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Discovering latent node 
Information by graph attention 
network
Weiwei Gu1, Fei Gao2, Xiaodan Lou2 & Jiang Zhang2* 

In this paper, we propose graph attention based network representation (GANR) which utilizes the 
graph attention architecture and takes graph structure as the supervised learning information. 
Compared with node classification based representations, GANR can be used to learn representation 
for any given graph. GANR is not only capable of learning high quality node representations that 
achieve a competitive performance on link prediction, network visualization and node classification 
but it can also extract meaningful attention weights that can be applied in node centrality measuring 
task. GANR can identify the leading venture capital investors, discover highly cited papers and find the 
most influential nodes in Susceptible Infected Recovered Model. We conclude that link structures in 
graphs are not limited on predicting linkage itself, it is capable of revealing latent node information in 
an unsupervised way once a appropriate learning algorithm, like GANR, is provided.

We are surrounded by various relations, in which, rich information is behind. For example, nodes that bridge 
different communities play a vital role in information sharing1; who you coauthor with in scientific research is 
highly related to the success of your research career2,3; some unique niche of species may become the bottleneck of 
the energy flows in the entire food web chain4; the linked web pages rather than the contents that play more vital 
roles in ranking web pages5. Thus unraveling the latent information and values of nodes is of great significance 
in both theory and application. It is one of the most important tasks in network analysis.

A bunch of node centrality measures have been proposed to uncover nodes’ importance. For example, degree, 
clustering coefficient, betweenness, average distance, all those indicators can be computed directly6. There are 
also some task oriented methods such as PageRank for webpages5, node impact factor for trade flow networks7, 
energy bottleneck index4 for food webs, and disruption index8 for citation networks. All these ingenious indica-
tors are hand-crafted, prior domain knowledge and human heuristics are required. Besides, they are designed 
only for node centrality measuring task and can hardly be transferred to solve other problems such as node 
classification and graph visualization.

Network representation learning tackles the above mentioned problems by embedding nodes into a low-
dimensional space Rd , such that the local and global relational information can be decoded in the dense rep-
resentation vectors. According to the depth of neural networks, the network representation algorithms can be 
divided into 2 categories. The first category mainly includes some shallow neural network based algorithms 
such as DeepWalk9, node2vec10, LINE11, HOPE12 and struc2vec13, those algorithms decode graph structure into 
dense vectors with shallow neural network architectures and apply node classification, node ranking, as well as 
link prediction10,14 tasks to evaluate the embedding qualities of algorithms. Although handcraft features can be 
avoided, special embedding skills, such as different random walk strategies10 are inevitable. Also, these shallow 
neural based embedding approaches can hardly incorporate node attributes, for example the abstracts or the 
main text of papers in citation networks. Besides, due to the limited adjustable parameters15,16 the predictive 
accuracies of the downstream tasks are low. The second embedding category solves the low accuracy problem 
via incorporating more adjustable parameters, inspired from deep learning techniques in image processing17 
and natural language processing18, some deep learning based algorithms such as graph convolutional network 
(GCN)15, graph attention network (GAT)16, VGAE19, ARVGA20 and other various graph neural networks21–25 
have been proposed.

Among those deep learning architectures, GAT computes representation of nodes by combining neighbor-
hoods’ vectors in an adaptive way with a self-attention mechanism26,27. The attention weights are adjustable 
parameters computed by aggregating neighbor vectors, those vectors can be updated dynamically according to 
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the state of nodes within a local connected neighborhood. Attention weights can alter the values according to 
node pairs’ context during the decision stage instead of the learning phase. GAT algorithm takes node labels as 
supervised information and can achieves high node classification accuracy. However in real world, node labels 
are rare. There are only some citation networks and protein interaction networks that have supervised node 
label information. The scarcity of node labels prevents GAT to be applied in domains such as social network, 
biological networks and etc.

In this paper, we propose that compared with node labels, supervised linkages are more suitable for extracting 
meaningful network representations to perform the visualization, node classification, and community detection 
tasks, since linkages not only contain richer nodes’ popularity28,29 but also encode nodes’ similarity information30.

Taking linkages as supervised information serves at least two benefits. First, we do not need extra node label 
information, GAT can expand its application domains from citation network to social network, ecological net-
work, protein interaction network and so on. Second, the training corpus (node pairs) increases with the square 
approximately of the network size, which is much faster than the linear growth of node labels, in this way the 
deep models can be trained sufficiently, predicting links is equivalent to reconstruct  the graph19,31. Although 
link prediction based graph representation algorithms have been discussed in classic deep models15,19,31–33, the 
importance of linkages has not been fully stressed since classic graph convolution based models mainly focus on 
node classification or graph classification tasks. Besides, vital node identification as one of the most important 
tasks of network analysis, has been ignored in these classic deep learning frameworks.

In this paper, we extract meaningful attention weights and network representations by proposing GANR 
with a fixed sampling strategy. GANR takes the node pair relations as the supervised information. A variety of 
experiments show that compared with other graph neural network based representations such as VGAE19 and 
ARVGA20, GANR not only acquires a comparative link prediction accuracy but can also obtain high quality node 
representations and valuable attention weight matrix that can be applied into a variety of downstream tasks. We 
discover that the nodes with more attention been paid by their neighbors have more vital status in networks. The 
vital nodes identified by attention weight matrix are elites in a Chinese co-investment network, the most popular 
papers in the APS citation network or the most influential nodes in disease spreading and information diffu-
sion networks. We also discover that the vector representations extracted from the last layer of the well-trained 
GANR can achieve higher node classification accuracy compared with other unsupervised node classification 
algorithms. Its advantage becomes much more significant when the labeled nodes are scarce.

Results
In order to evaluate the performance of GANR and explore its potential applications, we conduct link predic-
tion, node centrality measuring, node clustering and node classification tasks over several networks, that include 
Cora (2708 nodes and 5429 edges), Citeseer (3327 nodes and 4732 edges), and APS (1012 nodes and 3336 links). 
APS is a sub-graph extracted from American Physical Society journals. We also include a venture capital inves-
tors (VC) network (1436 nodes and 2265 edges). The venture capital co-invest network is corresponding to the 
co-invest events from year 1991 to 2005. This network is built on the SiMuTon34 database. Cora and Citeseer 
networks take the abstracts of papers as node attribute features. The dimensions of features are 1433 and 3703 
respectively. For APS and VC networks, we use the sparse adjacency vectors of nodes to form raw feature input.

Our results are organized in the following order: first, we represent the link prediction accuracy of GANR over 
several networks and compare its performance with other competitive link prediction algorithms; second, we 
show that the well-trained nodal attention matrix of GANR is capable of identifying vital nodes compared 
with other well-known node centrality measuring algorithms; third, we extract node representations from the 
well-trained GANR architecture and evaluate its quality by node clustering and node classification tasks, the 
results show that GANR has a competitive performance compared with other well-known graph representation 
learning algorithms.

Link prediction.  GANR takes the connectivity of node pairs as the supervised learning information. The 
goal of GANR is to predict  the connection probability between node pairs. To generate GANR’s training cor-
pus, as described in the section ’Training GANR’, we first use the node pair relations in the training set to train 
GANR, we then evaluate GANR’s link prediction accuracy with the node pairs’ connectivity in the test set.

We select several well-known link prediction algorithms to compare with, that includes classic node simi-
larity based algorithms such as resource allocation (RA)35. RA is a traditional link prediction method, and the 
similarity between two nodes is measured by computing neighbors’ weights which are negatively proportional 
to its degree. LINE11 minimizes a loss function to learn embedding while preserving the first and the second-
order neighbors proximity among vertices in the graph and node2vec10 adopts a biased random walk strategy 
and applies Skip-Gram to learn vertex embedding. This embedding algorithm is widely used in recent years. 
We also compare GANR with some graph convolutional based algorithms such as GraphSAGE32, VGAE19 and 
ARVGA20. GraphSAGE learns node embedding through a general inductive framework consisting with several 
feature aggregators. It usually adopts supervised node classification task as the evaluation benchmark with the 
assumption that better embedding algorithm leads to higher node classification accuracy. GAT is the architecture 
that our model mainly based, it computes representation of each node by combining its neighborhoods vectors 
in an adaptive way with adjustable attention weights for different neighborhoods. ARVGA uses a variational 
graph autoencoder to learn embedding and perform the link prediction as the supervised task.

Two standard metrics, Accuracy and AUC (the area under a receiver operating characteristic curve) are 
used to quantify the link prediction accuracy. As shown in Table 1, GANR outperforms the baseline methods in 
link prediction accuracy on Cora, Citeseer and APS graphs. GANR also achieves a comparative link prediction 
accuracy in VC network.
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Attention centrality.  In this part we show that the attention coefficients extracted from the well-trained 
GANR can reveal hidden node relations and quantify the importance of nodes. Based on the graph structure, 
GANR can automatically learn directed and normalized attention weights for any connected node pairs through 
the attention mechanism. GANR is also able to transfer the undirected and un-weighted networks to directed 
and weighted ones. The direction and attention weights represent the relative nodal importance from the source 
node to the sink node. Intuitively, the more attention a node attracts, the more influential and vital it is.

In this paper, we measure the influence of nodes by adding its neighborhoods’ attention values towards the 
central node across the second layer’s heads (see Methods for detail). The attention accumulating process is 
described in Eq. (1).

In Eq. (1), αk
ji is the normalized attention coefficient representing the attention amount being paid by node j to 

node i from the kth attention head, and K2 is the total number of the attention heads from the second layer in 
GANR architecture. We then rank all nodes according to their attention centrality and name this nodal rank-
ing algorithm as Attention Rank. We find that the Attention Rank algorithm is not only able to find the most 
important nodes in VC and APS networks, but can also identify the most influential nodes during the disease 
spreading process.

One of the most important questions in venture capital analysis is to identify the leading investors (leading 
VC) among a large amount of invest activities. Syndication in the Chinese venture capital market is typically 
lead by some vital VCs which are called “elites”. Those VCs always find good investment opportunities, set up 
investment plans, and organize invest partners. They usually play a major role during the investment activities, 
therefore, it is important to identify the vital players in VC network. In this paper we apply Attention Rank on 
the VC network and compare our ranking order with the top 42 leading VCs (’elite’) identified by questionnaire 
survey with the Delphi method described in our previous work36.

According to the Attention Rank algorithm, compared with the follower players in VC industry, the ’elites’ 
(leading VCs) always attract much attention. Following a paper published in the Science journal37, we sort nodes 
according to their attention centrality in a decreasing order, we find that 30 out of the top 42 elites are elites in 
our ground truth list. In Table 2 we listed the the top 16 VCs identified by the Attention Rank and find that all of 
them belong to the elites of our ground truth set. Besides, we find that the top 16 VCs have a large overlap with 
a recent released VC ranking list which discussed about the ’best’ venture capitals in China38.

To accurately compare the ranking outcomes with other centrality measuring algorithms, we follow the 
method used in Webspam competition39 and apply the Accuracy which defines as the ratio of the hits on the 
ground truth to evaluate the performance of different node ranking methods. The ranking results are listed in 
Table 3.

(1)c̄i =

K2
∑

k=1

∑

j∈Ni

αk
ji

Table 1.   The comparison of different algorithms over link prediction task under Accuracy and AUC metric. 
Bolded numbers are best results among the comparisons in the same column.

Accuracy/AUC​ Cora Citeseer VC network APS network

GANR (proposed) 0.87/0.93 0.85/0.91 0.80/0.90 0.84/0.94

RA 0.41/0.75 0.32/0.73 0.33/0.76 0.35/0.78

LINE 0.69/0.76 0.67/0.73 0.78/0.84 0.68/0.74

node2vec 0.82/0.92 0.85/0.89 0.77/0.87 0.83/0.89

GraphSAGE-mean 0.83/0.89 0.84/0.90 0.81/0.90 0.82/0.88

VGAE 0.75/0.91 0.75/0.90 0.76/0.88 0.76/0.94

ARVGA 0.73/0.93 0.73/0.94 0.72/0.91 0.72/0.92

Table 2.   The top 16 VC firms that attract the most attention in Attention Rank algorithm.

Rank VC name is_elite Rank VC name is_elite

1 MORE/Shenzhen Capital Group Yes 9 JAFCO ASIA Yes

2 IDG Capital Yes 10 FOETURE Capital Yes

3 Sequoia Yes 11 GGV Capital Yes

4 Legend Captital Yes 12 Walden International Yes

5 Goldman Sachs Yes 13 SBCVC Yes

6 Intel Capital Yes 14 DFJ Venture Capital Yes

7 Northern Light Venture Capital Yes 15 Qiming Yes

8 DT Capital Yes 16 Cowin Yes



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6967  | https://doi.org/10.1038/s41598-021-85826-x

www.nature.com/scientificreports/

We also use Attention Rank to find the most popular papers in APS graphs. We follow40 to evaluate a paper’s 
importance by counting the number of citations it received within the first 10 years (c_10) after its publication, 
and (c_10) is used as the comparison metric. We report the Spearman’s rank correlation coefficient between the 
Attention Rank and the citation (c_10) counting ranking to evaluate the ranking performance40.

We choose several unsupervised graph ranking algorithms to compare with. The first is PageRank5, PageRank 
is widely used in ranking web pages in searching engines such as Google and Baidu. The second is Closeness 
Centrality and the third is Betweenness Centrality41. The Closeness Centrality believes the vital nodes should have 
shorter path lengths to other nodes, while the Betweenness Centrality assumes that the most important nodes 
should be involved in more shortest paths. From Table 3 we find that the ranking results of GANR significantly 
outperforms other node centrality ranking algorithms.

To further validate the effectiveness of the Attention Rank algorithm, we apply SIR (Susceptible Infected 
Recovered) model to examine the spreading influence of the top ranked nodes by various centrality measures42–44. 
SIR model is used for simulating the spreading of virus or ideas on networks. According to the SIR model, nodes 
have three states: Susceptible, Infected, and Recovered. At each step, the infected nodes, randomly pick suscepti-
ble neighbors with a probability p to infect(for simplicity, we set p = 1 ), after that these nodes may recover with 
the probability 1/k, where k is the degree of the focal node. Thus, an infected node will infect k neighbors at last. 
The spreading process will stop if there is no infected nodes.

To evaluate the influence of the most influential nodes, we set nodes within rank k as the spreading seeds and 
implement the SIR infectious process. The total number of infected and recovered nodes at time t, denoted as 
F(t) which is an indicator to evaluate the influence of the seed nodes. Clearly, F(t) converges to a stable number 
F(tc) , where tc is the time when no nodes get infected. The spreading process always takes long time to converge. 
Thus instead of considering the stable state, we focus on the influence within a shorter time ( t = 3 or t = 9 in our 
experiments), since the spreading of the early stages are usually more important in practice. We use F(t = 3, 9) 
to measure the spreading influence of the selected seed node during timestamp 3 and 9. We repeat spreding 
process for 10 times for each node to get the mean value 〈F(t)〉 over all nodes. We plot the average F(t) with their 
ranks by different centrality measures of each node in Fig. 1.

As shown in Fig. 1, the spreading ability of Attention Rank is above other ranking algorithms which represent 
that the top nodes selected by the Attention Rank are more influential, and this advantage becomes much more 
significant for larger networks and longer time periods. In summary, the amount of attention that a node gets is 
a good indicator to measure node’s centrality. We stress that the attention weight matrix extracted from graph is 
an endogenous network property, hidden in the structure linkage. GANR reveals this property by imposing the 
attention weights correctly distributed for predicting the linkage existence. Therefore, GANR can fully utilize 
the information hidden in structure and reveal node attributes.

Compared with other classic node ranking methods, Attention Rank can incorporate node attributes and 
structural information, and the ranking results can reflect more valuable information and open a new way to 
rank graph nodes based on deep learning architecture.

Graph visualization.  GANR can not only be applied in predicting missing links and measuring nodes cen-
tralities but can also provide graphical representation to gain a insightful view of graph’s structure. We first use 
Multidimensional Scaling45 to embed the attention matrix extracted from the well-trained GANR into 2 dimen-
sions. We also divide VCs into 4 categories based on their total attention weights, with the orange color indicate 
the most important VCs that attract the most attention and the grey color represent the least important nodes 
that attract the minimum attention. Node size is proportional to the attention weight. From Fig. 2 we find that 
the ’elite’ VCs such as ’IDG’ and ’Goldman Sachs’ are on the periphery while the most obscure VCs are located in 
the center. The middle of Fig. 2 is like a black hole, the more cental a node is, the less likely it will become an elite 
and achieve a higher IPO (Initial Price Offering) rate. The visualization of attention weights can help us evaluate 
VC’s status in the investing ecosystems.

We use t-SNE46 to visualize the raw feature input, node representations learned from the second layer of 
pre-trained GraphSAGE-mean and GANR. Nodes in Fig. 3 represent papers in the Cora citation network with 
colors denoting papers’ class. The graph representation extracted from GANR is superior to GraphSAGE-mean 
and raw attributes under the NMI (Normalized Mutual Information) and the Silhouette score metrics. The 
clusters of the GANR’s representations are clearly defined with a Silhouette score equals to 0.17 compared with 
0.06 in GraphSAGE-mean and 0.00 in the raw features. The NMI value of GANR is 0.44 compared with 0.42 in 
GraphSAGE-mean vectors and 0.13 in the raw features. We find that in general nodes belonging to the same class 
block together, the community structures of the Reinforcement Learning and the Genetic Algorithms are more 
significant with the highest sub-network density 0.017 and 0.009 compared with the whole network’s density 
0.001. The visualization of GANR can identify graph’s community structures clearly.

Table 3.   Ranking performance comparison between different unsupervised ranking algorithms.

Dataset Evaluation PageRank Closeness Betweenness Attention centrality

VC Accuracy 0.65 0.60 0.58 0.72

APS Rank coor. 0.32 0.08 0.03 0.42
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Figure 1.   The comparison between the spreading power of different ranking algorithms over 〈F(t)〉 . In panels 
(a) and (b), we plot the average number of 〈F(t)〉 for t = 3 of the top-L users as ranked by the five centrality 
measures of Cora (a) and Citeseer (b) graphs, while in panels (b) and (d), we plot the average number of 〈F(t)〉 
for t = 9 of Cora (c) and Citeseer (d) graphs.

Figure 2.   The visualization of the attention matrix extracted from the well trained GANR.
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Node classification.  Compared with node label information, network representations based on structure 
learning contain richer information and can be easily collected. In fact, there are a small number of citation net-
works and protein interacting networks that have supervised node label information. To evaluate the network 
representation quality of GANR, we compare it with the unsupervised GraphSAGE-mean and the widely used 
node2vec on node classification task.

Following the default parameter setting, we extract node representations and feed them into a simple logistic 
classifier to predict the classification accuracy of the test set. In order to control changing variables, we fix the 
embedding dimension to 128, and name the embeddings as GANR_128, GraphSAGE-mean_128 and node-
2vec_128. We first train the logistic classifier with the fixed node representation vectors and take nodes’ label as 
supervised information. We then test and evaluate the node classification accuracy on the validation set. Finally, 
we report the average Micro-F1 value for the 10-fold cross validation.

The left subfigure of Fig. 4 shows that in Citeseer network, GANR outperforms node2vec and GraphSAGE-
mean especially when the training set is small. In the right subfigure, when the training ratio is less than 10%. 
GANR also outperforms node2vec and GraphSAGE-mean. This advantage is important since in real networks 
there are only few labeled graphs, and manually labelling nodes not only cost a large amount of time but also 
introduce biases.

Moreover, in order to improve the node classification accuracy, we increase the embedding dimensions by 
concatenating the vectors learned from different algorithms. As shown in Fig. 4, the concatenation of GANR and 
GraphSAGE-mean achieves the highest node classification accuracy in Cora and Citeseer compared with other 
combinations, the combination of GANR and node2vec has better classification performance compared with the 
concatenation of GraphSAGE-mean and node2vec. We notice that the concatenating of GraphSAGE-mean and 
node2vec performs even worse than GANR in 128 dimension in the Citeseer network. GANR can outperform 
other methods especially under the scenario when the supervised information is lack or absence.

Discussion
In this paper, we propose GANR, which is a link prediction based graph representation learning algorithm with 
a graph attention architecture and a sub-graph sampling strategy. GANR is not only able to predict missing links 
but can also reveal hidden graph information such as meaningful vertex representation and attention weights. 

Figure 3.   t-SNE visualization of Cora graph from the raw features (left), GraphSAGE-mean (middle), and the 
GANR (right).

Figure 4.   Classification accuracy comparison under different representation learning methods over a variety of 
training ratio.
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GANR is capable of identifying vital investors, highly cited papers as well as the influential nodes during the 
virus or information spreading process via node ranking based on the attention centrality. The learned node 
representations can also used to classify nodes into different groups with a relatively high accuracy especially 
when the number of labeled nodes are scarce.

Node representations extracted from graph structure learning such as GANR have many advantages than 
those obtained from node classification based representations since graph structures contain richer information, 
similar to the language model in natural language processing27, link prediction can be used to generate node 
representations for many downstream tasks, such as node classification, graph classification, visualization and etc.

Despite the tedious process of adjusting the hyper-parameters, we still believe the link prediction based 
network representation can lead to both quantitative and qualitative leap in network processing. We believe 
that much more information is hidden in the linkage data of various networks, and ’let the linkage speak itself ’ 
is the right way to reveal structure information. As a common problem of most deep learning based algorithms, 
GANR has the explanation problem, uncovering the hidden information behind GANR is an important task 
in our future work.

Methods
GAT architectures.  To start with, we review the architecture of GAT model on which our algorithm is 
mainly based. GAT takes a set of node features as input, h = { �h1 , �h2 , ... , �hN }, in which, �hi ∈ RF , and N is the num-
ber of nodes, F is the number of node attributes. We use �h′i ∈ R

F
′

 to denote GAT’s outputs that contain F ′ node 
features. The target of GAT is to obtain sufficient expressive power to transfer the input features into high-level 
output features. It first applies a learnable linear transformation, parameterized by a weight matrix, W ∈ RF

′
×F to 

each node, it then uses a single-layer feed-forward neural network �a ∈ R2F
′

 to compute the attention coefficients 
between nodes. This computation process is shown in Eq. (2), where .T represents matrix transposition and ‖ is 
the concatenation operation. Node j is a neighbor of node i, and αij indicates the importance of j’s features to i 
among all i’s neighbors, represented as Ni.

Once the normalized attention coefficient αij is obtained, GAT aggregates nodes’ features as a combination of 
their neighbors, followed by a potentially nonlinear sigmoid function σ , as is shown in Eq. (3).

Finally, GAT employs multi-head attentions to stabilize the learning process. K denotes the number of attention 
heads, αk

ij denotes the kth relative attention weights of j′s features to i. The output features of nodes’ neighbors 
are either concatenated or averaged to form their final output features, as shown in Eq. (4):

GANR architecture.  The overall architecture of GANR is shown in Fig. 5. An encoder encodes nodes to 
vector representations, F ′ ∈ RF

′

 , a decoder then generates edge vectors by aggregating the vector representation 
of nodes. Finally, a score function is applied to evaluate the link existence probability between two nodes via the 
edge vectors. One of the key ideas behind GANR is to learn how to aggregate nodes’ features into edge vectors 
for link prediction task.

As mentioned above, memory bottleneck is the biggest problem which preventing GAT to be applied on 
large scale networks. Due to the scale-free property of most networks, once hub nodes are sampled as the 1st-
order neighbors, then the 2nd-order neighbors can quickly fill up the memory, this property prevents GAT to 
be applied on larger networks. Besides, the existing GPU-enabled tensor manipulation frameworks are only 
able to parallelize on the normalized activation coefficients ( αij ) for the same sized neighborhoods, it prevents 
GAT from parallel computing.

Fixed‑sized neighborhood sampling.  Here we use the fixed-sized neighborhood sampling strategy to 
solve the memory bottleneck. The undirected graph can be represented as G = (V ,E) , with V denoting the 
set of nodes and E representing edges. As illustrated in Fig. 5, for a given node pair we first use the Hadamard 
product to form the edge vector and then evaluate the edge existence probability via feeding the edge vector into 
a logistic regression training model. In GANR we sample a fixed first and second order nodes to form nodes’ 
neighbors . Taking node i as an example, we uniformly sample a fixed-sized set of its neighbors defined as Ni 
from set 

{

i ∈ V : (i, j) ∈ E
}

.
Different from sampling neighborhood during each training iteration in GraphSAGE, we sample only once 

and keep the neighborhoods fixed during the whole training process that is the major sampling difference 
between GraphSAGE and GANR. As illustrated in Fig.5, the link prediction results of GANR show that the fixed 
sampling strategy is more robust, less fluctuate and achieves higher accuracy than the flexible sampling strategy. 

(2)αij =
exp

(

LeakyReLU
(

�aT [W�hi � W�hj]
))

∑

j∈Ni
exp

(

LeakyReLU
(

�aT [W�hi � W�hj]
)) .

(3)�h′i = σ





�

j∈Ni

αi,jW�hj





(4)
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We compute the Hadamard product between two output vectors to form edge vector, as is shown in Eq. (5), note 
that eij is a d-dimensional vector.

We then assume that the probability between node i and j is given by Eq. (6) where θ is a d-dimensional param-
eter, and eTij θ is the dot product between vectors eij and θ.

Training GANR.  The whole framework is trained by minimizing the following objective function:

where, yij is the supervised linkage information between i and j, with 0 indicates not connected node pairs and 
1 for connected node pairs. We first randomly divide the full set of edges E into three parts, ε for training, φ for 
validating and τ for testing. And we also sample the equal amount of disconnected node pairs to form the ε− , 
φ− and τ− . Note that ε− represents the negative training samples, in which each node pair cannot be connected 
within 2 hops.

In order to evaluate the performance of GANR and explore its potential applications, we conduct link predic-
tion, node centrality measuring as well as node classification tasks over several networks ranging from citation 
network to venture capital co-invest network. All experiments are performed under the PyTorch machine learn-
ing environment with a CUDA backend.

Experiments setup.  We utilize the following five networks in our experiments:

•	 Cora network contains 2708 nodes 5429 edges and 7 classes. Each node has 1433 attributes corresponding 
to elements of a bag-of-words representation of a document.

(5)eij = ( �h′i ⊙
�h′j)

(6)pij(eij; θ) =
1

1+ exp(eTij θ)

(7)L = −
1

| ε ∪ ε− |

∑

ij∈ε∪ε−

yij log pij + (1− yij) log(1− pij)

Figure 5.   The overall architecture of GANR. We use a simple five-node graph to illustrate GANR’s architecture. 
We describe the linked relations in solid lines and the unlinked ones in dashed lines. We take the linked node 1 
in red and node 2 in yellow as a training example. To start with, we sample nodes 3 and 4 as 1 and 2’s 1st-order 
neighbors, we then sample nodes 1, 2, 5 as 1 and 2’s 2nd-order neighbors, nodes 1, 2, 5 are also the 1st-order 
neighbors of nodes 3 and 4. After that we calculate nodes 1 and 2’s vector representations based on the initial 
features via GAT architecture. We acquire edge vector via calculating the Hadamard product of the 1 and 2’s. 
Finally a logistic regression function is applied on the edge vectors to compute the linkage existence probability.
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•	 Citeseer network contains 3327 nodes 4732 edges, and 6 classes. Each node has 3703 attributes extracted 
from paper contents.

•	 APS graph has 1012 nodes and 3336 edges. The adjacency matrix is used as the the one-hot input node 
attribute in the training process. Follow a paper published on Science40 here we quantify papers’ impact and 
importance by counting the number of citations over 10 years (c_10) after their publication, c_10 is used as 
ground truth metric for measuring nodes importance.

•	 VC network is a venture capital co-invest network with nodes representing venture capital companies and 
edges corresponding to co-invest events. It contains 1436 nodes and 2265 edges. Here we use the adjacency 
matrix as the one-hot input node attribute in the training process. In this network, 42 venture capitals are 
identified manually as VC which play a vital role in venture capital events. These ventural capitals are regarded 
as the ground truth in node ranking task. The VC investment network is built on the SiMuTon34 database.

In our experiments, we keep node2vec and LINE’s parameters as they are in the original papers. We set the 
same parameters for GraphSAGE, GAT and GANR which include the type and sequence of layers, the choice of 
activation function, placement of dropout, and setting of hyper-parameters.

GANR algorithm consists of two layers, the first layer is made up of 8 ( K1 = 8 ) attention heads over all net-
works. The main purpose of the first layer is to compute the hidden features of the 1st-order neighbors. We then 
add the non-linearity by feeding the hidden features to an exponential linear unit (ELU), as shown in Eq. (3). 
The aggregated features from each head are concatenated in this layer.

The main purpose of the second layer is to compute the edge features that used for evaluating link prob-
ability. The aggregated features from each head are averaged in this layer. The output of the second layer is the 
final feature representations for nodes. We then compute the Hadamard distance between two node features to 
represent the edge vector, as is shown in Eq. (5). Once edge vectors are obtained, an active function sigmoid σ 
is applied to evaluate the edge existing probability between nodes.

We initialize the parameter of GANR with Glorot initialization47 and train to minimize the binary cross-
entropy, as shown in Eq. (7), for the training set we use the Adam SGD optimizer48 with an initial learning rate 
of 5e − 4 . We also apply an early stopping strategy over link prediction accuracy for the validation set with the 
patience sets to 100 epochs.

We solve the memory bottleneck by sampling a fixed neighbors size (20) for both 1st and 2nd-order neighbors 
for GANR. The sampling strategy is illustrated in Fig. 5.
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