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Gut microbiota and metabolic 
health among overweight 
and obese individuals
Mi‑Hyun Kim1, Kyung Eun Yun1, Jimin Kim1, Eunkyo Park2, Yoosoo Chang1,3,4, 
Seungho Ryu1,3,4, Hyung‑Lae Kim2 & Han‑Na Kim1,4,5*

Although obesity is associated with numerous diseases, the risks of disease may depend on metabolic 
health. Associations between the gut microbiota, obesity, and metabolic syndrome have been 
reported, but differences in microbiomes according to metabolic health in the obese population 
have not been explored in previous studies. Here, we investigated the composition of gut microbiota 
according to metabolic health status in obese and overweight subjects. A total of 747 overweight or 
obese adults were categorized by metabolic health status, and their fecal microbiota were profiled 
using 16S ribosomal RNA gene sequencing. We classified these adults into a metabolically healthy 
group (MH, N = 317) without any components of metabolic syndrome or a metabolically unhealthy 
group (MU, N = 430) defined as having at least one metabolic abnormality. The phylogenetic and non-
phylogenetic alpha diversity for gut microbiota were lower in the MU group than the MH group, and 
there were significant differences in gut microbiota bacterial composition between the two groups. 
We found that the genus Oscillospira and the family Coriobacteriaceae were associated with good 
metabolic health in the overweight and obese populations. This is the first report to describe gut 
microbial diversity and composition in metabolically healthy and unhealthy overweight and obese 
individuals. Modulation of the gut microbiome may help prevent metabolic abnormalities in the obese 
population.

The prevalence of obesity and obesity-related diseases is growing worldwide. Obesity is a major risk factor for 
metabolic disease. However, there are obese people who are metabolically healthy, a phenotype called metaboli-
cally healthy obesity (MHO). This condition is more often observed in young, physically active patients with a 
good nutritional status and low levels of ectopic and visceral fat storage. MHO individuals are characterized by a 
lower degree of systemic inflammation and favorable immune and liver function profiles1. Some researchers con-
sider MHO to be a temporary status that eventually develops into metabolic syndrome. Previous studies showed 
that 33–47.6% of MHO individuals achieved metabolically unhealthy obese (MUO) status over a 5–10 year 
follow-up period2. However, studies have also found that all-cause mortality and risk of metabolic disease and 
cardiovascular disease (CVD) are lower in the MHO population than the MUO population3,4. Furthermore, 
a recent study revealed that stable MHO subjects were at a lower risk of CVD than MUO subjects, and that 
metabolic syndrome (MetS) duration was linearly associated with CVD5. Many researchers have investigated 
underlying protective mechanisms in MHO subjects and risk factors for developing metabolic abnormalities, 
but more studies are needed as the findings from these studies are often conflicting.

Obesity and metabolic disease are complex diseases that result from interaction of genetic and environmental 
factors. Over the past decade, gut microbiota have been suggested to be an important contributor to the devel-
opment of obesity and metabolic disease6. Gut microbiota play a role through several integration pathways that 
include the host immune system and response to the environment, including diet7. Overall, obesity is associated 
with gut microbiota that have reduced diversity in terms of composition, which, in turn, reduces metabolic energy 
consumption in comparison with that of the microbiota of lean individuals8,9.
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Microbiota have also been shown to be associated with obesity-related comorbidities such as type 2 diabetes 
(T2D)10,11 and metabolic diseases such as hypertension12 and dyslipidemia13. Modulation of microbiota can 
reduce metabolic syndrome disorders, suggesting an association between specific microbial composition and 
metabolic phenotype14.

No previous study has evaluated differences in microbiota between metabolically healthy (MH) and metaboli-
cally unhealthy (MU) overweight and obese individuals, even though obesity and metabolic syndrome share a 
range of phenotypes and interactions between genetic risk factors and environmental influences, including the 
gut microbiota. Debate over the disease risk associated with MHO continues, and there is a lack of understand-
ing of the mechanisms that underlie MHO. For this reason, we evaluated differences in gut microbiota between 
MH and MU overweight and obese subjects.

Results
Subject demographics.  Table 1 shows the characteristics of the study population. Among the total of 747 
subjects, 317 (42.4%) were in the MH group and 430 (57.6%) in the MU group. MH subjects were more likely 
to be younger and have a lower body mass index (BMI) than MU subjects. All metabolic indicators except total 
cholesterol, LDL cholesterol, and hsCRP were significantly higher in the MU group. Age, BMI, and weight were 
higher in MU group. There was no significant difference in percentage of current smoking between the MH and 
MU groups. There was no significant difference in nutritional intake between the MH and MU groups (Sup-
plementary Table S1).

Overall structure of fecal bacterial communities between MU and MH groups: Alpha and beta 
diversity.  The sequencing depth ranged from 2019 to 91,530 reads per sample (mean = 23,970), and the 
number of features was 2761 in 747 subjects after contingency-based filtering of features. After rarefying the fea-
ture tables to 2019 sequences per sample (Supplementary Fig. S2), we found significantly lower richness in both 
non-phylogenetic **and phylogenetic alpha diversity indices, including observed ASVs (p = 3.63 × 10–3, Kruskal–
Wallis test), Faith’s PD (p = 1.96 × 10–4, Kruskal–Wallis test), and Shannon’s index (p = 1.03 × 10–3, Kruskal–Wallis 
test) in the MU group compared to the MH group; the only exception was Pielou’s evenness (p = 0.51, Kruskal–
Wallis test) (Fig. 1).

Beta diversity analysis indicates the extent of similarities and differences among microbial communities. 
To quantify beta diversity, both non-phylogenetic (Bray–Curtis dissimilarity, Jaccard distance) and phylogenic 
methods (Unifrac distance) were used (Fig. 2). We found significant differences between the MH and MU 
groups in Bray–Curtis (Pseudo-F = 1.603, p = 0.004, PERMANOVA) and Jaccard (Pseudo-F = 1.635, p = 0.001, 
PERMANOVA) non-phylogenetic distances and when using the unweighted UniFrac distance as a phylogenetic 
index (Pseudo-F = 3.815, p = 0.001, PERMANOVA). However, due to the large sample number and interindividual 
variation, fecal microbiota for the MH and MU groups could not be clearly separated by principal coordinates 
analysis (Fig. 2), even though there were significant differences in microbial community composition between 
the two groups for all beta diversity indices except weighted UniFrac distance.

Table 1.   Baseline characteristics of study participants according to metabolic health. a p value for difference 
between MH and MU groups by t test for continuous variables.

Characteristics Metabolically healthy (MH) Metabolically unhealthy (MU) p valuea

Number (male/female) 317 (249/68) 430 (343/87)

Age (years) 44.12 (8.20) 47.85 (9.01)  < 0.001

BMI (kg/m2) 25.10 (1.62) 26.27 (2.43)  < 0.001

Weight (kg) 72.30 (8.44) 75.25 (10.09) 0.021

Waist circumference (cm) 86.11 (5.73) 89.76 (6.73)  < 0.001

Fat percentage (%) 25.71 (5.90) 27.66 (6.24)  < 0.001

Current smoker (%) 20.2 22.3 0.420

Glucose (mg/dl) 90.90 (5.07) 104.54 (21.81)  < 0.001

Insulin (pmol/l) 5.48 (2.76) 7.66 (4.59)  < 0.001

Systolic BP (mmHg) 109.80 (9.69) 117.51 (13.98)  < 0.001

Diastolic BP (mmHg) 70.62 (7.67) 76.31 (10.87)  < 0.001

HOMA-IR 1.24 (0.65) 2.02 (1.40)  < 0.001

Total cholesterol (mg/dl) 202.51 (32.48) 198.83 (36.56) 0.154

LDL-C (mg/dl) 125.28 (29.20) 122.94(32.60) 0.313

HDL-C (mg/dl) 56.07 (11.26) 49.23 (12.38)  < 0.001

Triglycerides (mg/dl) 119.42 (68.67) 157.02 (88.49)  < 0.001

ALT (U/l) 21.24 (11.90) 29.03 (20.07)  < 0.001

AST (U/l) 21.21 (6.69) 24.26 (10.23)  < 0.001

hsCRP (mg/l) 0.11 (0.25) 0.10 (0.11) 0.546
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In addition, we compared MH and MU microbial diversity with metabolically healthy non-obese (MHN) 
individuals as the control group. We found significant differences in alpha diversity between the healthy control 
(MHN) and metabolically unhealthy (MU) groups. The MU group showed lower alpha diversity than both the 
MHN and MH groups, but there was no difference between the MHN and MH groups (Supplementary Table S2). 
On the other hand, the microbial structure was different between the MHN and MH, or between the MHN 
and MU groups in both non-phylogenetic and phylogenetic indices of beta diversity (Supplementary Table S3).

Significant sex differences in gut microbiota were found for alpha diversity. Females showed higher microbial 
diversity than males in Faith’s PD and Shannon’s index (Supplementary Fig. S3). We compared the microbial 
compositions between MH and MU separately for males and females. Sex-separated analyses also showed sig-
nificantly lower alpha diversity in the MU group than the MH group (Supplementary Table S4), which is con-
sistent with the results of the sex-combined analysis (Fig. 1). For beta diversity, we found the results for males 
were similar to those of the sex-combined group, but we observed significant differences between the MH and 
MU groups for only unweighted UniFrac distance in females (Supplementary Table S5). Sex was included as a 
covariate in the regression model.

Association of gut microbiota in metabolically healthy overweight/obese subjects and meta-
bolically unhealthy overweight/obese subjects.  We investigated the association between gut micro-
bial composition and metabolic healthy status in overweight/obese subjects. To control for covariates, we con-
structed two models using generalized linear modeling (Table 2). First, we analyzed crude associations without 
adjustment in Model 1. In Model 2, we controlled for age, sex, and BMI to determine if there was a signifi-
cant association between microbial taxa and metabolic healthy status in overweight/obese subjects. In Model 
1, MaAsLin showed significantly different abundances between the MH and MU groups in three phyla, three 
classes, three orders, seven families, and five genera. The genus Fusobacterium, including upper level taxa such 
as Fusobacteria, was more abundant in the MU group than in the MH group (q < 0.05). The genus Oscillospira 
in the family Ruminococcaceae showed a strongly negative association with metabolic unhealthy status (coef-
ficient =  − 0.024, q = 0.011). We also found that the MU group had a significantly lower abundance of the families 
Odoribacteraceae, Christensenellaceae, and Coriobacteriaceae than the MH group. Most taxa that were signifi-
cant in Model 1 remained significant after adjusting for the covariates of age, sex, and BMI (Fig. 3). However, the 
phylum Actinobacteria, the class Actinobacteria, and their sub-taxa including other Bifidobacteriales and the 
family Bifidobacteriaceae were not significantly different between the MU and MH groups after this adjustment. 
Actinobacteria and their sub-taxa were strongly associated with age and sex except taxa in the class Coriobacte-
riia (Supplementary Table S6). The association of genera Odoribacter and Butyricimonas with metabolic status 
was also not statistically significant after adjustment for covariates, although the family Odoribacteraceae still 
showed significance in Model 2.

We also used linear discriminant analysis (LDA) of effect size (LEfSe) to determine the taxa that most likely 
explained the differences between the MH and MU groups. When performing the LEfSe analysis, we compared 

Figure 1.   Alpha diversity among groups. Diversity was significant for observed features (ASVs) (p = 3.63 × 10–3, 
Kruskal–Wallis test), phylogenetic diversity (p = 1.96 × 10–4, Kruskal–Wallis test), Shannon index (p = 1.03 × 10–3, 
Kruskal–Wallis test), and Pielou’s evenness (p = 0.512, Kruskal–Wallis test). *p < 0.05, **p < 0.01. Notched boxes 
indicate interquartile range (IQR) of 25th to 75th percentiles. The median value is shown as a line within the 
box, and the notch indicates the 95% confidence interval for the median. Whiskers extend to the most extreme 
value within 1.5 × IQR. Possible outliers are shown as dots.
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taxa not only on the basis of statistical significance, but also based on the biological consistency of the results 
and effect relevance. Figure 4 shows the LEfSe results (LDA score > 3 and p < 0.05) from phylum to genus level, 
which confirmed that the phylum Fusobacteria and lower taxa including genus Fusobacteriaceae were signifi-
cantly enriched in the MU group. The genera Clostridium and Oscillospira and the family Ruminococcaceae 
were enriched in the MH group, consistent with the MaAsLin results. The class Actinobacteria and associated 
sub-taxa, including Bifidobacteriales, Bifidobacteriaceae, and Bifidobacterium, showed enrichment with a high 
LDA score in the MH group (Fig. 4), as in Model 1 (Table 2).

Functional profiling of metabolically heathy/unhealthy obese status.  To evaluate differences in 
community functional attributes, we used PICRUSt2. Among the predicted MetaCyc pathways inferred by PIC-
RUSt2 for ASVs, we found 14 with statistically significant differences between the two groups of subjects (FDR 
q < 0.05) (Fig. 5). The vitamin biosynthesis-related pathways of cob(II)yrinate a,c-diamide biosynthesis I, preQ0 
biosynthesis, 6-hydroxymethyl-dihydropterin diphosphate biosynthesis III, and the superpathway of thiamin 
diphosphate biosynthesis I were enriched in the MU group compared to the MH group (q < 0.01). The l-lysine 
biosynthesis pathway was decreased in the MU group compared to the MH group. Glycogen biosynthesis I was 
also decreased in the MU group. Nucleotide biosynthesis pathways, such as pyrimidine and purine pathways, 
were enriched in the MU group.

Discussion
In this study, we found that metabolic health was associated with gut microbiota composition and abundance in 
the obese/overweight population. Phylogenetic and non-phylogenetic measures of alpha diversity for gut micro-
biota were lower in the MU group than the MH group, and there were significant differences in the composition 
of gut microbiota between the two groups in this study. In previous studies, microbiome diversity and community 
compositions have been shown to be associated with metabolic components. Decreased gut microbial richness 
and altered compositions were observed in hypertensive individuals compared to normotensive controls12, and 

Figure 2.   Principal Coordinate Analysis (PCoA) plots of beta diversity. Statistical significance between 
metabolically healthy (MH) and metabolically unhealthy (MU) groups using distance matrices for beta-
diversity: (a) unweighted UniFrac distance, (b) weighted UniFrac distance, (c) Jaccard distance, and (d) Bray–
Curtis dissimilarity indices. Statistics were calculated using pairwise PERMANOVA with 999 permutations. 
**p < 0.01. Ellipses represent 95% confidence interval for each group.
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gut microbiome diversity was negatively correlated with triglyceride (TG) level and positively correlated with 
high density lipoprotein cholesterol (HDL-C) level13.

Consistent with these previous studies, we found differences in gut microbiota according to metabolic status 
in overweight and obese individuals. At the genus level, Oscillospira within the family Ruminococcaceae and 
Clostridium within the family Clostridiaceae were significantly more abundant in metabolically healthy subjects. 
Some Oscillospira species can likely secrete important short chain fatty acids (SCFAs)15 which are a source of 
energy for the host and can produce a signal through membrane receptors to integrate metabolic functions1. 
SCFAs have beneficial effects on body weight control, inflammatory status, and insulin sensitivity, as well as 
glucose and lipid homeostasis. Animal studies suggest that SCFAs and succinate have important roles in the 
prevention and treatment of obesity-associated insulin resistance16. Clostridium is a butyrate-producing bac-
terium. Previous studies showed a significant decrease in butyrate-producing bacteria, including Clostridium, 
in individuals with type 2 diabetes mellitus (T2DM) compared to healthy individuals. These results suggest 

Table 2.   Detection of differentially abundant taxa among groups according to metabolic status. a Coefficients 
from the generalized linear model using MaAsLin on pairwise testing between two groups. *q < 0.05, **q < 0.01. 
q values were calculated using FDR correction. In Model 2, significant taxa and their q values taxa are bolded. 
p_ = phylum; c_ = class; o_ = order; f_ = family; g_ = genus.

Taxa

Model 1 (unadjusted)
Model 2 (adjusted for age, sex, 
and BMI)

Coef.a p value q value Coef. a p value q value

p__Fusobacteria 0.014 6.09.E−03 0.035* 0.014 7.36. E−03 0.029*

p__Actinobacteria − 0.013 9.86.E−03 0.035* − 0.006 2.99.E−01 0.419

p__Tenericutes − 0.005 1.93.E−02 0.045* − 0.004 4.82.E−02 0.150

p__Fusobacteria; c__Fusobacteriia 0.014 6.09.E−03 0.040* 0.014 7.36.E−03 0.039*

p__Actinobacteria; c__Actinobacteria − 0.013 7.86.E−03 0.040* − 0.005 3.04.E−01 0.471

p__Actinobacteria; c__Coriobacteriia − 0.003 1.00.E−02 0.040* − 0.003 6.24.E−03 0.037*

p__Fusobacteria; c__Fusobacteriia; o__Fusobacteriales 0.014 6.09.E−03 0.047* 0.014 7.36.E−03 0.041*

p__Actinobacteria; c__Actinobacteria; o__Bifidobacteriales − 0.012 9.09.E−03 0.047* − 0.005 3.27.E−01 0.495

p__Actinobacteria; c__Coriobacteriia; o__Coriobacteriales − 0.003 1.00.E−02 0.047* − 0.003 6.24.E−03 0.039*

p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Odoribacteraceae − 0.010 1.71.E−04 0.006** − 0.007 1.05.E−02 0.045*

p__Fusobacteria; c__Fusobacteriia; o__Fusobacteriales; f__Fusobacteriaceae 0.015 6.12.E−04 0.020* 0.015 3.25.E−03 0.020*

p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae − 0.032 1.64.E−03 0.032* − 0.032 7.42.E−03 0.034*

p__Firmicutes; c__Clostridia; o__Clostridiales; f__Christensenellaceae − 0.003 2.36.E−03 0.041* − 0.002 9.88.E−02 0.217

p__Actinobacteria; c__Actinobacteria; o__Bifidobacteriales; f__Bifidobacteriaceae − 0.012 4.91.E−03 0.041* − 0.005 3.27.E−01 0.479

p__Actinobacteria; c__Coriobacteriia; o__Coriobacteriales; f__Coriobacteriaceae − 0.003 8.59.E−03 0.041* − 0.003 6.24.E−03 0.031*

p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Leuconostocaceae − 0.005 9.09.E−03 0.123 − 0.006 1.17.E−02 0.048*

p__Firmicutes; c__Clostridia_o__Clostridiales; f__Ruminococcaceae; g__Oscillospira − 0.024 1.00.E−02 0.011* − 0.022 1.31.E−03 0.015*

p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Odoribacteraceae; g__Odoribacter − 0.008 5.38.E−02 0.012* − 0.005 4.82.E−03 0.158

p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiaceae; g__Clostridium − 0.012 1.89.E−04 0.017* − 0.012 2.48.E−03 0.021*

p__Fusobacteria; c__Fusobacteriia; o__Fusobacteriales; f__Fusobacteriaceae; g__Fusobacterium 0.013 3.63.E−04 0.028* 0.014 3.41.E−03 0.024*

p__Proteobacteria; c__Deltaproteobacteria; o__Desulfovibrionales; f__Desulfovibrionaceae; g__Desulfo-
vibrio − 0.006 6.12.E−04 0.028* − 0.006 2.15.E−03 0.020*

p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Odoribacteraceae; g__Butyricimonas − 0.005 7.66.E−04 0.041* − 0.004 2.64.E−02 0.102

Figure 3.   Bar plots for relative abundance of the significant taxa in metabolically healthy (MH) and 
metabolically unhealthy (MU) groups. The x-axis shows the means proportion of the significantly different taxa 
between the two groups. §The taxa showed the same relative abundance at both taxa levels.
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that butyrate-producing bacteria afford protection against T2DM17. Butyrate improves colon mucosal barrier 
function. Moreover, butyrate exhibits immunomodulatory effects and exhibits anti-inflammatory properties by 
downregulating pro-inflammatory cytokines18.

Notably, the family Coriobacteriaceae of Actinobacteria and Leuconostocaceae of Firmicutes were more 
abundant in the MH group than in the MU group. The family Coriobacteriaceae is known to perform important 
metabolic functions such as conversion of bile acid, steroids, and phytoestrogens, and this family has been inves-
tigated in the context of metabolic diseases19. Bacteria have also been reported to play important roles in the onset 
and maintenance of fatty liver disease20,21, although our knowledge of the underlying molecular mechanisms 
is limited. With the exception of the species Eggerthella lenta, one or more members of the family Coriobacte-
riaceae are considered potential contributors to various biological host functions such as glucose homeostasis 
and bile acid and lipid metabolism19,22, suggesting that the increased presence of Coriobacteriaceae in the MH 
group may be beneficial. The family Leuconostocaceae comprise lactic acid bacteria (LAB) belonging to the 

Figure 4.   Differentially abundant bacterial taxa in fecal samples from the MH and MU groups in overweight 
and obese subjects. (a) A forest plot showing taxa that were significantly differentially abundant between 
the MH (red) and MU (green) groups as determined using the Kruskal–Wallis test. LDA score (effect size) 
indicating significant differences in bacterial taxa (LDA score > 3.0; alpha value p < 0.05). (b) Cladogram 
generated using the LEfSe method showing the phylogenetic distribution of microbes associated with the 
MH and MU groups. Taxonomic levels of phylum, class, and order are labelled, while family and genus are 
abbreviated. Plots were depicted using LEfSe of Galaxy of the Huttenhower lab.
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order Lactobacillales; this family was abundant in the MH group. In our previous study, we found a negative 
association between the family Leuconostocaceae and obese individuals with NAFLD but not lean individuals 
with NAFLD or all individuals with NAFLD23.

We also observed an increased abundance of Fusobacteria in the MU group, including lower taxa levels, 
supporting a previous study that showed higher abundance of Fusobacterium in the gut microbiota of T2DM 
subjects than in controls, with no significant correlation between BMI and Fusobacterium24. A majority of stud-
ies reported that the Fusobacteria and sub-taxa were enriched in intestinal inflammation25. Our results suggest 
that inflammation-related bacteria such as Fusobacteria might affect metabolic health status in obese and over-
weight individuals. Except for the Fusobacteria, we found no association with the other phyla. The changes in 
Firmicutes/Bacteroidetes (F/B) ratio have been reported in obese patients26 and in T2DM10. In this study, there 
was no significant difference in the F/B ratio between the MH and MU groups (Supplementary Fig. S4). In spite 
of the hypothesis that an increased ratio of Firmicutes to Bacteroidetes may make a significant contribution to 
the pathology of obesity, some recent studies have found controversial results including our previous study for 
BMI27,28.

Interestingly, we also found that pathways related to lysine and glycogen biosynthesis were highly upregulated 
in the MH group compared with the MU group. In a previous study29, lysine level was decreased in nascent 
metabolic syndrome patients and was negatively correlated with inflammatory biomarkers and cardio-metabolic 
parameters. Solini et al. found a significant reduction in intracellular glycogen content in hypertensive T2DM 
patients compared with normotensive T2DM patients30. The researchers demonstrated that the reduction in 
glycogen content in skeletal muscle cells was mainly attributable to impairment of the enzymatic activity of gly-
cogen synthase30. Activity of this enzyme was reduced by 35–50% in skeletal muscle cells from T2DM patients 
compared to those from control subjects31. However, because we investigated only the 16S rRNA gene rather 
than the entire genomes of sampled bacteria, we were only able to infer microbial functions.

Adipose tissue (AT) expansion has been suggested to be a possible determinant of MHO versus MUO status32. 
AT expansion can be mediated by hypertrophy, hyperplasia, or both during obesity. AT hyperplasia could be 
the preferred expansion mechanism of fat tissue in MHO individuals compared to MUO individuals. Molecular 
mechanisms controlling hyperplasia and hypertrophy have not been fully elucidated, though microbiota and 
the gut barrier may regulate AT expansion32. Gut microbiota are active and potent modulators of metabolism. 
Therefore, researchers have suggested that a switch from the MUO to MHO metabolic state may result from gut 
microbiota remodeling33. Additionally, the diversity and richness of microbiota are lower in obese versus lean 
individuals34. In the current study, the characteristics of microbiota in the MH group were more similar to those 
observed in lean individuals than to those in the MU group. Given our findings, the gut microbiota, due to their 
association with metabolic health status in obesity, may play a vital role in regulating host glucose homeostasis 
and lipid metabolism that results in maintenance or remodeling of the gut microbiome and prevention of meta-
bolic abnormalities in the obese population.

There are several limitations to this study. First, we investigated the associations between gut microbiota and 
metabolic health status in obese and overweight individuals at a single time point. A previous study showed that 
MHO is an unstable condition for many individuals due to longitudinal changes35. In an earlier study, almost half 
of MHO subjects developed MetS during follow-up5. Nevertheless, our results may explain individual heterogene-
ity in diseases associated with obesity. Second, the study population included only individuals drawn from the 
Korean population. Therefore, our results may not be generalizable to other ethnic populations with different 

Figure 5.   Prediction of metagenome functional content correlated with MH and MU groups using PICRUSt2. 
Extended error bar plot for each pathway indicating differences in mean proportions for each pair of groups. 
Two-tailed Welch’s t test produced a q < 0.05, which was adjusted using the Benjamini–Hochberg method (FDR).



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19417  | https://doi.org/10.1038/s41598-020-76474-8

www.nature.com/scientificreports/

comorbidities and life-styles. Third, our study was based on 16S rRNA gene sequencing, which provides limited 
information about bacterial genes and their functions. In addition to collecting descriptive data based on 16S 
rRNA gene sequencing, it is also crucial to analyze bacterial gene or protein expressions as well as metabolite 
production to generate hypothesis-driven approaches with clear functional targets. Nevertheless, to the best of 
our knowledge, this is the first study to evaluate differences in the microbiome according to metabolic health 
status in obese and overweight Korean individuals.

Conclusion
In conclusion, there were significant differences in microbial diversity and composition of gut microbiota in 
metabolically healthy obese individuals compared to metabolically unhealthy obese individuals. Further stud-
ies are needed to determine the mechanisms underlying the effects of the microbiome on metabolism in obese 
individuals, as these mechanisms likely play a key role in preventing metabolic disease.

Methods
Study subjects.  Participants were recruited from the Kangbuk Samsung Health Study, which is a cohort 
study of Korean men and women who undergo comprehensive annual or biennial examinations at Kangbuk 
Samsung Hospital Healthcare Screening Center in South Korea36. Fecal samples were collected from 1463 
participants aged 23 to 78 years who underwent a comprehensive health examination between June 2014 and 
September 2014 and who provided informed consent to participate in this study. Participants who met any of 
the exclusion criteria described below were not included in the analysis (Supplementary Fig. S1). We excluded 
716 subjects based on the following criteria: missing data (n = 18); BMI < 23 (n = 616); use of antibiotics within 
6 weeks prior to enrollment (n = 55); use of probiotics within 4 weeks prior to enrollment (n = 19); history of car-
diovascular disease (n = 24); history of malignancy (n = 52); and samples with less than 2000 sequences (n = 19). 
Some individuals met more than one exclusion criterion, and a total of 747 participants were included in the 
final analysis.

The present study was conducted according to a protocol approved by the Institutional Review Board of 
Kangbuk Samsung Hospital (2013-01-245-12). Written informed consent was obtained from all participants after 
the nature and possible consequences of the study were explained. All applicable institutional and governmental 
regulations concerning ethical use of human volunteers were followed during this research. The research was 
carried out in accordance with the Declaration of Helsinki.

Data collection and group definitions.  Data on medical history, medication use, and health-related 
behaviors were collected through a self-administered questionnaire. Physical and ultrasound (US) measure-
ments were performed by trained staff during health examinations, and biochemical parameters were measured 
using whole blood collected during health examinations.

We classified overweight and obese individuals into two groups: a metabolically healthy group (MH) and a 
metabolically unhealthy group (MU). Overweight and obese were defined according to Asian-specific criteria; 
overweight as a BMI of 23.0 to 24.9 kg/m2 and obese as a BMI of 30 kg/m2 or higher37. To define metabolic 
abnormalities, we used the National Cholesterol Education Program Adult Treatment Panel III (NECP-ATP 
III)38. The components for lack of metabolic health required for a subject to be considered MUO were (1) fasting 
serum glucose ≥ 100 mg/dL or current use of blood glucose lowering agents; (2) blood pressure ≥ 130/85 mmHg 
or current use of blood pressure lowering agents; (3) hypertriglyceridemia as TG ≥ 150 mg/dL; (4) low HDL-C 
(< 40 mg/dl in men or < 50 mg/dl in women); or (5) waist circumference > 102 cm in men or > 88 cm in women. 
Metabolically healthy (MH) status was defined as presence of none of the metabolic abnormalities described 
above and metabolically unhealthy (MU) status was defined as presence of at least one of the metabolic abnor-
malities above.

DNA extraction from fecal samples and 16S rRNA gene sequencing.  Fecal samples were imme-
diately frozen at − 20 °C after defecation and stored at − 70 °C within 24 h. DNA extraction from fecal samples 
was performed within 1 month of storage using the MOBio PowerSoil DNA Isolation Kit (MO BIO Laborato-
ries, Carlsbad, CA, USA) according to the manufacturer’s instructions. Amplification and sequencing were per-
formed to analyze bacterial communities as described previously39. Genomic DNA was amplified using fusion 
primers targeting the variable V3 and V4 regions of the 16S rRNA gene with indexing barcodes. Samples were 
pooled for sequencing on the Illumina Miseq platform (Illumina, San Diego, CA, USA) according to the manu-
facturer’s instructions40. The DADA241 plugin of the QIIME2 package (version 2019.7, https​://qiime​2.org)42 was 
used to perform sequence quality control, such as filtering low quality sequences and chimeras, and to con-
struct a feature table of amplicon sequence variants (ASVs). ASVs were generated by denoising with DADA2 
and regarded as 100% operational taxonomic units (OTUs). For taxonomic structure analysis, taxonomy was 
assigned to ASVs using a pre-trained naïve Bayes classifier and the q2-feature-classifier plugin against the Green-
gene 99% OTUs (version 13_8) of the 16S rRNA sequence database in the QIIME2 package. Contingency-
based filtering was used to filter features from a table contingent on the number of samples in which they were 
observed. We filtered features that were present in only one sample based on the suspicion that these did not 
represent real biological diversity but were PCR or sequencing errors such as PCR chimeras.

Statistical analysis.  Basic statistical analyses were performed using SPSS version 20.0.0 for Windows (IBM 
Corp.). For diversity analysis, the feature table was rarefied to 2019 sequences per sample by random subsampling 
in QIIME2 (Supplementary Fig. S2). To evaluate alpha diversity, we computed the number of ASVs observed in 
each sample, Shannon index accounting for both evenness and richness, Pielou’s evenness, and Faith’s phyloge-

https://qiime2.org
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netic diversity (PD)43. The Kruskal–Wallis test was used as a non-parametric statistical test to test pairwise differ-
ences. To measure beta diversity, we used the UniFrac distance44 to estimate dissimilarity among group members 
by incorporating the phylogenetic distances between ASVs. Unweighted and weighted UniFrac distances were 
calculated to determine presence/absence and abundance of ASVs, respectively. Non-phylogenetic indices such 
as Bray–Curtis dissimilarities45 were also used for abundance data. Pairwise permutational multivariate analysis 
of variance (PERMANOVA) with 999 random permutations was used to test the significance of differences 
between groups. Plots of microbial diversity were depicted using ggplot2 package (version 3.3.2) in the RStudio 
(version 1.3.1073, Boston, MA, USA).

Generalized linear models implemented in multivariate association with linear models (MaAsLin)46 of Gal-
axy of the Huttenhower lab (https​://hutte​nhowe​r.sph.harva​rd.edu/galax​y/) were used to analyze the association 
between metabolic abnormalities and gut microbiota. MaAsLin is a multivariate statistical framework that identi-
fies associations between clinical metadata and microbial community abundance. After adjusting for age, sex, and 
BMI, we compared the abundance of taxa between MHO and MUO. All analyses in MaAslin were performed 
using default options. Resulting p-values were corrected for multiple comparisons at each phylogenetic level 
and each personality trait using Benjamini–Hochberg correction (FDR). A q value less than 0.05 was considered 
statistically significant. Linear discriminant analysis (LDA) effect size (LEfSe) analysis was used to detect potential 
MH- and MU-specific bacterial markers using LEfSe of Galaxy of the Huttenhower lab47.

For functional inferences of the microbial community, we conducted Phylogenetic Investigation of Communi-
ties by Reconstruction of Unobserved States 2 (PICRUSt2) (v2.2.0-b)48 with ASVs according to the instructions 
published at https​://githu​b.com/picru​st/picru​st2/wiki. Phylogenetic placement in PICRUSt2 is based on the 
following three steps: hidden Markov models (HMMER) (www.hmmer​.org) to place ASVs, then an evolution-
ary placement algorithm-NG (EPA-NG)49 to determine the best position of these placed ASVs in a reference 
phylogeny, and genesis applications for phylogenetic placement analysis (GAPPA)50 to output a tree of the most 
likely ASV placements. This results in a phylogenetic tree that contains both reference genomes and environ-
mentally sampled organisms and that is used to predict individual gene family copy numbers for each ASV. 
PICRUSt2 predictions were supported by Enzyme Classification numbers (EC numbers, as of 21 Jan 2016). We 
generated PICRUSt2 EC gene family predictions and Metabolic Pathway Database (Metacyc) pathway abundance 
predictions51. Results were visualized in statistical analysis of taxonomic and functional profiles (STAMP) version 
2.1.352 and tested using Welch’s t test for two groups, MHO vs. MUO. All predictions were corrected for multiple 
testing (Benjamini–Hochberg method, FDR q < 0.05).

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request, and the 16S rRNA sequence data are available at the public repository, Clinical and Omics 
data archives (CODA) in the Korea National Institute of Health by accession number R000635 (https​://coda.nih.
go.kr/coda/coda/searc​h/omics​/genom​e/selec​tSear​chOmi​csGen​omePo​p/R0006​35.do).
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