P., Perez, A., Arrighi, P. & Farrelly, T. Discrete-time quantum walks as fermions of lattice gauge theory. Phys. Rev. A 99, 

032110. https:// doi. org/ 10. 1103/ PhysR evA. 99. 032110 (2019).
 15. Kaluza, T. Zum unitätsproblem der physik. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) K1, 966 (1921).
 16. Klein, O. Quantentheorie und fünfdimensionale relativitätstheorie. Zeitschrift für Physik 37, 895–906. https:// doi. org/ 10. 1007/ 

BF013 97481 (1926).
 17. Rubakov, V. & Shaposhnikov, M. Do we live inside a domain wall?. Phys. Lett. B 125, 136–138 (1983).
 18. Márquez-Martín, I., Di Molfetta, G. & Pérez, A. Fermion confinement via quantum walks in (2+1)-dimensional and (3+1)-dimen-

sional space-time. Phys. Rev. A 95, 042112. https:// doi. org/ 10. 1103/ PhysR evA. 95. 042112 (2017).
 19. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1956).
 20. Aubry, S. & André, G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc 3, 18 

(1980).
 21. Grempel, D. R., Fishman, S. & Prange, R. E. Localization in an incommensurate potential: An exactly solvable model. Phys. Rev. 

Lett. 49, 833–836. https:// doi. org/ 10. 1103/ PhysR evLett. 49. 833 (1982).
 22. Lahini, Y. et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901. https:// doi. 

org/ 10. 1103/ PhysR evLett. 103. 013901 (2009).
 23. Joye, A. & Merkli, M. Dynamical localization of quantum walks in random environments. J. Stat. Phys. 140, 1025–1053. https:// 

doi. org/ 10. 1007/ s10955- 010- 0047-0 (2010).
 24. Schreiber, A. et al. Decoherence and disorder in quantum walks: From ballistic spread to localization. Phys. Rev. Lett. 106, 180403. 

https:// doi. org/ 10. 1103/ PhysR evLett. 106. 180403 (2011).
 25. Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 7, 322–328 (2013) arXiv: 

1304. 1012v1.
 26. Navarrete-Benlloch, C., Pérez, A. & Roldán, E. Nonlinear optical Galton board. Phys. Rev. A At. Mol. Opt. Phys. 75, 1–7 (2007) 

arXiv: 06040 84.
 27. Shikano, Y. & Katsura, H. Localization and fractality in inhomogeneous quantum walks with self-duality. Phys. Rev. E 82, 031122. 

https:// doi. org/ 10. 1103/ PhysR evE. 82. 031122 (2010).
 28. Randall, L. & Sundrum, R. Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373. https:// doi. org/ 10. 

1103/ PhysR evLett. 83. 3370 (1999).
 29. Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. Phenomenology, astrophysics, and cosmology of theories with submillimeter 

dimensions and TEV scale quantum gravity. Phys. Rev. D 59, 086004. https:// doi. org/ 10. 1103/ PhysR evD. 59. 086004 (1999).
 30. Haba, N., Hosotani, Y. & Kawamura, Y. Classification and dynamics of equivalence classes in SU(N) gauge theory on the Orbifold 

S1/Z2. Prog. Theor. Phys. 111, 265–289. https:// doi. org/ 10. 1143/ PTP. 111. 265 (2004).
 31. Choi, K.-S. & E. Kim, J. Quarks and leptons from orbifolded superstring. Lect. Notes Phys. pp. 78–80 (2006).
 32. Romanelli, A. Distribution of chirality in the quantum walk: Markov process and entanglement. Phys. Rev. A 81, 062349. https:// 

doi. org/ 10. 1103/ PhysR evA. 81. 062349 (2010).
 33. Hinarejos, M., Di Franco, C., Romanelli, A. & Pérez, A. Chirality asymptotic behavior and non-markovianity in quantum walks 

on a line. Phys. Rev. A 89, 052330. https:// doi. org/ 10. 1103/ PhysR evA. 89. 052330 (2014).

Acknowledgements
This work has been founded by the Spanish Grant AEI-MICINN, PID2020-113334GB-I00/
AEI/10.13039/501100011033, SEV-2014-0398 and Generalitat Valenciana grant PROMETEO/2019/087. We 
also acknowledge support from CSIC Research Platform PTI-001.

Author contributions
A.A.C. and A.P. contributed equally to the results of this paper. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

https://doi.org/10.1103/PhysRevLett.111.160601
https://doi.org/10.1103/PhysRevLett.111.160601
https://doi.org/10.1103/PhysRevA.92.042324
https://doi.org/10.1103/PhysRevA.92.042324
https://doi.org/10.1103/PhysRevA.93.032333
https://doi.org/10.1103/PhysRevA.93.052301
https://doi.org/10.1103/PhysRevA.93.052301
https://doi.org/10.1103/PhysRevA.98.032333
http://arxiv.org/abs/1808.10850v1
https://doi.org/10.1038/s41598-019-47535-4
https://doi.org/10.1140/epjc/s10052-017-4636-9
http://arxiv.org/abs/2010.06458v2
https://doi.org/10.1103/PhysRevA.99.032110
https://doi.org/10.1007/BF01397481
https://doi.org/10.1007/BF01397481
https://doi.org/10.1103/PhysRevA.95.042112
https://doi.org/10.1103/PhysRevLett.49.833
https://doi.org/10.1103/PhysRevLett.103.013901
https://doi.org/10.1103/PhysRevLett.103.013901
https://doi.org/10.1007/s10955-010-0047-0
https://doi.org/10.1007/s10955-010-0047-0
https://doi.org/10.1103/PhysRevLett.106.180403
http://arxiv.org/abs/1304.1012v1
http://arxiv.org/abs/1304.1012v1
http://arxiv.org/abs/0604084
https://doi.org/10.1103/PhysRevE.82.031122
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevD.59.086004
https://doi.org/10.1143/PTP.111.265
https://doi.org/10.1103/PhysRevA.81.062349
https://doi.org/10.1103/PhysRevA.81.062349
https://doi.org/10.1103/PhysRevA.89.052330


12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1926  | https://doi.org/10.1038/s41598-022-05673-2

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 05673-2.

Correspondence and requests for materials should be addressed to A.A.-C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-05673-2
https://doi.org/10.1038/s41598-022-05673-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A quantum walk simulation of extra dimensions with warped geometry
	The model
	Orbifold  and background geometry. 
	Fermions in the Randall–Sundrum model. 
	Boundary conditions for fermionic fields. 
	Stationary solutions. 

	A quantum walk for the Randall–Sundrum model
	Results
	Stationarity of the eigenstates solutions on the quantum walk. 
	Localization in the QW. 
	Mode decomposition of the freely propagating distribution. 
	Entanglement entropy. 

	Conclusions
	References
	Acknowledgements


