
1Scientific Reports |         (2020) 10:3171  | https://doi.org/10.1038/s41598-020-59661-5

www.nature.com/scientificreports

iLoF: An intelligent Lab on Fiber 
Approach for Human Cancer Single-
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Paula Sampaio   4,7, Celso A. Reis   4,5,8,9 & João P. S. Cunha1,3*

With the advent of personalized medicine, there is a movement to develop “smaller” and “smarter” 
microdevices that are able to distinguish similar cancer subtypes. Tumor cells display major differences 
when compared to their natural counterparts, due to alterations in fundamental cellular processes 
such as glycosylation. Glycans are involved in tumor cell biology and they have been considered to be 
suitable cancer biomarkers. Thus, more selective cancer screening assays can be developed through 
the detection of specific altered glycans on the surface of circulating cancer cells. Currently, this is only 
possible through time-consuming assays. In this work, we propose the “intelligent” Lab on Fiber (iLoF) 
device, that has a high-resolution, and which is a fast and portable method for tumor single-cell type 
identification and isolation. We apply an Artificial Intelligence approach to the back-scattered signal 
arising from a trapped cell by a micro-lensed optical fiber. As a proof of concept, we show that iLoF is 
able to discriminate two human cancer cell models sharing the same genetic background but displaying 
a different surface glycosylation profile with an accuracy above 90% and a speed rate of 2.3 seconds. We 
envision the incorporation of the iLoF in an easy-to-operate microchip for cancer identification, which 
would allow further biological characterization of the captured circulating live cells.

Recent research trends on healthcare point out to the movement to develop “smart” micro-tools to allow better 
personalized diagnostic and therapeutic approaches1–3. Considering that current medicine and biotechnology 
attempts are converging to novel methodologies at the micro (e.g., cancer cells detection) and nano scales (e.g., 
cancer-related extracellular vesicles detection), an effort towards the development of these “intelligent” microde-
vices with multifunctionalities is required3. In this regard, optical fiber tools - for example, Optical Fiber Tweezers 
(OFT)1,4,5 - have emerged as suitable candidates thanks to their flexibility, small size and chemical inertness, 
which contributes to the advent of a novel concept of “Lab on Fiber” (LoF) devices2. The fruitful application of 
these optical-based microdevices in cancer screening has been envisioned as straightforward1,2. However, the 
high degree of heterogeneity among cancer subtypes must be taken into consideration6,7. This heterogeneity is 
mainly due to both cellular and microenvironmental factors, such as alterations in cellular glycosylation8. In 
particular, the selective detection of specific cancer-associated glycoforms expressed at the surface of circulating 
cancer cells could increase the specificity of cancer biomarker assays and therapeutic approaches8–10. In fact, 
tumor heterogeneity is considered to be a major barrier to an effective cancer diagnosis and treatment6,7. Recent 
evidence has shown that glycans can determine the acquisition of certain cellular features controlling tumor 
growth and progression8,11,12. For example, shorter truncated O-glycans are considered to be predictive markers 
of poor prognosis in certain cancers8,13. These alterations are currently only possible to detect through complex 
and time-consuming methods, such as mass spectrometry and affinity assays9,10,14. Consequently, an effort to 
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develop novel micro optical “intelligent” devices with high sensitivity is required. Considering the wide range of 
Artificial Intelligence (AI) decision support algorithms, we postulate that conventional optical fiber tools could 
be converted into iLoF devices, which would be able to immobilize and classify cancer cells alterations with high 
inter-cell similarity degrees.

Even though the development of OFT is a growing field, only a limited number of options are available for 
simultaneous cell trapping and sensing1,2,5,15. Plasmonic fiber tweezers are good candidates for such an hybrid task 
because, beyond trapping, they are sensitive to tiny changes of the surrounding environmental refractive index 
and can then provide some additional information about their target16. However, plasmonic devices often require 
a relatively complex multi-step fabrication process. Additionally, recent evidence has shown that their higher 
refractive index sensitivity can interfere with their trapping capability16.

As an alternative to fiber-based solutions, scattering-based techniques (e.g., Raman spectroscopy, flow cytom-
etry)17,18 have also been widely used for cell characterization. In fact, the amount of light that is scattered by a cell 
is still considered to be among the gold-standard techniques for cell characterization17,18. Flow cytometry has 
been considered to be the most adequate technique for studying cellular viability and morphological measure-
ments18. However, flow cytometers are based on bulky and expensive equipment (comprising more than 10 lasers 
and highly sensitive photodetectors), and they require the analysis of both scattered and fluorescence signals18. 
Additionally, flow cytometry is a multi-event detection system, providing multiparametric information of several 
particles flowing per second18. Unlike flow cytometers, "intelligent” fiber tweezers provide meaningful informa-
tion of an individualized target particle - that is stably trapped during the measurements.

We have developed an AI method based on the analysis of laser back-scattered signals of trapped cells using 
spherical lensed optical fiber tips to identify human cancer cells that only differ in their surface glycosylation. This 
approach is based on the immobilization of the cell under test through a touchless optical trapping force exerted 
by the polymeric lens on the top of the optical fiber and the simultaneous acquisition of the back-scattered signal 
arising from the trapped cell. We validated our method named iLoF (intelligent Lab on Fiber) by subjecting it to 
a human gastric carcinoma cell line that is genetically modified to over-express the ST6GalNAc1 enzyme and to 
the corresponding control cell line. The ST6GalNAc1 enzyme is responsible for the expression of the STn antigen, 
which is a well-established tumor derived carbohydrate antigen associated to metastasis and poor prognosis of 
cancer patients19,20. After applying a robust evaluation scheme, including more than 29,000 independent test runs 
and a 4-class detection experiment (including the distinction between these two cancer cell models, the condition 
of “No cell trapped” and of one trapped polystyrene microsphere, the known control), the iLoF showed overall 
accuracy and F-Measure performance values of 0.93 and 0.85, respectively. It was also characterized by a Speed 
Rate (SR) of approximately 2.3 seconds for 100% of detection accuracy. This high-resolution single-cell charac-
terization method could be embedded into microdevices with innovative attributes. Possible use-case scenarios 
include subtype identification of circulating live cancer cells, leading to more personalized therapies, or its earlier 
assessment.

Results
Optical trapping of cancer cells.  To develop this novel “intelligent” method to simultaneously trap and 
identify different human cancer cells we first had to fabricate a lensed fiber tip that is able to individually optical-
ly-trap such cells with no material contact to minimize cell disturbance. We also had to design an optical setup for 
scatterers visualization, manipulation and back-scattered signal acquisition (Fig. 1).

The lens-like microstructure that we used to trap cells (Fig. 1(A)) was fabricated on the top of a single mode 
optical fiber, through a waveguide photo-polymerization method4,21 (Online Methods). It is characterized by a 
spherical geometry, a refractive index of 1.52, a length, base diameter and curvature radius of ≈45 μm, ≈6 μm 
and ≈3 μm, respectively; and a Numerical Aperture (NA) of 0.5 ≤ NA ≤ 0.6.

An inverted microscope-based setup was therefore designed and mounted to characterize and quantify the 
optical trapping ability of the proposed microlens on each cell model. The setup consisted of an inverted micro-
scope connected to additional three subsystems: the image acquisition, the micromanipulation and the signal 
acquisition modules (Fig. 1(B)). The last subsystem was included to acquire the back-scattered signal while the 
cells were trapped.

The two selected cell lines to test our method were derived from the gastric cancer cell line MKN45: HST6, 
which was genetically modified to present truncated O-glycans at their surface, due to the over-expression of the 
ST6GalNAc1 sialyltransferase - and Mock - the corresponding control cells transfected with the empty vector19. 
The overexpression of the α2,6-sialyltransferase ST6GalNAc1 resulted in a different cellular glycosylation profile, 
showing the de novo STn expression (Fig. 2(A)). To further characterize this model, we have performed glycomic 
analyses. We identified 18 N-glycan structures in both HST6 transfected cells and Mock, covering pauci-mannose, 
oligo-mannosidic, hybrid and complex N-glycans (Table S1, Supplementary Material). The same N-glycan struc-
tures were identified in both cell lines, and only limited quantitative differences were detected, indicating no effect 
of ST6GALNAC1 overexpression on the N-glycome. The O-glycomic analysis revealed 19 O-glycan structures, 
including STn, core 1, core 2 and core 3 structures (Table S2), Supplementary Material). Most structures identified 
had terminal sialic acids with core 2 structures being the most elongated. HST6 overexpressing cells showed in 
accordance with the previous flow cytometry results a significant increase in STn.

The two cell models were subjected to morphological analysis and no significant differences were displayed 
between them (Fig. 2(B)). The profile of trapping forces exerted by the fabricated microlens was characterized by 
considering three types of particles: cancer cells Mock and HST6; and 8 μm diameter polystyrene (PS) synthetic 
microspheres (Supplementary Table S3). After the described setup was correctly mounted, a drop of each solu-
tion containing the particles to analyze (Supplementary Table S3) was placed over a 35 mm dish, and the lensed 
fiber tip was inserted into this sample at an inclination angle of 50°. Multiple snapshots of the microlens trapping 
each particle were acquired. Trapping force measurements were then performed through the Drag Force method 

https://doi.org/10.1038/s41598-020-59661-5


3Scientific Reports |         (2020) 10:3171  | https://doi.org/10.1038/s41598-020-59661-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

(Online Methods). PS microparticles were included as “known controls”, because our previous studies showed 
that PS microparticles can be successfully trapped using this type of lens. All of the analyzed microparticles were 
successfully trapped in two dimensions (2D), as depicted in Fig. 3. Confinement in the third dimension was 
ensured by the presence of a glass slide surface. Three dimensional optical trapping was not verified, because it 
usually requires higher power densities (stronger focusing), which can eventually damage the cells. Although all 
of the particles were successfully trapped along all the transversal directions (left and right, up and down, having 
the trapping equilibrium point as reference), the displacement towards −y direction was almost insignificant for 
HST6 cells (Fig. 3B-VII,VIII). Thus, the trapping forces were only compared among particles by considering the 
transversal displacements along the xx axis, relative to the propagation direction of the laser beam.

The resultant trapping forces exerted on each particle result from the sum of two components: the scattering 
and gradient forces22, both of which are dependent on the diameter of the trapped particle22. In this particular 
case, a single beam is used for 2D trapping. Thus, the transversal and longitudinal particle displacements rela-
tive to waveguide position were due to the transversal and axial components of the gradient force, respectively. 
According to our previous studies where the trapping forces profile exerted by this kind of lenses was theoretically 
characterized4,23,24, the axial contribution of the gradient force can be usually considered negligible, because the 
transversal component of the gradient force plays the major role in the trapping phenomena. Thus, it is compre-
hensible that axial particles displacement due to optical trapping was weaker in comparison with the longitudinal 
component, leading to an almost imperceptible HST6 cell displacement towards −y direction (Fig. 3B-VII,VIII).

Maximum trapping force magnitude values for each type of particle are depicted in Fig. 4(A,C)). The target 
submitted to the strongest trapping force was found to be the synthetic particle. This is an expected outcome - 
considering that the gradient force increases with the product between the radius of the particle and the difference 
between its refractive index and the media, which is defined as the "optical size” of the particle22. In fact, although 
the cancer cells had diameters higher than the polystyrene particle, the latter was characterized by a refractive 
index of 1.5725, while human cancer cells were characterized by values within 1.36–1.3726, which are very close to 
the media refractive index (PBS, 1.36). We therefore infer that the refractive index difference between biological 
and synthetic particles had surpassed the particles’ size differences.

The trapping force measurement assay showed that it is possible to stably immobilize both types of cancer cell 
models using the fabricated microlens. This ensured that any type of signal acquired from trapped cells would be 
mostly comprised of back-scattered photons from the cell, minimizing noisy information derived from random 
particle motion in the solution (e.g., Brownian motion).

High-resolution artificial intelligence-based cancer cells identification.  A novel Artificial 
Intelligence (AI) method was developed to discriminate different cancer cell models, based on time- and 
frequency-domain parameters derived from short-term back-scattered signal portions from an optically-trapped 

Figure 1.  Microscopic image of the polymeric lens on the top of the optical fiber and optical manipulation 
setup used to trap particles and cancer cells. (Panel A) Bright-field microscopic image of the polymeric lensed 
optical fiber tip. (Panel B) The setup designed consisted of an inverted microscope connected to additional three 
subsystems: image acquisition, micromanipulation and signal acquisition modules. Cell/particle samples were 
maintained within the temperature and atmosphere controlled chamber.
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single-cell (Online Methods). A distinction problem involving four classes (“No particle trapped”; “Mock cancer 
cell trapped”; “HST6 cancer cell trapped” and a “PS microsphere trapped” - known control) was therefore con-
sidered for training and testing the iLoF method. The inclusion of the “No Particle” class is relevant for training 
the algorithm because it can continuously verify if a given cell/particle was optically-trapped or not. A total of 15 
cancer cells from each model and 10 polystyrene particles were used in this experiment (see Supplementary Table 
S3). Note that a number between 500 and 5000 training data samples provided from 20–100 different entities 
(patients, cells, organs, etc) is frequently reported in several state-of-the-art studies about machine learning-based 
algorithms for diagnosis and prognosis, mainly focused on cell analysis and cell type classification27–30.

After collecting enough information for force analysis, each cell/particle was immobilized using the fiber tool 
as depicted in Supplementary Fig. S2 during 80-seconds15, for back-scattered signal acquisition. Part of the light 

Figure 2.  Characterization of the ST6 gastric cancer cell model. (Panel A) Flow cytometry analysis of STn 
expression in HST6 cells compared to the Mock control cell line. The negative controls are shown in dotted 
lines. Two independent experiments were performed. (Panel B) (I,III) Probability Density Histograms showing 
cell diameter distribution and corresponding normal curve fit for (I) Mock and (III) HST6 cells (PShapiro–

Wilk Normality test > 0.05, two tailed). (II,IV) Examples of bright-field microscopic images of of a (II) Mock cell and a 
(IV) HST6 cell. There was no significant difference between cell type diameters (PStudent7D1t–test > 0.05; unpaired, 
two tailed; n = 15).
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scattered by the particle was collected by the microlens on the top of the optical fiber and recorded by the photo-
detector. After acquisition, back-scattered signals were processed according to the scheme of Supplementary Fig. 
S3 (Online Methods). Our final dataset was comprised of 2-seconds portions of back-scattered signal acquired for 
each particle (Supplementary Table S4). After signal processing (Fig. S3(1–3)), the visual aspect of the resultant 
signal portions for each class is depicted in Fig. 5. It is clear that signal differences between the type of particles are 
not visible to the naked eye. Then, we trained a supervised learning-based algorithm, the Random Forests31,32, to 
correctly identify the type of particle trapped, taking into account the information provided from the features set 
enumerated in Table 115, characterizing each signal portion.

Particle type performance classification was obtained by considering a highly robust Leave-One-Out-based 
procedure to report performance results as closer as possible to a real scenario31,33. According to this scheme, 
29,250 independent tests were performed, corresponding to the number of possible combinations between a test 
set comprised by one particle from each one of the four classes. A training set defined by the remaining particles 
(Supplementary Table S3; Online Methods). Thus, we ensured that all of the particles that we considered were 
used to both train and test the algorithm, and that the data used for training the classifier was never involved in 
the test, considering each nth evaluation run (Supplementary Fig. S4; Online Methods). The iLoF method ensured 
an average accuracy and F-Measure values of 0.93 ± 0.05(n = 29, 250) and 0.85 ± 0.13(n = 29, 250), respectively 
(Table 2). Given that the F-Measure is a harmonic mean of the sensitivity and specificity31, and considering that 
our dataset is unbalanced regarding the number of training/test samples per class (Table S4), we can conclude that 
the iLoF is both sensitive and specific.

It is worth mentioning here that the classification algorithm was robust to the inter-class variability (e.g., in 
particle size). In fact, Mock cells diameter ranged between 10.1 and 20.8 μm, while HST6 cells were characterized 
by diameters between 11.3 and 23.8 μm. Nevertheless, the iLoF method was able to distinguish the two cancer 
models with an accuracy per class of 0.92 and 0.89 for Mock and HST6 cells, respectively (Supplementary Fig. 
S6). However and according to what was expected due to their similarity, the mean accuracy per class among the 
29,250 runs was lower for cancer cells in comparison with “No particle trapped” and “PS microsphere trapped” 

Figure 3.  Snapshots showing the trapping ability of the proposed spherical lenses on top of fibers for (A) a 
Mock tumoral cell, (B) a HST6 tumoral cell and (C) a Polystyrene particle as a target. (A–C)-I - The optical 
fiber tip is displaced towards the left (−x direction) (with the laser off) in relation to the target. (A–C)-II - 
The laser is turned on and the particle is attracted to the equilibrium position (trapping position) where it 
remains immobilized. (A–C)-III - The laser is again turned off and the fiber tip displaced towards the opposite 
transversal direction (towards the right, +x direction). (A–C)-IV - After the laser is turned on, the particle 
is displaced towards the right due to optical trapping forces. (A–C)-V - In order to study the longitudinal 
trapping forces profile for each particle type, the fiber tip is moved towards +y direction (down) with the laser 
off. (A–C)-VI - Particles are pushed after the laser is turned on. (A–C)-VII - The laser is turned off and the 
fiber tip is now moved along the longitudinal direction (towards −y, up). (A–C)-VIII - Particles are pulled due 
to optical trapping, excepting HST6 cells (cell movement due to trapping effects along -y direction are almost 
imperceptible, since the axial contribution of the gradient force to the total trapping force is negligible, in 
comparison with the transversal component of the gradient force, which plays the major role in the trapping 
phenomena).
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classes (Supplementary Fig. S6). Still, the mean accuracy per class values were above 89% for all the classes 
considered.

iLoF speed detection rate.  To determine the SR of the method (i.e., the time to correctly identify the type 
of trapped cell/particle) we analyzed the minimum number of 2-seconds signal portions needed for a correct 
particle identification by the iLoF. A robust evaluation approach was also adopted to determine this parameter 
(Online Methods, Supplementary Fig. S7). According to the results, the iLoF method is characterized by a SR of 
1.17 ± 0.51 2-seconds short-term signal portions, totaling 2.3 ± 1.0 seconds (Fig. 6(B)). However, in approxi-
mately 87% of the runs, the iLoF only needed a single signal portion for a 100% detection rate, which is a highly 
relevant performance attribute (Fig. 6(A)). Thus, despite only short-term signal portions being used for trapped 
cells/particles distinction, the set of 54 features chosen to describe them was significant enough to allow a correct 
classification using a single input test sample (Fig. 6 and Supplementary Fig. S8; Online Methods).

For more details about the performance of the iLoF in terms of the SR of detection, please see Supplementary 
Note S1.

Data processing time reduction.  To obtain performance results through the Leave-One-Out robust eval-
uation procedure, the iLoF had to be run for 770, 010, 000, 000 cycles (Fig. S9). Considering the computing 
characteristics of our machine, the initial duration for each one of the 29,250 evaluation runs was estimated to be 
of 339 seconds (Fig. S9, Online Methods). In total, all the computations required for the analysis to be completed 
would have been 339 × 29, 250 = 9915750s ≈ 115 days. Thus, we applied a multicore-based parallel computing 
approach to reduce the computation time corresponding to each one of the 29,250 evaluation runs by 42% (from 
339 to 198 seconds), completing all the needed computations in 48 days. Further optimizations may be performed 
to additionally reduce the computation time for training model calculation. However, it is important to reinforce 

Figure 4.  Description of transversal trapping forces exerted by the fabricated polymeric tip on Mock and HST6 
tumoral cells and polystyrene particle. (A) Forces profile acting on each type of microparticle according to its 
position relatively to the trapping point (equilibrium position where each particle is stably trapped and the 
resultant of the forces acting on it is approximately null). The left part of the curves (corresponding to particle 
positions at the left of the equilibrium point) describe trapping forces profile when the particle is displaced 
towards the right (towards the +x direction) due to optical trapping. The right-hand side of the curves 
(corresponding to positions at the right of the trapping point) represent trapping forces exerted on the particle 
when it is moved towards −x direction (to the left). (B) Average maximum trapping forces exerted on Mock, 
HST6 cells and polystyrene particles, for left (blue) and right (orange) particle displacements due to optical 
trapping among the three displacements performed for each direction. (C) Comparison of forces exerted on 
Mock and HST6 cells considering distance points to trapping force normalized to the maximum displacement 
achieved by each cell due to optical trapping for one of the three displacements recorded for optical force 
analysis (P n, 30

n
0 05> =. ; Student T-test for independent samples with correction for multiple comparisons).
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that after the calculation of the training model, the time needed for an unknown cell to be tested will only be 2 
seconds.

Discussion
In this study, we developed a novel, high-resolution, fast and portable method that we named “iLoF” (intelli-
gent Lab on Fiber), which is able to trap and identify a single-cell. Its distinction power is transversal to highly 
similar cancer cells, which only differ in their corresponding surface glycosylation. This may constitute a major 
breakthrough in future detection methodologies of cancer and other diseases based on single cell fast screening. 
According to the results, our iLoF method has distinguished two gastric cancer cell models, whose differences 
were related to the length and complexity degree of cell surface glycans with accuracy values above 90%. This 
distinction ability is therefore aligned with a high-resolution detection technique. Recent evidence indicates that 
alterations in the glycosylation process are linked to tumor development8. Generally, shorter/truncated glycans at 
the surface of cancer cells are related with a poor prognosis in some cancer types, as previously described for sialyl 
Tn (STn)34. These phenomena are frequently associated with an incomplete glycans synthesis during cell glyco-
sylation, in comparison with the cellular pathway under healthy conditions. To mimic these cellular alterations, 
we tested the iLoF method with two cell models derived from a gastric cancer cell line: the HST6 and the Mock 
cells. The first was genetically modified in order to over-express an enzyme that causes a shift in the glycosylation 
pathway, leading to the expression of less complex and shorter glycans on their surface, such as STn. The Mock 
cells were transfected with the corresponding empty vector, displaying the characteristic glycosylation of the 
“wild-type”-parental cell model19. Aberrant glycosylation has been previously identified in various cancer related 
proteins, such as the glycoprotein CD44, which has been shown to be a major carrier of STn and associated to 
increased metastatic potential and poor survival in gastric cancer9,35.

By immobilizing the targets and further analyzing the light back-scattered signal arising from the trapped 
cell using an AI approach, the iLoF proves to be a highly robust alternative to the current methods for detecting 
different glycosylated cells11. Because the target remains immobilized (but untouched) during measurements, the 
acquired signal is not affected by cell movement-derived noise. Additionally, it does not require bulky equipment, 
fluorescent probes, antibodies or any type of functionalization, being mainly characterized by a microlens-like 
structure on the top of an optical fiber and a photodetector. Moreover, this microlens can be fabricated through 
a low-cost photopolymerization method. The iLoF ensured an average Accuracy, F-Measure and SR of 93%, 85% 
and 2.3 seconds, respectively, after a highly robust Leave-One-Out-based performance evaluation procedure. The 
AI algorithm was also trained to continuously verify if a cell/particle was trapped or not. These characteristics 
place this technology in a very competitive position in relation to the state-of-the-art methods14,36. Currently, 
the techniques able to detect alterations in post-translational modifications (e.g., cell glycosylation) are limited 
in number10,14,36. Given that these are slight cellular changes, only affinity and biochemical assays, involving fluo-
rescence, or a highly sensitive spectral and imaging techniques are able to detect them14,36. However, the reliable 
profiling of cell glycans for clinical purposes through affinity assays requires external labels that are invasive, 
phototoxic, bleach when observed and has low spectral resolution14. Meanwhile, the mass spectrometry and 
Raman scattering have also been considered suitable for posttranslational cell modifications characterization14,36. 

Figure 5.  Sketches of back-scattered signal portions and bright-field microscopic images acquired for the 
different particles trapped: (A) no particle; (B) Mock cell; (C) HST6 cell and (D) polystyrene particle.
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Type Group Number Feature/Parameter

Time Domain

Time Domain Statistics

1 Standard Deviation (SD)

2 Root Mean Square (RMS)

3 Skewness (Skew)

4 Kurtosis (Kurt)

5 Interquartile Range (IQR)

6 Entropy (E)

Time Domain Histogram
7 μNakagami

8 ωNakagami

Frequency Domai

Discrete Cosine Transform (DCT)

9 1st Coefficient (EDCT[l1])

10 2nd Coefficient (EDCT[l2])

11 3rd Coefficient (EDCT[l3])

12 4th Coefficient (EDCT[l4])

13 5th Coefficient (EDCT[l5])

14 6th Coefficient (EDCT[l6])

15 7th Coefficient (EDCT[l7])

16 8th Coefficient (EDCT[l8])

17 9th Coefficient (EDCT[l9])

18 10th Coefficient (EDCT[l10])

19 11th Coefficient (EDCT[l11])

20 12th Coefficient (EDCT[l12])

21 13th Coefficient (EDCT[l13])

22 14th Coefficient (EDCT[l14])

23 15th Coefficient (EDCT[l15])

24 16th Coefficient (EDCT[l16])

25 17th Coefficient (EDCT[l17])

26 18th Coefficient (EDCT[l18])

27 19th Coefficient (EDCT[l19])

28 20th Coefficient (EDCT[l20])

29 21st Coefficient (EDCT[l21])

30 22nd Coefficient (EDCT[l22])

31 23rd Coefficient (EDCT[l23])

32 24th Coefficient (EDCT[l24])

33 25th Coefficient (EDCT[l25])

34 26th Coefficient (EDCT[l26])

35 27th Coefficient (EDCT[l27])

36 28th Coefficient (EDCT[l28])

37 29th Coefficient (EDCT[l29])

38 30th Coefficient (EDCT[l30])

39 Number of coefficients that capture 98% of the original signal (NDCT)

40 Total spectrum Area Under Curve (AUC) (AUCDCT)

41 Maximum peak amplitude (PeakDCT)

42 Total spectral power (PDCT)

Wavelet Packet Decomposition

43 Haar Relative Power 1st level (EHaar
1 )

44 Haar Relative Power 2nd level (EHaar
2 )

45 Haar Relative Power 3rd level (EHaar
3 )

46 Haar Relative Power 4th level (EHaar
4 )

47 Haar Relative Power 5th level (EHaar
5 )

48 Haar Relative Power 6th level (EHaar
6 )

49 Db10 Relative Power 1st level (EDb10
1 )

50 Db10 Relative Power 2nd level (EDb10
2 )

51 Db10 Relative Power 3rd level (EDb10
3 )

52 Db10 Relative Power 4th level (EDb10
4 )

53 Db10 Relative Power 5th level (EDb10
5 )

54 Db10 Relative Power 6th level (EDb10
6 )

Table 1.  Summary of the the 54 features used in the classification.
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However, these techniques are time-consuming, require dedicated instrumentation and a multi-wavelength scan-
ning, being limited to the detection of molecules with specific vibrational states. Additionally, they do not allow 
the isolation of the analyzed cell for further purposes14,36, which is not the case for the iLoF where, after the iden-
tification procedure, the cell remains untouched and ready for further biological characterization. Nonetheless, 
the iLoF method has some limitations. Despite the capacity to detect a cancer cell from the universe of “known” 
entities for the classifier, the biological/physical/chemical mechanisms that allow the distinction of cancer cells 
with different glycosylation is not yet fully understood.

There are some possible explanations for the successful detection of such slight alterations. Because the cells 
differed on the type of glycans expressed at their surface, the most obvious explanation is related to the different 
interaction patterns of the light with the different “glycans coat” around each cell. The glycans might be arranged 
in a way that scatters more/less amount of light depending on the cell model, probably inducing interferences on 
the scattering signal, which are translated into different frequency components. The optical properties of each cell 
type (e.g., refractive index) could contribute to cell distinction through light scattering. However, to the best of 
our knowledge, this is the first time that this technique has been applied to distinguish cell glycosylation patterns 
in cancer. In this context, some fundamental information about cell optical properties is yet to be obtained - for 
example, cell refractive index distribution maps - to accurately explain the exact mechanism of distinction. In 
fact, the higher the refractive index difference between the target and the surrounding media, the higher the 
fraction of light that is scattered. The different spatial distribution of glycans - as already showed by mass spec-
trometry for other glycosylation moieties36 - over cell surface could increase the optical heterogeneity degree of 
each cell type. Additionally, the distribution of internal layers could be different in each cell model. The different 
layers could behave as resonant cavities when the light interacts to the cell, introducing phase changes into the 
scattering signal. This may be the reason why the phase parameters are among the 54 used features and present a 
high degree of contribution to the AI algorithm decision.

Thus, assuming that the slight dissimilarities between cell classes used in the experiment (with the same 
genetic background but different glycosylation) are reflected by tiny changes in refractive index, as already 
reported in previous studies about how glycans can change the optical properties of cells surface37–39, there is 
another reasonable explanation for the cell distinction mechanism behind the iLoF method. When the cell is 
under an optical trapping potential, a component of the gradient force can act as a harmonic optical restor-
ing force which is counterbalanced by Brownian fluctuations40,41. According to the studies of O’Dell et al.40 and 
Lindner et al.41, the position of the cell under the influence of this trapping potential varies according to the 
following equation: 
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 where σ2 represents the variance, P(x, t) the probability of finding the cell in the position x at a time t, while KB, 
T and D represents the Boltzmann constant, the absolute temperature and the particle diffusion coefficient in the 
suspension media, respectively. The ktrap is a variable which is intrinsically correlated with the identity of the ana-
lyzed particle, being correlated with its refractive index and optical polarizability, but also with the gradient force 
that is exerted by the optical lens on it. Considering that the back-scattered signals collected from the trapped 
cells reflect the variability of cell position along time due to the “confined” Brownian motions around an equi-
librium position (trapping position), the fluctuations found in the collected scattered patterns are intrinsically 
correlated with the optical properties of the trapped cell. However, the relation between these signal fluctuations 
and cell optical characteristics is only possible to study when a harmonic trapping potential is exerted on the ana-
lyzed microparticle. Based on these evidences, the iLoF use scattering signals collected by a cell under a trapping 
potential to classify its type since they reflect cell optical characteristics currently used as “optical fingerprints” 
for detecting specific molecules/proteins/biotargets attached or at the surface of biological particles2,42,43, as the 
refractive index or optical polarizability. Hereafter, we intend to conduct a detailed study to optically characterize 
each cell model for confirming this theory.

In conclusion, the developed methodology has the potential to be embedded in an affordable and 
easy-to-operate microchip that contains microfluidic channels to distinguish the presence of different models/
subtypes of live cancer cells in circulating physiological fluids (e.g., blood, plasma, serum), while keeping the 
cells untouched for further biological characterization. It is also highly versatile, because it can be trained to 
distinguish completely novel targets, or introduce more classes to its range of detection. This novel method can 
therefore contribute to the development of the emerging field of personalized cancer medicine.

iLoF Classification 
Performance

Nr. of Evaluation 
Runs (n)* Train Test

29,250
F-Measure 
(Avg. ± SD)

Accuracy 
(Avg. ± SD)

F-Measure 
(Avg. ± SD)

0.93 ± 0.01 0.93 ± 0.05 0.85 ± 0.13

Table 2.  iLoF classification performance results for the 4-classes identification problem. *Corresponds to the n 
different combinations for particles ID between training and test sets. Avg - average. SD - standard deviation.
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Synthetic particles and cancer cells.  Three types of solutions were prepared to test the proposed 
single-cell identification method. Two of them were composed by the differently glycosylated cancer cells (as 
described below) - Mock and HST6 - suspended in PBS (Phosphate-Buffered Saline, 1x). The third solution con-
tained eight μm Polystyrene (PS) synthetic microspheres, which were also suspended in PBS (1x). These solutions 
were used to test the performance of our single-cell intelligent identification method based on 2D fiber trapping. 
PS particles were used as known control targets and to test the robustness of the iLoF identification performance 
considering complex/biologic versus simple/synthetic targets. Please see Supplementary Table S3 for more infor-
mation about the solutions.

The human gastric cancer cell line MKN45 was obtained from the Japanese Collection of Research 
Bioresources (Tsukuba, Japan). Two different cell types were considered: HST6 and Mock cancer cells. HST6 cells 
are MKN45 cancer cells transfected with a vector over-expressing the ST6GalNAc1 glycosyltransferase, which is 
an enzyme leading to the biosynthesis of the tumor associated STn antigen (Neu5Acα2-6GalNAcα-O-Ser/Thr). 
Mock refers to the control cells containing the empty vector19. Cells were cultured in RPMI 1640 GlutaMAX, 
HEPES medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% heat-inactivated 
fetal bovine serum (Biowest, Riverside, MO, USA) and maintained at 37 °C in an atmosphere of 5% CO2. Cultured 
cells were routinely tested for mycoplasma contamination and cell line identity was confirmed by STR profiling. 
For iLoF analysis, cells were detached from the flasks by gentle non-enzymatic cell dissociation (Gibco® Versene, 
ThermoFisher, Waltham, MA), resuspended in PBS and then plated into 35 mm μ-dishes (Ibidi, Germany).

The visual aspect of each cell model is provided in Fig. 2, which also includes the size statistical distribution 
information considering the population of cells analyzed in this study. Synthetic particles and cells were optically 
manipulated during experiments under controlled temperature, atmosphere and humidity, at 37 °C and 5% CO2.

Glycan characterization of the cancer cells.  The phenotypic glycan alteration induced by the overex-
pression of ST6GALNAC1 enzyme was analysed by flow cytometry. Cells were detached using non-enzymatic cell 
dissociation solution (Gibco® Versene) and stained with previously complexed anti-STn monoclonal antibody 
(clone TKH244) with anti-mouse IgG Alexa Fluor®-488-conjugated secondary antibody for 20 minutes at 4 °C. 
Cells were strained, labeled with propidium iodide and measured using BD FACSCantoTM II (BD Biosciences, 
San Jose, CA). Two independent experiments were conducted. Data were analyzed using FlowJo (BD Biosciences, 
San Jose, CA).

Further glycomic analyses were performed to characterize the cancer cell glycosylation by Liquid 
Chromatography/Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS). Samples were pre-
pared and analyzed as described in45. Briefly, frozen cell pellets (107 cells) of HST6 transfected cells or Mock 
were directly resuspended in 7 M urea, 2 M thiourea, 40 mM Tris, 2% CHAPS, 10 mM DTT and 1% protease 
inhibitor (Sigma-Aldrich, St. Louis, MO). The cell membranes were disrupted by sonication and the viscosity of 
the lysates was reduced by benzonase® nuclease (250 units, Sigma-Aldrich). Iodoacetamide was added and super-
natants collected. N-linked oligosaccharides of the supernatant glycoproteins were released on 10 kDa cut-off 
spin-filter (PALL, Port Washington, NY) by PNGase F (Prozyme, Hayward, CA). The released N-glycans were 
collected, dried in Speedvac and reduced overnight with 0.5 M NaBH4, 10 mM NaOH. O-linked oligosaccha-
rides were released from retained glycoproteins in spin-filter by reductive β-elimination (0.5 M NaBH4, 50 mM 
NaOH). Reactions were quenched with 1 μl of glacial acetic acid and N- and O-glycans were desalted and dried. 
Released glycans were analyzed by LC-ESI-MS/MS using a column containing 5 μm porous graphitized carbon 
(PGC) particles (Thermo Scientific, Waltham, MA). Glycans were eluted using an acetonitrile gradient in 10 
mM NH4HCO3. The eluted N- and O-glycans were detected using a LTQ ion trap mass spectrometer (Thermo 
Scientific) in negative-ion mode of electrospray ionization. The data were processed using the Xcalibur software 

Figure 6.  iLoF SR. (A) Probability density histogram regarding the number of 2-seconds signal portions 
needed to correctly identify the analyzed cell class, among n × 500 = 29, 250 × 500 = 14, 750, 000 independent 
runs. (B) iLoF statistics in terms of the number of 2-seconds short-term signal portions needed to correctly 
identify the particle/cell trapped (Speed Rate of the method).
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(version 2.0.7, Thermo Scientific) and manually interpreted from their MS/MS spectra. The identified glycan 
structures were quantified by the area under the peak at the extracted ion chromatogram.

Fabrication of the polymeric microlens.  The polymeric lens used in this study was fabricated through 
a guided wave photo-polymerization method developed by Soppera et al.21 in collaboration with our lab4,15. It 
has already shown to be suitable to trap synthetic microparticles and non-human cells4,15. Its fabrication method 
is based on the assemble of cross-linked polymeric structures through monomers linking triggered by light4,21. 
The monomer and photo-initiator used in this reaction was the pentaerythriol triacrylate (PETIA) and the Bis
(2,4,6-trimethylbenzoyl)-phenylphosphineoxide (which is commercially known as Irgacure 819), respectively. 
Considering the properties of the photo-initiator, a violet diode 405 nm laser (LuxX cw, 60 mW, Omicron) was 
used to trigger the cross-linking reaction. At first, an optical fiber (Thorlabs SM 980-5.8-125) was cleaved at one of 
its extremities and was positioned vertically in a moving stage, while the laser was aligned to be injected in its dis-
tal end to excite the fundamental mode. The cleaved optical fiber extremity was dipped into a solution containing 
0.2% in weight of Irgacure 819 (relatively to the monomer). After being removed from this solution, the polymer 
drop formed in the fiber extremity was cured by a laser power of at least 5 μW at 405 nm, during 60 seconds. 
Then, the remaining liquid was washed out from the polymer tip using ethanol. During polymer solidification, 
the increase on the refractive index of the growing structure generates a self-guiding effect. The visual aspect of 
the spherical-lensed tip obtained through this process is provided in Fig. 1(A).

Optical trapping and back-scattered signal acquisition setup.  The experimental setup used for 
manipulating particles/cells and acquiring the back-scattered signal consisted of an inverted microscope (Zeiss 
Axiovert 200M, Carl Zeiss®) connected to a computer with the control software Micro-Manager 1.3 (http://www.
micro-manager.org) installed and equipped with a digital camera (CoolSnap HQ, Roper Scientific); a motorized 
micromanipulator (InjectMan®, Eppendorf®) with three degrees of freedom (x, y, z and angular); a photodetec-
tor (PDA 36A-EC, Thorlabs); a 980 nm laser (500 mW, Lumix, ref. LU0980M500) and a data acquisition board 
(DAQ, from National Instruments) - please see the scheme of Fig. 1(B). An optical fiber coupler (configuration 
type 1 × 2, 50/50@980 nm) was used to connect the 980 nm laser and the photodetector for back-scattered signal 
acquisition. The fabricated optical fiber tip was then spliced to the output of the optical fiber coupler and inserted 
into a metallic capillary that was positioned onto the motorized manipulator and tilted at 50°, because trapping 
effects are only possible at inclination angles >30°4. This bi-directional configuration allowed the light to be 
guided through the fiber and, at the same time, the the laser light back-scattered signal was collected by the photo-
detector. The latter was connected to one of the analog-to-digital output ports of the DAQ for signal transmission 
and recording at a laptop using the Data Acquisition Toolbox from MATLAB 2015a®. The trapping laser light of 
980 nm was modulated by a sinusoidal signal (fundamental frequency of 1 KHz) digitally generated at a sampling 
rate of 5 KHz using a custom-build MATLAB script and externally injected in the laser driver through one of 
the digital-to-analog ports of the data acquisition board. This modulation reduced the interference of the 50 Hz 
local electrical grid component and other noisy components of the signal. The laser input signal modulation has 
already been shown to be an important procedure in this type of experiment5,15,46,47. The output laser diode power 
was set to ≈120 mW at the output of the 50/50@980 fiber coupler single entry during the experiment, to ensure 
a stable targets trapping/immobilization. This value was determined in accordance with the values used in the 
literature for optical delivery, collection and manipulation effects through optical fibers considering the selected 
wavelength value range48, and to cause as little damage as possible to the cells.

Experimental trapping force calculation.  The trapping forces exerted by the proposed lenses on each 
target type were calculated through the Drag Force method, which is based on a revised form of the Stokes equa-
tion and considers that the trapped particle is close to a boundary (in this case, to the bottom of the Ibidi® 
dish)4,49. According to the Drag Force method, the total trapping force exerted on the target results from the sum 
of the inertial and drag forces49: 
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 where m is the mass of the manipulated particle, s(t) represents the target trajectory during manipulation, ξ a 
correction factor for the proximity of the particle to the trapping chamber (ξ = 3.08)4, η the viscosity of the media 
(in this particular case, PBS, η = 1 × 10−3Pa50) and r represents the radius of the particle. However, the Reynolds 
number associated with this particular scenario is very low, and the inertial force can be considered negligible49. 
Thus, the optical trapping force can be calculated by determining the drag force49, acting on the particle: 
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 due to optical trapping, the following assay was performed for each 

type of particle (two cancer cells from each type and one PS particle), while the target trajectory was recorded 
using the digital camera at a frame rate of 4 Hz. After each particle was stably trapped in front of the lensed tip, as 
depicted in Supplementary Fig. S2, the laser was turned off and the fiber tip was moved a few micrometers away 
from the target towards the −x direction (towards the left). Then, the laser was turned on. The particle was con-
sequently attracted to the equilibrium position (trapping position), while its trajectory was recorded. This proce-
dure was repeated by displacing the fiber tip towards the +x direction. Each displacement was recorded for three 
times for each direction to obtain a statistical profile of the trapping forces. After video acquisition, the particles’ 
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trajectories were tracked using the CellTracker51 MATLAB®-compatible software. Then, the particles’ position for 
each time point was fitted to the Langevin approximation52 and the particles velocity during the restoring move-
ment was calculated for each type of target, transversal movement direction (−x, +x) and repetition. The trap-
ping forces profile was then traced for each direction, based on the equation defined in 3, and then compared 
between different cell/particle type.

Back-scattered signal acquisition and processing.  After the optical setup was correctly mounted 
and turned on, a simple assay was carried out for each one of the solutions described in Supplementary Table 
S3, to solve the following four classes problem using back-scattered signal derived features: “Class 1: No parti-
cle trapped”; “Class 2: Mock cancer cell trapped”; “Class 3: HST6 cancer cell trapped” and “Class 4: Polystyrene 
microparticle trapped”. A drop of each solution was placed over a 35 mm Ibidi® micro rounded dish mounted 
in the inverted microscope. Then, the polymeric lensed optical fiber tip was immersed into this sample, with the 
help of the microscope imaging system. After the polymeric lens had been carefully positioned in front of an 
isolated cell/particle, the laser was turned on and, once the target was immobilized due to optical trapping (as 
depicted in Supplementary Fig. S2, the back-scattered signal was acquired. Similarly to the procedure adopted 
in a previous experiment also conducted by our lab15, 80 seconds (80 s) of back-scattered signal were acquired 
per cell/particle through a photodetector (PDA 36A-EC, Thorlabs) connected to an analog-to-digital converter 
of the data acquisition board (National Instruments DAQ) at a sampling rate of 5 kHz. Signal acquisitions for the 
case of no particle in front of the tip were also conducted, to represent the class "No particle trapped”. The inclu-
sion of this class in the proposed Supervised Learning problem could be relevant to find the best set of training 
parameters to continuously verify if a given particle was trapped or not. These acquisitions were performed by 
moving the polymeric tip into an empty area, where, although the laser remained turned on, no particle was 
trapped. Several “No particle trapped” acquisitions were performed to increase the samples’ variability and to 
then evaluate the robustness of the proposed method by considering different acquisition spots into the same 
solution. Then, the acquired signals (considering all the classes) were processed according to the scheme of Fig. 5. 
A MATLAB 2015a® custom-built script was used for both signal acquisition and processing. Signal Processing 
and Statistics toolboxes from MATLAB® were used for signal processing and in subsequent analysis steps. A total 
of 4,240 seconds of back-scattered signal was acquired, considering all of the classes.

After each acquisition, the original signal was passed through some processing steps. After signal processing, 
the obtained dataset was composed of back-scattered signal portions of 2 seconds (representing each sample 
of the dataset). After removing the noisy 2 seconds portions in the artifact rejection stage, a set of 54 features 
characterizing each 2 seconds signal portion was created - see Supplementary Table S4 for a description of the 
final dataset obtained. Then, the Random Forests32, a very effective classifier in solving complex problems which 
involve non-linearly separable classes, was applied to identify the type of particle trapped. A scheme summarizing 
all the steps conducted during signal processing and classification is depicted in Supplementary Fig. S3.

Signal processing steps.  A custom-built MATLAB® 2015a script that requires functions from both the Signal 
Processing® and Statistics® toolboxes was created for signal processing. After acquisition, the signal was at first 
filtered using a second-order 500 Hz Butterworth high-pass filter, because this type of filter was already success-
fully used to statistically differentiate synthetic and simple biological cells in previous studies conducted by our 
laboratory15,46. Considering that laser trapping signal was modulated with an external 1 kHz sinusoidal signal, 
this type of filter would remove noisy low-frequency components of the original signal, such as the 50 Hz elec-
trical grid component. Then, each whole 80-seconds acquisition (400 k samples) was split into short-term signal 
epochs of 2 seconds (10 k samples). Independently of the type of features used in this kind of problems, it is 
important that their raw signals have the highest possible signal-to-noise ratio (SNR)31. Thus, the z-score of each 
2-seconds signal portion was computed to exclude noisy short-term portions whose value exceeded the threshold 
of ∣z − score∣ > 531. Sketches of processed signal portions for each type of cell/particle trapped are provided in 
Fig. 5. After signal processing, 54 features based on time and frequency domain of each 2-seconds back-scattered 
short-term signal portion were computed.

Artificial intelligent-based cells/particles classification method.  According to the proposed method, 
cell classification is possible by training an Artificial Intelligence Supervised Machine Learning algorithm, which 
will be able to automatically classify novel instances (novel particles). However, at first, a set of 54 features charac-
terizing each 2-seconds short-term back-scattered signal must be calculated to provide to the learning algorithm 
with the information that it needs to distinguish between differently glycosylated tumoral cells.

Features.  The capacity of 43 of the 54 features set used in this classification problem to distinguish different 
particles was already assessed in a previous study15. These features were created considering several attributes 
already used in similar differentiation problems, such as macro-targets type identification through scattering 
signal acquired using photodetectors or other kind of “event counter” equipment, including underwater fish spe-
cies recognition or object identification in the surrounding environment (in air, water, etc.)53. To the best of our 
knowledge, this type of feature has never been used in micron-sized targets such as cells. This feature set can be 
divided into two main types: time- and frequency-domain15. The first type can be also subdivided in time-domain 
statistics attributes and time-domain histogram-derived parameters. The frequency-domain features can be also 
grouped into Discrete Cosine Transform (DCT)-derived type and Wavelet-derived features15. All of the 54 fea-
tures used in the proposed method can be found in Table 1.

The following time-domain statistics features were extracted from each 2-seconds signal portion: Standard 
Deviation (SD), Root Mean Square (RMS), Skewness (Skew), Kurtosis (Kurt), Interquartile Range (IQR), Entropy 
(E). Considering that the Nakagami distribution have been widely used to describe the back-scattered echo in 
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statistical terms54, mainly within the biomedical area, the Probability Density Function (PDF)-derived μNakagami 
and ωNakagami parameters that better fit the approximation of each 2-seconds signal portion distribution to the 
Nakagami distribution were also considered15.

Considering the ability to capture minimal periodicities of the analyzed signal, the associated coefficients 
are uncorrelated and due to the fact that, in contrast to the Fast Fourier Transform (FFT), it does not inject 
high-frequency artifacts in the transformed data, the Discrete Cosine Transform (DCT)55 was applied to the orig-
inal short-term signal portions to extract frequency-derived information. Considering that the first n coefficients 
of the DCT of the scattering echo signal are defined by the following equation53: 
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 in which ε is the signal envelope estimated using the Hilbert transform; by sorting the DCT coefficients from the 
highest to the lowest value of magnitude and obtaining the following vector: 
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 in which EDCT[l1] represents the highest DCT coefficient in magnitude, it is possible to determine the percentage 
of the total amount of the signal energy that each set of coefficients represents (organized from the highest to 
the lowest one). Each percentage value regarding each coefficients set (from the first to the nth coefficient) can be 
obtained by dividing the norm of the vector formed by the first till the nth coefficient by the norm of the vector 
composed by all the n coefficients. Thus, the following DCT-derived features were used to characterize each 2 
s signal portion: the number of coefficients needed to represent 98% of the total energy of the original signal 
(NDCT), the first 20 DCT coefficients extracted from the vector defined in 5, the Area Under the Curve (AUC) 
of the DCT spectrum (from 0 to 2.5 kHz) (AUCDCT), the maximum amplitude of the DCT spectrum (PeakDCT) 
and the signal power spectrum obtained through the DCT considering all the values within the frequency range 
analyzed (PDCT) - please see Table 1.

The remaining 12 features were extracted after 2-seconds signal portion decomposition using wavelets56 (see 
Table 1). Two mother wavelets - Haar and Daubechies (Db10) - were selected to characterize each back-scattered 
signal portion. These two types were chosen due to their simplicity and considering the fact that they were already 
successfully used to decompose back-scattered signals in underwater scenarios for macro-objects recognition53. 
Six features for each type of mother Wavelet based on the relative power of the Wavelet packet-derived recon-
structed signal (one to six levels) were therefore extracted from each short-term 2-seconds signal15.

Cancer cells/particles automatic classification using AI.  The AI classification algorithm chosen for this problem 
was the Random Forests32. The concept behind Random Forests consists in growing an ensemble of Decision 
Trees and then letting them vote for the most popular class32. They have been successfully applied to a myriad of 
Biomedical problems, because they are very effective in distinction problems involving non-linearly separable 
classes and more robust to overfitting effects in comparison with equivalent classifiers in terms of performance32. 
However, to attain the best performance, there are three important parameters that must be optimized before 
applying Random Forests: its number of decision trees (the corresponding number of generated trees will there-
fore vote for the most popular class); the number of predictors to sample, which represents the number of features 
to select at random for each decision split; and the minimum leaf size (minimum number of samples per tree 
leaf)32. Usually, the most suitable number of predictors to sample corresponds to the square root of the number of 
features used in classification32. However, the most adequate combination of values for these parameters should 
be tuned into the classifier training stage32. The parameter set that was tuned and corresponding range values for 
optimizing the classifier can be found in Supplementary Table S5.

To avoid overfitting, the classifier must be tested using new samples, which were never involved in the clas-
sifier training phase. Additionally, the samples used in the test must belong to a subject or entity whose sam-
ples were never presented to the classifier during the training33. Usually, the Leave-One-Out procedure33 is 
used to ensure that the data used for evaluating the performance of a classifier belong to a subject/entity that 
had never been involved in the training. According to this validation method, if a dataset is composed by data 
from n subjects/entities, then the test set must be divided accordingly in n testing rounds. Then, in each round, 
the data from a subject/entity is used to test and the data from the remaining n − 1 subjects/entities used for 
classifier training. Subsequently, in the following round, the data subset from another subject/entity that was 
selected in the previous round for classifier training is used separately to test the classifier. Then, the classifier 
performance is determined based on the mean values obtained after the n testing rounds. We adopted a similar 
scheme to validate our method, where each cell/particle was considered an entity/subject31,33. Thus, we conducted 
n = 13 × 15 × 15 × 10 = 29, 250 evaluation runs. Each test set was composed of the attributes set corresponding 
to four particles, each belonging to one of the four classes considered, while the remaining 53 − 4 = 49 particles 
were assigned to the training set, for each one of the 29,250 evaluation runs. By considering all of the possible 
combinations of particles between training and test sets, all of the considered particles were used in the training 
as in the test set ensuring, at the same time, that the data used in the test set were never involved in the training 
phase for each nth evaluation run31,33. Thus, the robustness of the method could be evaluated, while avoiding the 
kind of situations where a classifier is very well rated or the records in testing data are very hard to classify because 
one or more of the entities involved in its validation were exclusively included in the test or in the training phase. 
A scheme explaining both training and testing procedures can be found in Supplementary Fig. S4(A).
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The function TreeBagger from Statistics Toolbox from MATLAB® was used to generate the Random Forests 
for classification. The 54 features from Table 1 were used to characterize each 2 s signal sample. During the train-
ing phase, the most suitable combination of values between the three parameters “number of trees”, “number of 
predictors to sample” and “minimum leaf size” - please see Supplementary Table S5 - was determined, based on 
the higher average F-Measure value attained using the five-folds Cross-Validation method, for each n evaluation 
run. However, due to intrinsic amplitude differences between features both at the intra- and inter-particles/cells 
level, a normalization procedure was applied to each sample of the dataset, for each evaluation run. Training sam-
ples mean value across each feature was subtracted to each data sample from that feature, and then divided by the 
corresponding feature standard deviation31. Test input samples were normalized also according to this procedure, 
using the previously obtained training mean and standard deviation for each feature. This allowed us to map the 
novel test features vectors in the training features space - see stage (7) from scheme of Supplementary Fig. S3. The 
performance of the proposed method was evaluated considering the mean test Accuracy and F-Measure across 
the 29,250 evaluation runs.

Determining the speed Rate (SR) of the iLoF method.  Apart from analyzing the algorithm perfor-
mance by taking into account a given number of signal portions in the test set (corresponding to the whole 
acquisition period for each particle), the minimum number of signal portions needed for a correct identification 
by the algorithm was also evaluated to determine the corresponding SR. This required the average number of 
signal portions that were used to be determined until the algorithm could correctly identify each particle with 
500 repetitions. This value is commonly used in the literature57. This procedure was therefore repeated for each 
one of the 29,250 evaluation runs, where each run represented a different combination between particles chosen 
for training and testing the classifier. After each evaluation run (i.e., by using one of the n combinations), the 
classification algorithm output label was evaluated for each selected particle/cell, while taking into account only 
one signal portion chosen randomly from the corresponding test set. If the output label did not correspond to the 
ground truth, then another signal portion sample that had not been chosen yet was randomly selected from the 
set of back-scattered signal portions, until the classification algorithm correctly identified the current particle, or 
until all the signal portions in the test set had been used. This procedure was performed 500 times. A description 
scheme of this algorithm performance evaluation procedure is provided in Supplementary Fig. S7.

The SR of the method was obtained by taking into account the average value of the number of signal portions 
needed to identify each particle across 500 repetitions and along the 29,250 evaluation runs. SR was obtained for 
each evaluation run by training the algorithm using the parameters for which the most accurate Cross-Validation 
was previously determined.

Considerations on reducing the data processing time.  Because we intended to evaluate the robust-
ness of the method by training and testing it for all the possible combinations between the evaluated particles 
(n = 29, 250 different combinations), this led to a highly time-consuming computational problem. For each 
nth evaluation run, the five-fold Cross-Validation method had to be conducted, in a first stage, for each one of 
the combinations between the three training parameters (“number of trees”, “number of predictors to sam-
ple” and “minimum leaf size”), totaling 180 different parameter combinations, to determine the most suitable 
cross-validated training parameters set. Thus, considering that we chose a five-fold scheme to tune the train-
ing parameters, a Random Forests classifier had to be trained and tested during the Cross-Validation stage for 
5 × 180 = 900 times. Additionally, and taking into account that we had to conduct Cross-Validation for each n 
different combinations between particles, the algorithm was trained and tested within the Cross-Validation stage 
for 29, 250 × 900 = 26, 325, 000 times, in total.

After determining the best cross-validated training parameters, we had to train the algorithm using these 
settings for each of 29,250 different combinations between particles. Then, each trained classifier for each one 
of the 29,250 different combinations was tested to obtain the corresponding accuracy, F-Measure and SR per-
formance values. In summary, starting with Cross-Validation, passing through training and ending with testing 
phase, the algorithm had to be run for 29, 250 × 900 × 29, 250 = 770, 010, 000, 000 times. Considering the asso-
ciated time consuming computation, we use a multicore-based parallel computing approach to solve the problem. 
Considering each evaluation run from the 29,250 that had to be performed, we distributed the five iterations 
relative to the five-fold Cross-Validation problem for the eight cores of our machine (an iMac 2017 from Apple 
Inc. with 4.2 GHz Intel Core i7 processor, a 64 GB 2400 MHz DDR4 memory and eight cores), by taking part of 
the functionalities of the Parallel Computing Toolbox from MATLAB® (Supplementary Fig. S9).

Statistical analysis.  Statistical tests were performed to confirm whether the cell diameters differed among 
the differently glycosylated cancer cell models. We also applied statistics to investigate whether the transversal 
gradient force magnitude exerted by the fabricated microlens-like structure on each cell was significantly dif-
ferent. At first, we applied the Shapiro-Wilk Normality test58 to verify if each variable involved in the analysis 
followed a normal distribution. Both the number of samples and significance of each test applied (P < 0.05 for 
significant differences) are provided in the figure legend or the results section of the main text. Because all of the 
analyzed variables were normally distributed (P > 0.05; Shapiro-Wilk Normality Test, two-tailed), parametric 
statistical tests were considered. The Student’s T-test for independent samples (two tailed) was applied for com-
paring the two measures (cell diameter and trapping force magnitude). A correction for multiple comparisons 
was introduced when trapping force magnitude along cell position relatively to the trapping point was compared 
between cells. The Bonferroni criteria59 was considered to correct the obtained p-value for multiple comparisons. 
Statistical tests were performed using the Statistics Toolbox for MATLAB®.
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