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Systematic comparison between 
methods for the detection of 
influential spreaders in complex 
networks
Şirag Erkol1, Claudio Castellano2 & Filippo Radicchi1*

Influence maximization is the problem of finding the set of nodes of a network that maximizes the 
size of the outbreak of a spreading process occurring on the network. Solutions to this problem are 
important for strategic decisions in marketing and political campaigns. The typical setting consists 
in the identification of small sets of initial spreaders in very large networks. This setting makes the 
optimization problem computationally infeasible for standard greedy optimization algorithms that 
account simultaneously for information about network topology and spreading dynamics, leaving space 
only to heuristic methods based on the drastic approximation of relying on the geometry of the network 
alone. The literature on the subject is plenty of purely topological methods for the identification of 
influential spreaders in networks. However, it is unclear how far these methods are from being optimal. 
Here, we perform a systematic test of the performance of a multitude of heuristic methods for the 
identification of influential spreaders. We quantify the performance of the various methods on a corpus 
of 100 real-world networks; the corpus consists of networks small enough for the application of greedy 
optimization so that results from this algorithm are used as the baseline needed for the analysis of 
the performance of the other methods on the same corpus of networks. We find that relatively simple 
network metrics, such as adaptive degree or closeness centralities, are able to achieve performances 
very close to the baseline value, thus providing good support for the use of these metrics in large-scale 
problem settings. Also, we show that a further 2–5% improvement towards the baseline performance is 
achievable by hybrid algorithms that combine two or more topological metrics together. This final result 
is validated on a small collection of large graphs where greedy optimization is not applicable.

Every day, we witness the dissemination of new pieces of information in social networks1–5. Few of them become 
widespread; the vast majority, however, diffuse only over a vanishing portion of the network. Are there a priori 
identifiable features that allow for the early prediction of the outcome of a spreading process in a network? Many 
studies have pointed out that the “quality” or “attractiveness” of the information might have an effect on how far 
it may spread1,6. In mathematical models of information spreading, the notion of quality is typically quantified in 
terms of the probability of spreading events along individual edges in the social network. However, the spreading 
probability of individual edges is not the only key factor that determines the fate of a piece of information spread-
ing in a network. The nodes that act as seeds for the spreading process may play a role that is more important than 
the actual probability to spread information along social contacts. Intuitively, if the diffusion process is seeded by 
central nodes, then the piece of information may reach large popularity; on the other hand, a piece of information 
originated from peripheral nodes is much less likely to become widespread.

The problem of selecting the best set of seed nodes for a spreading process in a network has been traditionally 
named as the problem of influence maximization. The problem is generally considered under the strong assump-
tion of having full and exact knowledge of both the network topology and the spreading dynamics. We will adopt 
this line here too, although we remark that such an assumption is at least optimistic and may potentially lead, if 
not satisfied, to significant mistakes in the identification of the true influential spreaders7. The function that is 
optimized in influence maximization is the average value of the outbreak size. The optimization problem is solved 
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for a given size of the seed set, generally much smaller than the network size. The problem was first formulated by 
Domingos and Richardson8, and later generalized by Kempe et al.9. In particular, Kempe et al. showed that influ-
ence maximization is a NP-hard problem, exactly solvable for very small networks only. Also, Kempe et al. 
demonstrated that for specific models of opinion spreading, such as the independent cascade and the linear 
threshold models, the average outbreak size is a submodular function, and thus greedy optimization algorithms 
allow to find, in polynomial time, approximate solutions that are less than a factor − e(1 1/ ) away from the true 
optimum10. The greedy algorithm actively uses information about the topology of the network and the dynamical 
rules of the spreading model. After the seminal work by Kempe et al., other similar greedy techniques for approx-
imating solutions to the influence maximization problem have been proposed11–14. As all these algorithms require 
knowledge of the model at the basis of the spreading process, often obtained through numerical simulations, they 
all suffer from the limitation of being applicable to small-medium sized networks only. We remark that some 
attempts of greedy-like algorithms applicable to large networks have been made15,16. Those attempts, however, rely 
on approximate estimations of the outcome of numerical simulations, thus leading to solutions to the influence 
maximization problem that are generally inferior to the solutions obtained with straight greedy optimization.

On large networks, like those of interest in practical applications, solutions to the influence maximization 
problem are generally obtained via heuristic methods. The literature is full of examples17–23. Heuristic meth-
ods use complete information about the network structure, but they completely neglect information about the 
dynamical model of spreading. They are generally much faster than greedy algorithms, but clearly less effective. 
Their main limitations are two-fold. On the one hand, heuristic methods are characterized by the inability to 
account for the combined effect that seeds may have in a complex spreading process, as the set of influential nodes 
is built combining the best individual spreaders and their influence sets may be strongly overlapping. On the 
other hand, being based on purely topological properties, heuristic methods lack sensitivity to the features of the 
spreading dynamics and the variation of the associated parameters. Given the wealth of heuristic methods that 
have been proposed to identify influential nodes in networks, how different these methods are in terms of perfor-
mance? Even more important, how far is the performance of the best heuristic methods from optimality, at least 
the achievable optimality provided by greedy algorithms? We realized that no clear answer to these fundamental 
questions can be found in current literature, and we decided to fill this gap of knowledge here.

The present paper reports on a systematic test of 16 heuristic methods that have been proposed to approximate 
solutions to the influence maximization problem. Our analysis is based on a corpus of 100 real-world networks, 
and performance of the various heuristic methods is quantified for SIR-like spreading processes. Despite the vari-
ous methods rely on rather different centrality metrics, we find that many of them are able to achieve comparable 
performances. When used to select the top 5% initial seeds of spreading in real-networks, the best performing 
methods show levels of performance that are within 90% from those achievable by greedy optimization, so that 
the room for potential improvement appears small. We show that one way to achieve better performances is 
relying on hybrid methods that combine two or more centrality metrics together. We validate this final result on 
a small set of large-scale networks.

Methods
Networks.  In this study, we focus most of our attention on a corpus of 100, undirected and unweighted, 
real-world networks. Sizes of these networks range from 100 to 30,000 nodes, and their density varies between 
0.0001 and 0.25. The corpus is composed of networks of small to medium size on purpose, as these allow for the 
application of greedy optimization in the solution of the influence maximization problem. We consider networks 
from different domains. Specifically, our corpus of networks include 63 social, 16 technological, 10 information, 
8 biological, and 3 transportation networks. Details about the analyzed networks can be found in the SM1. In the 
final part of the paper, we validate some of our findings on 9 large real-world social and information networks 
with sizes ranging from 50,000 to slightly more than 1,000,000. Details are provided in Table 3.

Spreading dynamics.  We concentrate our attention on the Independent Cascade Model (ICM)9. This is a 
very popular model in studies focusing on the influence maximization problem. The ICM is a simplified version 
of the Susceptible-Infected-Recovered (SIR) model24. Nodes can be in either one of the three states S, I, or R. 
At the beginning of the dynamics, all nodes start in the S state except for those who are selected to be the initial 
spreaders, which are assigned to the I state. At each step of the model, all nodes in state I try to infect their neigh-
bors in state S with probability p; then, they recover immediately, by changing their states from I to R. Nodes in 
state R never change their state and no longer participate to the spreading dynamics. The dynamics continue 
until there are no nodes left in state I. The size of the outbreak is calculated by counting the number of nodes that 
ended up in state R at the end of the spreading dynamics. As the spreading from one node to another happens 
with probability p, the model has a stochastic nature. To properly account for the stochastic nature of the model, 
all our results are obtained as average values over 50 independent numerical simulations for every given initial 
condition.

Methods for the selection of influential spreaders.  In total, we consider 18 methods for the identifi-
cation of influential spreaders in networks (see Table 1). Each method outputs a list of nodes in a specific order 
from the most influential node to the least influential node. We use this rank to construct, in a sequential manner, 
the set of the top spreaders according to a particular method. The various methods take as input different type/
amount of information, and make use of rather different types of rankings. As a consequence, the computational 
complexity of the various methods may be significantly different. For illustrative purposes, we decided to group 
the 18 methods for the selection of influential spreaders into four main groups.

The group of baseline methods is formed by the methods greedy and random. The greedy algorithm is the 
best performing method available on the market, thus providing an upper bound for the performance of all other 
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methods. The greedy algorithm uses all available information about network topology and spreading dynamics. 
For instance, the algorithm provides different solutions depending on the value of the spreading probability p. For 
the greedy method applied to the ICM, we rely on the Chen et al.’s12 algorithm, which makes use of the mapping 
between ICM and bond percolation to obtain faster results regarding the simulations of the spreading process. 
The random method instead represents a lower bound for the performances of other methods. The method just 
outputs nodes of the network in random order, de facto neglecting any prior information regarding system topol-
ogy and dynamics.

The remaining 16 of the 18 methods are purely topological methods in the sense that they rely on heuristics 
that are calculated using full knowledge of the network structure, but no information at all about spreading 
dynamics. According to these methods the influence of a node is proportional to a network centrality metric. 
Depending on the nature of the centrality metric used, we classify the topological methods into three groups.

First, methods that use local topological information, in the sense that values of the centrality metric asso-
ciated to every node are computed using information about their nearest neighbors only. For example, degree 
centrality, which consists of counting the number of neighbors of a node, belongs to this category. A variant of 
the degree method, called adaptive degree method, which was proposed by Chen et al.12 is classified as a local 
method too.

Second, methods that are based on global centrality metrics whose computation, at the level of the individual 
nodes, requires complete knowledge about the whole network structure. This group consists of methods relying 
on betweenness25, closeness26, eigenvector27, Katz28, non-backtracking29,30, and pagerank31 centralities. As a part 
of this group we also considered the method based on an adaptive variant of the non-backtracking centrality32.

Finally, we consider several methods that rely on intermediate topological information (e.g., nearest neigh-
bors, next-nearest neighbors) for the computation of node centrality metrics. This group consists of the methods 
that rely on the metrics k-shell33, localrank34, and h-index35. We classify in the intermediate group also methods 
that are based on collective influence36, coreHD37, and explosive immunization score38. These are methods intro-
duced with the goal of approximating solutions to the optimal percolation problem36, an optimization problem 
that has similarities with, but is different from the one considered in influence maximization39. We stress that we 
consider two variations of the CI method. Specifically, we consider CI1 and CI2, where the numerical value indi-
cates the value of the parameter that defines the centrality metric36.

Evaluating the performance of methods for the selection of influential spreaders.  Potentially all 
selection methods described above are subjected to statistical fluctuations in the sense that they may generate a 
different ranking for the nodes at each run. This is due to the presence of ties in the ranking of nodes, and the fact 
that we break ties by randomly selecting nodes with the same rank position. To account for statistical fluctuations, 
we apply every method R = 10 independent times to generate R rankings for the nodes. We consider each of these 

Group Method Abbrev. Ref. Complexity

Baseline
Greedy G 12 cubic

Random R — constant

Local
Degree D — linear

Adaptive Degree AD 12 linear

Global

Betweenness B 25 quadratic

Closeness C 26 quadratic

Eigenvector E 27 linear

Katz K 28 linear

PageRank PR 31 linear

Non-backtracking NB 29 linear

Adaptive NB ANB 32 quadratic

Intermediate

k-shell KS 33 linear

LocalRank LR 34 linear

h-index H 35 linear

CoreHD CD 37 linear

Collective Influence, 
= 1 CI1 36 linear

Collective Influence, 
= 2 CI2 36 linear

Expl. Immunization EI 38 linear

Table 1.  Methods for the selection of influential spreaders. We list basic details of all the methods for the 
detection of influential spreaders in complex networks that we consider in this study. Each row of the table 
refers to a specific method. From left to right, we report the full name of the method, the abbreviation of the 
method name, the reference of the paper where the method was introduced, and the computational complexity 
of the method. Computational complexities reported in the table are obtained under the realistic assumption 
that methods are applied to sparse networks where the number of edges scales linearly with the network size. 
Methods are further grouped into different categories, i.e., baseline, local, global, and intermediate, depending 
on their properties.
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rankings to sequentially construct sets of top spreaders. Specifically, we indicate as m
t r( , ) the set of top t N spread-

ers identified by method m in instance r of the method and for a given network with N nodes. For every set m
t r( , ) , 

we run 50 different times the ICM model, and measure the average value of the outbreak size O[ ]m
t r( , ) . We then 

repeat the operation for every instance r of the method, and take the average over the R potentially different sets, 
namely

∑= .
=

V
R

O1 [ ]
(1)m

t

r

R

m
t r( )

1

( , )

Figure 1 displays how the relative size of the outbreak V N/m
t( )  grows as function of the relative seed set size t for 

some of the methods for the identification of top spreaders considered in this paper. Given the amount of 

Figure 1.  Relative size of the outbreak as a function of the relative size of the seed set for the email 
communication network of ref.43. To obtain relative values, we divide outbreak size and seed set size by the total 
number of nodes in the network. Relative measures allow for an immediate comparison across networks with 
different sizes. We compare the performance of different methods for the selection of influential nodes. 
Outbreak size is calculated for ICM dynamics at critical threshold = .p 0 056c . To avoid overcrowding, we 
display results only for a subset of the methods considered in the paper.

Figure 2.  Cumulative distribution of the relative performance gm
T( ) (for = .T 0 05) obtained by using a method 

for the identification of influential spreaders different from the greedy algorithm. The metric of relative 
performance is defined in Eq. 3. The distribution is obtained considering all networks in our dataset. For every 
network, the outbreak size is calculated for ICM dynamics at critical threshold pc. See details in the SM1. To 
avoid overcrowding, we display results only for the same subset of the methods as already considered in Fig. 1.
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simulations performed, the standard error associated with the average value of the outbreak size of Eq. (1) is 
always very small. We therefore neglect it in all the considerations and analyses below. Figure 1 clearly shows that 
the greedy and random algorithms are good baselines for the performances of the other methods. For instance, 
the greedy algorithm outperforms all other methods. This result is confirmed across the entire corpus of networks 
we analyzed in this paper (see SM1 and SM2). In a few networks, some heuristic methods are able to slightly out-
perform the greedy algorithm. This seems to happen only in the case of relatively small networks, composed of 
hundreds or less nodes. Similarly, all methods perform better than the random selection method, although there 
are quite a few cases where randomly selecting seeds perform as well as selecting seeds according to some topo-
logical heuristic.

As a measure for the performance of method m in the identification of the top T N influential spreaders of a 
given network, we evaluate the area under the curves of Fig. 1 up to a pre-imposed T value

∫= .q
N

dt V1
(2)m

T T
m

t( )

0

( )

As the size of set of top spreaders are linearly dependent from the size of the network N, we can easily aggre-
gate results obtained over the entire corpus of real-world networks at our disposal. Specifically, results in the main 
paper are obtained for = .T 0 05. We report results for = .T 0 1 in the SM2. No significant differences between the 
two cases are apparent. As some of the methods considered in the paper are characterized by large computational 
complexity (see Table 1), we couldn’t consider > .T 0 1. We note, however, that studying the performance of meth-
ods for the identification of influential spreaders has a meaning only for small T values, given that in practical 
applications the seeding is generally performed on a vanishing portion of the system. Also, we test the validity of 
all results using Vm

T( ) as a main metric of performance, instead of its integral of Eq. (2). Results are reported in 
the SM2. No significant changes with respect to the results presented here in the main paper are apparent.

As the greedy algorithm provides an upper bound for the performance of the other methods, we use it as a 
term of comparison for all other methods in our systematic analysis. We consider two main metrics of perfor-
mance. The first measure is based on a comparison between the outbreak size obtainable by a method compared 
to the one obtained using the greedy identification method. Specifically, given a network, we first compute

=g
q

q
,

(3)
m

T m
T

G
T

( )
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( )

where we used the abbreviation qG
T( ) to indicate the expression of Eq. (2) for the greedy algorithm, i.e., =m G. 

Then, we evaluate the performance relative to greedy for all networks in our dataset, and summarize the results in 
Fig. 2 where we display the cumulative distribution of this quantity for some of the methods. To obtain a single 
number for the performance of the method over the entire corpus of networks, we define the overall performance 
〈 〉gm

T( )  given by the average value of the metric defined in Eq. (3) over all real networks in the dataset. We remark 
that statistical errors associated to the metrics of Eqs (1), (2) and (3) are negligible given the large number of 
independent numerical simulations used to determine their average values. A similar statement, however, doesn’t 
hold for the overall performance 〈 〉gm

T( )  due to the relatively small size of the corpus of networks analyzed. In the 

Figure 3.  Cumulative distribution of the precision metric rm
T( ) defined in Eq. (4) for = .T 0 05. The distribution 

is obtained considering all networks in our dataset. Results for the greedy algorithm used in the comparison are 
those obtained for ICM dynamics at critical threshold pc. See details in the SM1. To avoid overcrowding, we 
display results only for the same subset of the methods as already considered in Fig. 1.
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following, we associate the standard error of the mean to any estimate of the average value 〈 〉gm
T( )  obtained on 

samples of real-world networks.
The second metric of performance instead neglects the size of the outbreak, and focuses only on the identity 

of the nodes identified by the method m. For the actual solution of the problem of influence maximization, this 
second metric is clearly much less important than the one previously considered. However, the metric can tell us 
something more about the topological properties of the set of top spreaders in networks. Given a network, we 
evaluate the frequency fm

T i( , ) of every node i to be in the set of top T N spreaders according to method m over 
=R 10 runs of the algorithm. We then compute the precision of the method relative to the greedy algorithm as

∑= .
=

r
T N

f f1
(4)m

T

i

N

m
T i

G
T i( )

1

( , ) ( , )

We note that Eq. (4) can be used to measure the self-consistency of the greedy method by setting =m G. The 
cumulative distribution of the precision metric defined in Eq. (4) across the entire network dataset is displayed in 
Fig. 3. The plot shows high level of precision between some methods and the greedy algorithm. The random selec-
tion method generates a distribution well peaked around the value T. We characterize the generic method m with 
a metric of overall precision 〈 〉rm

T( )  as the average value of the precision defined in Eq. (4) over the entire corpus of 
real networks. Statistical errors associated to measure of 〈 〉rm

T( )  are quantified in terms of standard error of the 
mean. The value of 〈 〉rm

T( )  tells us how much the method m is similar to the baseline provided by the greedy algo-
rithm in the identification of the top spreaders across the entire corpus of networks at our disposal.

Results
Individual methods.  Armed with the metrics defined in the section above, we test the various methods for 
the identification of influential spreaders for ICM dynamics over the entire corpus of real networks at our dis-
posal. We remark that both the identity and performance of the true set of influential spreaders may be dependent 
on the actual value of the spreading probability p in the ICM model, so that the performance of the various seed 
selection methods needs to be evaluated at different values of the spreading probability p. For instance, for the 
extreme cases =p 0 and =p 1, predictions are trivial in the sense that all methods have exactly the same perfor-
mance in terms of outbreak size. The prediction of methods performance is instead non trivial when the uncer-
tainty of the spreading outcome is maximal. For this reason, we focus our attention on ICM dynamics around the 
critical threshold =p pc. To perform the analysis, we first evaluate the critical threshold values pc for every net-
work in the database. Specifically, we rely on mapping between bond percolation and the ICM, and we apply the 
Newman-Ziff algorithm to evaluate pc

40,41. pc values for the various networks are reported in the SM1. We then 
consider ICM dynamics for three distinct values of p: (i) subcritical regime at =p p /2c ; (ii) critical regime at 

=p pc; (iii) supercritical regime at =p p2 c.
Results of our analysis are summarized in Fig. 4. Every method is used to identify the set of top T N nodes in 

the networks, with = .T 0 05. In the figure, we represent results for each method m in the plane 〈 〉 〈 〉g r( , )m m . 
Numerical values of 〈 〉gm  and 〈 〉rm , as well as their associated statistical errors, are reported in SM2. Please note that 
we dropped the suffix T to simplify the notation. We remark that the performance of every method m is measured 

Figure 4.  Performance and precision of methods for the identification of influential spreaders in real networks. 
Results are based on the systematic analysis of 100 real-world networks. For each network, we first evaluate the 
critical value of the spreading probability pc for ICM dynamics. Then, we consider the analysis for three distinct 
phases of spreading: (a) =p p /2c , (b) =p pc, (c) =p p2 c. Each point in the various panels corresponds to one 
method. Every method is used to identify the top T N, with = .T 0 05, spreaders in the networks. For clarity of 
the figure, methods are identified by the same abbreviations as those defined in Table 1. Methods are 
characterized by the metrics of performance defined in the paper. Both these metrics relate the performance of a 
generic method m to the one of the greedy algorithm. Overall performance 〈 〉gm  is a metric of performance that 
relies on the size of the outbreak associated with the set of influential spreaders identified by the method 
compared to the typical outbreak obtained with the greedy algorithm. Overall precision 〈 〉rm  instead quantifies 
the overlap between the sets of spreaders identified by a method and those identified by the greedy algorithm. 
Error bars (not shown) quantifying the standard errors of the mean associated with the numerical estimates of 
〈 〉gm  and 〈 〉rm  are of the same size as of the symbols used in the visualization.

https://doi.org/10.1038/s41598-019-51209-6


7Scientific Reports |         (2019) 9:15095  | https://doi.org/10.1038/s41598-019-51209-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

in relation to the performance of the greedy method, i.e., =m G. By definition, we have 〈 〉 =g 1G ; we find instead 
that the self-consistency score is 〈 〉 <r 1G  meaning that optimal sets identified by the greedy algorithm have some 
degree of variability. Such a variability seems due to the existence of (quasi)degenerate solutions to the influence 
maximization problem, i.e., different seed sets corresponding to similar outbreak sizes. The presence of statistical 
fluctuations in the numerical estimates of the outbreak size may be an additional confounding factor that exacer-
bates the degeneracy of greedy solutions. An interesting finding is the absence of a strong dependence of 〈 〉rG  from 
the dynamical regimes of the ICM. The other important reference point in the plane is given by the random 
method ( =m R). By definition, we have that 〈 〉 = .r T 0 05R . 〈 〉gR  values instead strongly depend on the dynam-
ical regime.

In the subcritical regime (see Fig. 4a), the two metrics 〈 〉gm  and 〈 〉rm  are tightly related one to the other. 
Adaptive degree ( =m AD) outperforms all other methods in both metrics. Other methods that perform very 
well are those based on algorithms relying on the Degree ( =m D), Adaptive Non-Backtracking ( =m ANB) and 
PageRank ( =m PR) centralities, as well as those based on the CoreHD ( =m CD) and Collective Influence 
( =m CI) algorithms. Similar considerations apply to the critical regime (Fig. 4b). The most significant change 
with respect to the subcritical regime is a slight decrease of range of values for the performance metric of the 
algorithms. In the supercritical regime (Fig. 4c), there is no longer a proper distinction between the various meth-
ods in terms of performance.

A remarkable feature emerging from Fig. 4 is that the overall performance is rather high. For most of the 
methods values are above 0.9 for all values of p, and even random selection provides a performance always larger 
than 0.6. This observation somehow helps to properly weigh the importance of greedy algorithms for influence 
maximization: while their solutions are guaranteed to be not too far from the true optimum, their performance 
can be almost achieved by simple and much more easily implemented purely topological methods.

The similarity in the performance between the various methods can be deduced by a straight pair-wise com-
parison between the sets of top influential nodes identified by the various methods across the entire corpus of real 
networks at our disposal. The results of this analysis are summarized in Fig. 5. Top-performing methods provide 
sets of influential nodes very similar to each other; methods with low performance instead generally identify 
influential nodes that are rarely selected by any other method.

In the SM2, we repeat the same exercise by computing the performance scores restricted to different subsets of 
the whole corpus of networks. The subsets correspond to networks from the same domain (e.g., social, technolog-
ical, transportation); we do not find any significant change in the main outcome of the analysis.

We further consider artificial networks created with the Barabasi-Albert (BA) model42. Results are very similar 
to those obtained on real-world networks (see SM2). In summary, it seems that the main results of the paper are 
unchanged by the nature/type of the network substrate where spreading is occurring.

Hybrid methods.  In this section, we report on the performance of hybrid methods for the identification of top 
spreaders in the network obtained from linear combinations of the individual methods considered so far. Specifically, 
we first select a certain number of individual methods to form a hybrid method = … | |m m m{ , , , }1 2  . We asso-
ciate to every node i in a given network a score si

( ) that is a linear combination of the scores associated with individ-
ual methods, namely

Figure 5.  Pairwise comparison among methods for the identification of influential spreaders. For every pair of 
methods m1 and m2, we evaluated the overlap rm m

T
,

( )
1 2

 among the two sets of top T N influential spreaders found 
by the methods in the network using a precision metric similar to the one of Eq. (4), i.e., 

= ∑ =r f fm m
T

TN i
N

m
T i

m
T i

,
( ) 1

1
( , ) ( , )

1 2 1 2
. We then estimated the average value of the precision over the entire corpus of real 

networks at our disposal. In the figure, dark colors corresponds to high values of precision; low precision values 
are represented with light colors. Acronyms of the methods are defined in Table 1. Methods are listed in the 
table according to the same order as they appear in Table 1.
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In Eq. (5), sm
i( ) is the normalized score of node i in the network according to the topological metric used by 

method m. The normalization (L2-norm) has the purpose of making scores of comparable magnitude across meth-
ods. The best estimates of the linear coefficients cm are then obtained using information from the greedy algorithm. 
We use linear regression to find the best linear fit between s i( )

  and fG
T i( , ), i.e., the probability that node i is identified 

by the greedy algorithm in the set of top T N influential nodes in the network. Best estimates of the coefficients are 
obtained relying on a training set composed of 80% of networks randomly chosen out of the corpus of real networks 
at our disposal. We then test the hybrid method  on the remaining 20% of the corpus, where we measure overall 
performance and overall precision. We replicate the entire procedure 1,000 times to quantify uncertainty associated 
with both the best estimates of the linear coefficients as well as the measured values of the performance metrics.

Method Features Subcrit. Critical Supercrit.

AD

cAD 1.000 1.000 1.000

〈 〉gm
0.993 0.961 0.931

〈 〉rm 0.755 0.548 0.119

CD

cCD 1.000 1.000 1.000

〈 〉gm
0.983 0.963 0.929

〈 〉rm 0.730 0.525 0.100

B

cB 1.000 1.000 1.000

〈 〉gm
0.946 0.954 0.938

〈 〉rm 0.590 0.483 0.110

AD,B

cAD 0.718 0.590 0.023

cB −0.027 0.046 0.069

〈 〉gm
0.987 0.964 0.936

〈 〉rm 0.755 0.551 0.116

AD,PR,LR

cAD 1.189 1.044 0.115

cPR −0.266 0.145 0.772

cLR −0.336 −0.632 −0.771

〈 〉gm
0.991 0.980 0.971

〈 〉rm 0.806 0.616 0.300

PR,LR,CD

cPR 0.006 0.386 0.803

cLR −0.419 −0.702 −0.771

cCD 1.028 0.898 0.088

〈 〉gm
0.985 0.979 0.971

〈 〉rm 0.784 0.597 0.293

AD,B,LR

cAD 1.096 1.047 0.343

cB −0.010 0.067 0.083

cLR −0.466 −0.565 −0.395

〈 〉gm
0.993 0.976 0.952

〈 〉rm 0.810 0.625 0.220

PR,LR,EI

cPR 0.304 0.583 0.740

cLR 0.101 −0.251 −0.733

cEI 0.235 0.277 0.121

〈 〉gm
0.973 0.964 0.970

〈 〉rm 0.698 0.589 0.304

Table 2.  Hybrid methods for the identification of influential spreaders in networks. The table is organized in 
various blocks, each corresponding to a specific method. For every method m, either individual or hybrid, we 
report performance values for the three different dynamical regimes in terms of overall performance 〈 〉gm  and 
overall precision 〈 〉rm . The top three blocks correspond to the best individual methods in the three regimes 
according to overall performance metric. The remaining blocks are for hybrid methods. In each block, the first 
rows report values of the coefficient cm of the individual method m in the definition of the hybrid method. We 
report the averages for the coefficient values over 1,000 iterations of the learning algorithm. The bottom two 
rows in each block correspond instead to the values of the performance metrics. Errors associated with all these 
measures are always smaller than 0.001, and they are omitted from the table for clarity.
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We consider several hybrid methods consisting in the combination of two and three individual centrality 
metrics. In general, we combine together centrality methods that differ on the basis of their classification in local, 
global and intermediate methods (see Table 1). Results for some hybrid methods are reported in Table 2. Several 
remarks are in order. First, with respect to the case of individual methods, there is an increase in the measured 
values of the overall precision 〈 〉rm . This tells us that the coefficients learned from the training set can be meaning-
fully used on other networks to mimic greedy optimization in terms of topological features only. The overall 
performance 〈 〉gm  of hybrid methods increases too; improvements beat even by 2–5% the best individual meth-
ods. Second, when similar individual methods are combined together into an hybrid method, one of the two gets 
the biggest part of the weight compared to the other. For example, the hybrid method = AD B{ , }  learned from 
data is almost a pure AD method in both the subcritical and critical regimes. Third, the coefficients of the linear 
combination of Eq. (5) can also be negative. For example, for the hybrid method  = AD PR LR{ , , } in the critical 
regime, <c 0LR . Thanks to this fact, the method outperforms in both the critical and subcritical regimes all other 
methods considered in this paper. We stress that the finding <c 0LR  doesn’t mean that LR centrality is anticorre-
lated with node influence. <c 0LR , in fact, is observed only when LR is used in combination with other metrics. 
Indeed, LR centrality is positively correlated with node influence when LR is used as the only method for the 
identification of spreaders, as Fig. 4 clearly shows.

To validate the use of hybrid methods for the identification of influential spreaders, we apply the 
top-performing hybrid method  = AD PR LR{ , , } to large social and information networks. Results are reported 
in Table 3. These networks are too big for the application of greedy optimization, thus the performance of the 
hybrid method is compared to the one of the method AD by taking the ratio 〈 〉 〈 〉g g/ AD . Please note that AD is 
one of the best individual methods for the identification of influential spreaders according to our analysis on the 
corpus of small/medium networks. When applying the hybrid method to large networks, we use the same values 
of the linear coefficients learned from small/medium networks and listed in Table 2. Overall, we see that the 
hybrid method generates improvements in the detection of influential spreaders compared to the simple AD 
method. Improvements are almost negligible in the subcritical regime. They are instead significant in both the 
critical and supercritical dynamical regimes, although in the latter case there are wide variations, with striking 
performance decrease for some networks. On average, we register improvements of 2–5%. These values are in line 
to those that can be measured in the corpus of small/medium networks, thus providing additional support to the 
robustness and generality of our finding. It should be stressed that the hybrid method uses a slightly larger 
amount of information than the one at disposal of the individual AD method. This might be at the root of the 
observed performance increase. As a matter of fact, linear coefficients change their value depending on the 
dynamical regime, so the ranking of the nodes. On the other hand, the improvement in effectiveness doesn’t cause 
drawbacks in efficiency. Linear coefficients of the various dynamical regimes are given. Also, the computational 
complexity of estimating numerically the critical threshold pc scales linearly with system size. De facto, the com-
putational complexity of the overall hybrid method is the same as the one of the individual methods, making it 
applicable to very large networks.

Network N E pc Ref. url
〈 〉 〈 〉g g/ AD

Subcrit. Critical Supercrit.

Slashdot 51,083 116,573 0.0262 44,45 url 1.003 1.017 1.062

Gnutella, Aug. 31, 2002 62,561 147,878 0.0956 46,47 url 1.009 1.040 1.039

Epinions 75,877 405,739 0.0062 45,48 url 1.012 1.057 1.130

Flickr 105,722 2,316,668 0.0142 45,49 url 1.007 1.082 1.242

Gowalla 196,591 950,327 0.0073 45,50 url 1.011 1.024 1.066

EU email 224,832 339,925 0.0119 45,47 url 1.002 1.009 0.923

Web Stanford 255,265 1,941,926 0.0598 51 url 1.009 1.031 1.035

Amazon, Mar. 2, 2003 262,111 899,792 0.0940 52 url 1.008 1.025 0.994

YouTube friend. net. 1,134,890 2,987,624 0.0063 45,53 url 1.004 1.013 0.952

Average on large networks 1.007 ± 0.001 1.033 ± 0.007 1.050 ± 0.030

Average on the corpus of 100 networks 1.001 ± 0.002 1.021 ± 0.003 1.043 ± 0.005

Table 3.  Identification of influential spreaders in large networks. We compare the performance of the hybrid 
method  = {AD, PR, LR} with the individual method AD. For the hybrid method, we use the values of the 
coefficients reported in Table 2. From left to right, we report the name of the network, number of nodes in the 
giant component, number of edges in the giant component, critical value pc of the spreading probability, 
references to studies where the network was first analyzed, url where network data were downloaded, value of 
the ratio 〈 〉 〈 〉g g/ AD  between the performance metric of the hybrid method  = {AD, PR, LR} and the one of 
the individual method AD for the subcritical, critical and supercritical regimes. The bottom two lines in the 
table report, for each dynamical regime, average values and standard errors of the mean for the ratios 〈 〉 〈 〉g g/ AD  
over the set of large networks and over the corpus of 100 networks considered in the rest of the paper.
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Conclusions
The goal of this paper was to comparatively analyze the performances of heuristic methods aimed at the identifi-
cation of influential spreaders in networks. We focused our attention on the spreading dynamics modeled by the 
independent cascade model, and studied a total of 16 methods for the identification of the influential spreaders 
that are being used widely in influence maximization studies. We performed a systematic comparison between 
the various methods by means of extensive numerical experiments on a large corpus of 100 real-world networks. 
We further drew upper- and lower-bounds for the performance values achievable in the problem by using respec-
tively results from greedy optimization and random selection. We found that the performance of many simple 
heuristic methods is not far from that of the more computationally costly greedy algorithm. In this framework, 
the simplest and most effective strategy among those already on the market that can be used to identify top 
spreaders in large networks is the adaptive degree centrality. The method based on adaptive degree centrality 
displays an overall performance score that is 96% of the upper-baseline value in the critical regime of spreading, if 
used to select a set of top spreaders with size equal to 5% of the entire network. Several other methods have com-
parable performances to adaptive degree centrality. The overlap between influential spreaders selected by heuris-
tic methods and by the greedy algorithm is considerably lower, but this is not surprising given the NP-complete 
nature of the optimization problem. We finally found that a potential way to get closer to optimality consists in 
combining different centrality metrics to create hybrid methods. We found that some combinations of three met-
rics are able to achieve 98% of the upper-baseline value in the critical regime of spreading.
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