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Comparing Remote Sensing 
Methods for Monitoring Karst 
Rocky Desertification at Sub-pixel 
Scales in a Highly Heterogeneous 
Karst Region
Xiangkun Qi   1,2, Chunhua Zhang   3 & Kelin Wang1,2

Rugged karst terrain relief that creates shadows in satellite imagery, combined with high karst 
landscape heterogeneity stand in the way of fractional cover retrieval on karst rocky desertification 
(KRD) monitoring. In this study, we explored the feasibility of applying multispectral high spatial 
resolution Advanced Land Observing Satellite (ALOS) imagery for the fractional cover extraction 
of rocky outcrops. Dimidiate pixel model (DPM) and spectral mixture analysis (SMA) approaches 
(including simple endmember spectral mixture analysis and multiple endmember spectral mixture 
analysis) were selected to explore their feasibility for KRD monitoring through accuracy improvement 
for fraction estimation. Results showed fractional cover retrievals at the sub-pixel scale is essential in 
highly heterogeneous karst landscapes. Indeed, mixed pixels accounted for 93.7% of the study area in 
southwest China. Multiple endmember spectral mixture analysis achieved high overall accuracy (80.5%) 
in monitoring the percentage of rocky outcrop land cover. Furthermore, the predicted exposed bedrock 
coverage via spectral mixture analysis were similar in sunlit and shadow areas for the same surface 
types. This reflected that SMA methods could effectively reduce topographic effects of satellite imagery 
to improve the accuracy of fractional cover extraction at sub-pixel level in heterogeneous and rugged 
landscapes.

Karst landscapes, a special environment formed within carbonate bedrock, are among the most ecologically 
fragile regions in the world1,2. Southwest China has one of the largest continuous karst landscapes on earth; 
an area of 540 000 km2,3. Critically, this karst region has high human population density and limited cropland 
area4. Consequently, the tight human-land relationships have led to subsistence farming over-exploitation and 
consequently severe environmental problems including karst rocky desertification (KRD). KRD is a progressive 
process of land degradation in which soil is partially or completely eroded5. Results of KRD include exposure of 
widespread rocky outcrops, declining land productivity, and the formation of desert-like landscapes6. As a result, 
KRD, following soil erosion in the loess plateau and desertification in northwest China, is considered to be one of 
the most important ecological and environmental problems in China7. Therefore, it is necessary to monitor and 
assess KRD conditions in support of regional sustainable development.

There are various methods available to map KRD. Basic research and qualitative estimates the extent of KRD 
largely depend on field surveys of vegetation and rocky outcrop cover, slope and soil distribution. These methods 
are time consuming, expensive and limited by rugged terrain and large spatial scales8. Fractional ground cover 
extracted from remotely sensed images has been widely applied to describe land degradation and human distur-
bance9,10. When KRD occurs, the most obvious land-surface symptoms are low vegetation cover and bedrock 
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exposure. Therefore, the fractional cover of vegetation and exposed rocks are most commonly characterized as 
land-surface consequences of KRD.

Satellite images have been used to map desertification and its changes over time beginning in late 1990s11–13.  
Commonly used moderate resolution images include Landsat Multispectral Scanner (MSS)14 and Landsat 
Thematic Mapper (TM)15,16. These optical satellite images have 30-meter resolutions and are useful for extracting 
land cover and change conditions at regional scales. However, the large variation in karst landforms (e.g. poljes, 
valleys, cockpits, towers, and sinkholes) and various degrees of soil erosion create abundant niches for vegetation 
growth that cause soil discontinuity and vegetation fragmentation17. The dissolution of carbonate rocks produces 
densely distributed ditches on land surfaces that coexist with rocky outcrops, bare soil, grass, shrub and forest 
within a KRD region14. Consequently, it is challenging to identify a pure, rocky spectrum on a relatively fine-scale 
(e.g. SPOT 10 × 10 m) remote sensed data18. Therefore, the high degree of heterogeneity in karst landscapes deter-
mines that one pixel in a satellite image often includes more than a single land object.

One feasible solution is to estimate the proportion of land cover at the sub-pixel scale for heterogeneous land-
scapes10,19–21. A dimidiate pixel model (DPM) is commonly used to calculate fractional vegetation cover (FVC) 
at sub-pixel scales22 and this method has been applied in the karst region for KRD monitoring23,24. Another 
widely used method is spectral mixture analysis (SMA)25. This approach supposes that reflectance for one pixel 
is a linear mixture of several endmembers and that each endmember is a unique land cover type with a specific 
spectral signature. The aim of SMA is to decompose mixed spectra and calculate proportions of each land cover 
type in a single pixel. The spectral unmixing model has been widely applied to plant species identification26,27, fire 
severity28,29 and urban remote sensing30,31 with some success. However, there have been few SMA-related studies 
in the karst region of southwest China.

A critical step in SMA is endmember selection. Unlike the impervious surface of urban areas, bare rocks are 
often mixed with vegetation and soil. The degree of rocky outcropping has changed due to variation in natural 
conditions and human disturbance32. Furthermore, as high albedo endmembers, rocks, cement road surfaces, 
building roofs and limestone soils can cause spectral confusion in an image because they have similar, high reflec-
tance. All directly affect the endmember selection of KRD. High spatial resolution imagery (e.g., SPOT-5 and 
Advanced Land Observing Satellite (ALOS) images) have smaller pixel size that would be conductive to select 
pure endmembers for spectral mixture analysis compared to medium resolution images (30 × 30 m resolution). 
High resolution imagery could provide greater detail and capture more spatial variation to help explore mecha-
nisms of KRD dynamics. These all suggest that high spatial resolution imagery is promising for fine-scale karst 
land applications.

In addition to being highly heterogeneous, the relatively high elevation contrast in the karst area causes sig-
nificant shadow effects in remotely sensed images. The topographic effect in images is limiting because weak 
reflectance from shadow areas commonly complicate information extraction20,33. NDVI is able to minimize vari-
ation in topographic effects on the spectral properties of land surfaces and so is widely used in the DPM for FVC 
estimations in karst regions34. In contrast, SMA treats shade as a separate image component and eliminates the 
shadow fraction by area redistribution35. However, there is no relevant research that proves it can be applied for 
topographic correction in karst regions.

Our study attempted to take advantage of high resolution optical multispectral ALOS images to extract the 
fractional cover of rocky outcrops at a sub-pixel level in the karst region of southwest China. We applied and com-
pared the efficacy of DPM and two SMA methods through (1) accuracy evaluation of extracting rocky outcrop 
fractions, (2) assessment of topographic effects of fractional images in each method, and (3) analyzing the KRD 
status. Results from this study serve as a technical reference for applying optical remote sensing in heterogeneous 
and rugged terrain regions.

Results
Endmember spectral analysis.  We built three spectral libraries using ALOS multispectral images based 
on separate methods (Fig. 1). Eight representative spectral curves for each land type were developed from ALOS 
images according to field sample sites and MESMA (Fig. 1a,b). Spectral curves in vegetation and shadow classes 
had similar shapes. Although the spectral measurements data extracted based on field sample sites were deemed 
as pure endmembers, spectral curves of rocky outcrops had large variation. This appeared to be related to dif-
ferences in aspect and slope at sample sites causing variation in image spectral signature. In addition, surface 
characteristic changes (e.g., color) of rocky outcrops affected spectral reflectance creating further uncertainty in 
representing rocky outcrop characteristics using spectral measurements. Based on MESMA, the eight represent-
ative spectral curves of each land type were developed using the lowest Root Mean Square Error (RMSE) within 
each class. Spectral curves within each class were similar, although the curves of rocky outcrops did vary (Fig. 1b). 
This indicates that the spectral signature of rocky outcrops may also vary.

One representative spectral curve from each class was developed using SESMA (Fig. 1c) and spectral curves 
of three land types were determined separately. The spectral curve with high reflectance in the 520–600 nm and 
610–690 nm bands represents the characteristics of rocky outcrops. Comparing these three methods, the spectra 
of representative endmembers measured at field sample sites was inconsistent and difficult to use to represent 
the features of rocky outcrops. Therefore, the spectral selections from MESMA and SESMA were used to extract 
rocky outcrop coverage.

Accuracy assessment of rocky cover extraction.  Fraction image accuracy from MESMA, SESMA and 
DPM were calibrated using validation points (see methods). The best prediction was achieved using MESMA 
(Table 1). The overall classification accuracy of the whole study area (based on MESMA) was 76.4%, signifi-
cantly higher than that from SESMA (50.8%) and DPM (54.2%). The Kappa coefficient from MESMA was slightly 
lower (0.705). Classification accuracy of rocky outcrop estimates was higher in sunlit areas than in shadow areas. 
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MESMA acquired the highest accuracy in sunlit areas (83.7%) and shadow areas (60.4%). In contrast, the frac-
tional cover of rocky outcrops from SESMA had lower accuracy in sunlit areas (51.3%). Coverage from DPM had 
very low accuracy in shadow (18.2%).

Error matrixes for sunlit areas were used to explore the estimate error in percentage of rocky outcrops. In 
sunlit areas, MESMA successfully predicted the cover of bedrock outcrops at each level (Table 2). Producer’s 
accuracies (PA) were between 0.79 and 0.93. SESMA achieved higher accuracy in the areas with lower bedrock 
outcrop cover (10–50%). However, accuracies were lower when bedrock outcrop cover exceeded 50% (producer’s 
accuracies were less than 0.19). Many areas with high bedrock outcrop cover were classified as low bedrock out-
crop area, underestimating bedrock cover based on SESMA in sunlit areas. DPM yielded high accuracies in low 
and high bedrock outcrop cover areas. However, for the bedrock outcrop cover between 10% and 70%, producer’s 
accuracies were less than 60%, largely because of the underestimation of bedrock outcrop coverage.

The accuracy of rocky outcrops estimation was lower in shadow compared with sunlit areas. Using MESMA, 
producer’s accuracy ranged between 1.00 and 0.34. A confusion matrix showed that the rocky outcrop cover was 
somewhat overestimated for each cover class. Although the results from SESMA reached high producer’s accu-
racies in areas with the rocky outcrop coverage between 10% and 50%, the predicted coverage was consistently 
underestimated in shadows. Alternatively, DPM clearly overestimated rocky outcrop cover in shadow areas sug-
gesting that it is greatly affected by shade.

Topographic effects.  The mean cover of rocky outcrop estimated from MESMA was similar in sunlit and 
shadow areas in each rocky outcrop category (Fig. 2). Although the cover predicted in shadows was smaller than 
that in sunlit areas, the largest difference of predicted value in these two areas was not greater than 6.4%.

The predicted value using MESMA also matched the reference data well. Each prediction in sunlit and shadow 
areas fell into the range of reference data. The estimated percentages of bedrock outcrop estimated by SESMA 
were also similar in sunlit and shadow areas. However, the predicted cover values were underestimated, especially 
in areas with large areas of rocky outcrop. For example, in the range from 51% to 70% cover, the prediction was 
just less than 46.1%. There were large differences in predicted values for sunlit and shadow areas in each rocky 
outcrop category using DPM. The predicted cover in sunlit areas was 5% to 15% smaller than reference values 
in areas with rocky outcrop cover less than 90%. However, we found the opposite result in shadow areas where 
predicted values were 15% to 54% larger than reference data. Therefore, the percent of rocky outcrop bedrock was 

Figure 1.  Spectral curves of rocky outcrops, vegetation and shadow in the study area. (a) Was collected from 
ALOS image-based field survey sample sites; (b) was obtained based on MESMA; and (c) from SESMA.

Sunlit area Shadow area All study area

MESMA SESMA DPM MESMA SESMA DPM MESMA SESMA DPM

OA (%) 83.7 51.3 69.2 60.4 49.7 18.2 76.4 50.8 54.2

K 0.796 0.387 0.614 0.498 0.344 0.021 0.705 0.374 0.429

Table 1.  Overall accuracy (OA), and Kappa coefficient (K) of percentage of estimated rocky outcrops.
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underestimated in sunlit and overestimated in shadow areas as predicted by DPM. MESMA, SESMA and DPM 
predicted that the rocky outcrop cover of 40.8%, 28.4% and 36.6% respectively across the study area.

The standard error (SE) of predicted cover was distributed between 1% and 20% using all estimate methods 
(Fig. 2). SE from MESMA and SESMA showed similar trends in each class of predicted cover with low SE values 
(5–12%) in most rocky cover areas. The pattern differed where rocky cover was highest. These low values indi-
cated that the predicted cover of rocky outcrop is accurate. In general, the SE in the sunlit areas was lower than 
that in shadow areas using these two methods, indicating greater accuracy in sunlit than in shadow areas. DPM 

MESMA_sunlit
Cover (%)

Classified data

PA0–10 10–30 30–50 50–70 70–100

Reference
data

0–10 60 15 1 0 0 0.79

10–30 0 66 17 0 0 0.80

30–50 0 1 63 14 0 0.81

50–70 0 0 0 61 9 0.87

70–100 0 0 0 5 68 0.93

UA 1.00 0.80 0.78 0.76 0.88

SESMA_sunlit
Cover (%)

Classified data
PA

0–10 10–30 30–50 50–70 70–100

Reference
data

0–10 34 42 0 0 0 0.45

10–30 1 77 5 0 0 0.93

30–50 0 21 57 0 0 0.73

50–70 0 0 57 13 0 0.19

70–100 0 1 21 37 14 0.19

UA 0.97 0.55 0.41 0.26 1.00

DPM_sunlit
Cover (%)

Classified data
PA

0–10 10–30 30–50 50–70 70–100

Reference
data

0–10 76 0 0 0 0 1.00

10–30 33 50 0 0 0 0.60

30–50 2 47 25 4 0 0.32

50–70 0 1 27 40 2 0.57

70–100 0 0 0 1 72 0.99

UA 0.68 0.51 0.48 0.89 0.97

MESMA_shadow
Cover (%)

Classified data
PA

0–10 10–30 30–50 50–70 70–100

Reference
data

0–10 10 16 3 0 0 0.34

10–30 3 25 12 2 0 0.60

30–50 1 2 23 11 1 0.61

50–70 0 1 4 17 7 0.59

70–100 0 0 0 0 21 1.00

UA 0.71 0.57 0.55 0.57 0.72

SESMA_shadow
Cover (%)

Classified data
PA

0–10 10–30 30–50 50–70 70–100

Reference
data

0–10 4 25 0 0 0 0.14

10–30 1 29 12 0 0 0.69

30–50 2 12 23 1 0 0.61

50–70 0 3 13 13 0 0.45

70–100 0 0 2 9 10 0.48

UA 0.57 0.42 0.46 0.57 1.00

DPM_shadow
Cover (%)

Classified data
PA

0–10 10–30 30–50 50–70 70–100

Reference
data

0–10 2 12 14 1 0 0.07

10–30 0 1 5 11 25 0.02

30–50 0 0 3 7 28 0.08

50–70 0 0 0 2 27 0.07

70–100 0 0 0 0 21 1.00

UA 1.00 0.08 0.14 0.10 0.21

Table 2.  Percentage of rocky outcrops in class confusion matrix in sunlit and shadow areas. (PA: producer’s 
accuracy; UA: user’s accuracy).
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had higher SE compared with the other two SMA methods suggesting that the value of predicted cover distrib-
uted discretely compared with referenced data.

Shadow effects made similar land features appear differently by varying the spectra in sunlit and shadow areas 
on satellite images (Fig. 3a). Compared with the original satellite images, fractions from MESMA and SESMA had 
few spectral changes and therefore had similar grey values for similar land types in sunlit areas (white border) and 
shadow area (yellow border) (Fig. 3b,c). This indicated that the rocky fractions predicted by MESMA and SESMA 
might reduce shadow effects. Compared with the images shown in Fig. 4b,c, the rocky fraction from DPM had 
a shadow effect demonstrated by a large difference in white and yellow bounded areas (Fig. 3d). We used the 
cosine of incident angle that was calculated based on DEM data to represent the shadow effect of satellite images. 
The lower the correlation coefficient between the rocky fraction and the cosine of incident angle, the smaller the 
impact of the shadow33. This shows that the percentage of rocky fractions from MESMA and SESMA had low 
correlation coefficients with the cosine of incident angle (0.02 and 0.01, respectively; P < 0.01). Contrast this with 
the rocky fraction of DPM and cosine of incident angle that had a relatively high correlation coefficient (0.33; 
P < 0.01). A higher regression coefficient means the measured rocky fraction from DPM was affected by terrain 
relief. Estimations from MESMA and SESMA of the percent of rocky outcrops could reduce the topographic 
effects in satellite images by shade normalization.

KRD mapping.  Based on MESMA, SESMA and DPM methods, the summed areas of light, moderate and 
severe KRD covered 62.7%, 39.5% and 56.5% of the total area, respectively (Table 3). Using MESMA, the non 
KRD, potential KRD, light KRD, moderate KRD and severe KRD covered 6.8%, 30.5%, 34.0%, 20.6% and 8.1% 
of the study area, respectively. Potential, light and medium moderate KRD dominated the region. The main KRD 
type predicted by SESMA was potential KRD that covered 53.8% of the study area. Given that the study area is 
typical of KRD affected regions where vegetation degradation, severe soil erosion and exposed rock phenomena 
are common15, KRD areas appeared to be underestimated by SESMA. Although the total area of KRD from DPM 
seemed reasonable, its distribution was affected by terrain relief. This appeared to be because rocky outcrop cover 
underestimation in sunlit areas corresponded to the distribution of potential and light KRD. In contrast, rocky 
coverage overestimation in shadow areas largely correlated to the moderate and severe KRD distribution.

Discussion
Rocky desertification monitoring is an important task for environmental management of southwest China. 
Previous research on remote sensing of KRD estimated the percentage of rocky outcrop cover using DPM13. Our 
results suggest that fractional rocky cover was underestimated by 5% to 15% in sunlit areas based on new meth-
ods. This could be the result of nonlinearity of NDVI; NDVI tends to be sensitive to sparse vegetation cover36,37. 
Therefore, the fractional vegetation cover may be overestimated in sunlit areas with an accordingly underesti-
mated coverage of rocky outcrops.

The high heterogeneity of the karst landscape poses a within-pixel mixing problem for remote sensing 
information extraction. SMA appears to be a feasible resolution20,29. Although there are no studies that use 
MESMA-based fraction images to estimate KRD levels, SMA has proven to be efficient in detecting a signal 
from impervious surfaces in urban areas31. Unlike the regularity of urban impervious surfaces however, fea-
tures of rocky outcrops show a degree of surface variability. Due to differences in human disturbance intensity, 
degree of weathering and erosion, rocky outcrop surface colors may vary. Field investigations have shown that 
bedrock outcrops are often white-gray resembling human ploughed soil, mined mineral or clipped vegetation. 
Especially in mined areas, rocky outcrops had high spectral reflectance on cut surfaces (Fig. 1a; a spectral curve 
of bedrock with high values). When natural forces, like weathering or dissolution, dominated surface bedrock, 
outcrops appeared gray. Color differences among rocky outcrop surfaces may cause variation in spectral reflec-
tance (Fig. 1b).

Using SESMA, we selected one optimal endmember for three searched land cover types from a vertex of spec-
tral scatter plots31. This approach only allowed one spectrum as a pure pixel for each endmember. In our study, 
the spectra of rocky outcrops from SESMA had higher reflectance compared with those from MESMA (Fig. 1). If 
this one optimal endmember effectively represents rocky outcrops, the fractional cover would be estimated more 
accurately. Otherwise, the spectrum only represents parts of bedrock features (like cut surfaces) and the fractional 

Figure 2.  Predicted percent of rocky outcrop in sunlit and shadow areas.
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cover would be routinely underestimated. According to the error matrix of accuracy assessment, results from 
SESMA underestimated 1% to 27% of the fractional cover of rocky outcrops. Many areas dominated by rocky 
outcrops were classified as low or moderate rocky covered area. This may have been caused by SESMA’s optimal 
spectral curve not representing the general features of rocky outcrops in karst areas. For that reason, an optimal 
endmember collection based on the SESMA model is difficult to incorporate the spectral variation of feature 
classes in the karst region. The underestimation of SESMA predicted rocky outcrop coverage of the whole study 
area to be 28.4%. This did not match the study area reality land types with light and moderate KRD impacts15,18,38.

MESMA extends SESMA by allowing the number and type of endmembers to vary on a per-pixel basis26. This 
overcomes SESMA’s limitations by requiring a model to meet minimum fit, fraction and residual constraints while 
testing multiple models for each image pixel. The optimal endmembers from MESMA were selected through 
calculating the lowest RMSE within a class35. MESMA allows a certain number of optimal endmembers to be 
selected from images. When one land cover has variable spectral reflectance, it is better to have many represent-
ative spectral curves to capture its features. Indeed, both natural factors and human activities have contributed 

Figure 3.  Contrast of rocky outcrop cover in sunlit and shadow areas. Panel a is an ALOS sharpened images 
(RGB: NIR, red, and green bands). Panels b–d are fraction rock cover predicted using MESMA, SESMA and 
DPM respectively. Circle, square, triangle, diamond and ellipse symbols represent the rock coverage less than 
10%, 20%, 30–40%, 55–70% and 75% respectively. Symbols in white are in sunlit areas and those in yellow are 
in shadow. Panels e and f show identical land covers where only the aspects are different in sunlit and shadow 
areas. These two image clips are extracted from satellite imagery (acquired on October 1, 2012) available on 
Google Earth and data provider is Digital Globe.

https://doi.org/10.1038/s41598-019-49730-9


7Scientific Reports |         (2019) 9:13368  | https://doi.org/10.1038/s41598-019-49730-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

to instances of KRD, contributing to image variability13,18. This diversity of factors results in differences in the 
appearance of exposed bedrock. Nevertheless, our accuracy assessment results showed that much of rocky out-
crop cover could be predicted accurately. Therefore, multiple endmembers are indeed more reliable than single 
endmembers in applying karst exposed rock monitoring.

A possible shortcoming in our optimal endmember selection is the number of endmembers needed. Although 
our study masked built-up and water areas and used remotely sensed images from the crop-growing season so 
that the bare soil would be covered by vegetation, there was still some bare soil. KRD is, by definition, the land-
scape of exposed bedrock after the soil is lost5. Rocky outcrops appear as ragged cover accompanied by numer-
ous rock fissures after weathering and soil erosion. There is often some soil, deciduous plants or bryophytes in 
those rock cracks18. Because of the restricted number of bands in ALOS images, only three types of endmembers 

Figure 4.  Study area and characteristics of KRD. Panel A is a pan-sharpened ALOS image (RGB: NIR, red, 
and green). This sharpened image is located in study area (B). Panel (B) is a photograph taken during the field 
survey. Red, yellow, green and white squares represent reference sites with severe, moderate, light and potential 
KRD respectively.

KRD 
percentage (%)

non-
KRD

potential 
KRD

light 
KRD

moderate 
KRD

severe 
KRD

MESMA 6.8 30.5 34.0 20.6 8.1

SESMA 6.7 53.8 33.5 2.5 3.5

DPM 15.6 27.9 25.7 16.3 14.5

Table 3.  Percent area at each KRD level based on different methods.
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were suitable for selecting to model fraction image. Field-based spectra of the karst land surface showed that 
non-photosynthetic vegetation, bare soil and rocky outcrops had similar spectral responses at 350–350  nm, and 
these differences were mainly focused at 1350–1350 nm39,40. Therefore, bare soil might be confused with exposed 
rock in SMA modeling in our study. In future studies, imagery with more spectral bands (such as WorldView-3, 
that has 8 bands) should be used to enable both the selection of more endmembers and improve the accuracy of 
remote sensing information extraction in highly heterogeneous regions.

In karst regions, rugged terrain is oriented by the development of carbonate rock. Steep elevation change is 
common. Rugged terrain not only affects vegetation growth but also affects the extraction of vegetation informa-
tion34. The spectral reflectance of land cover is often strongly affected by terrain relief in medium and high spatial 
resolution satellite imagery. In our study this caused variation in DN values in sunlit and shadow areas. Previous 
studies have shown that a topographic correction model does not effectively improve the classification accuracy 
of the ground objects13,41,42. Furthermore, there are few studies where the spectral differences of the same land 
objects are compared between sunlit and shadow areas in a karst region after topographic correction.

The results of our study showed that estimated rocky outcrop coverage from SESMA and MESMA was similar 
in sunlit and shadow areas, largely because the shade fraction, as an independent component, was extracted by 
least squares in the SMA model and removed through shade normalization43. In fact, shadows from mountains, 
tall trees, and even protruding stones, commonly occur in karst regions. However, previous studies have paid 
less attention to shadow and its impacts on remote sensing applications in karst areas33. One of the advantages 
of SMA model is that it accounts for shade. These results demonstrate that SMA provides a new perspective for 
topographic correction of remote sensing applications in a mountainous region.

DPM, as a simple and effective method for managing topographic effects, is widely used to monitor vegetation 
cover32,44. However, the DPM-predicted vegetation cover between sunlit and shadow areas was very different in 
our study. The reason for this appears to be that, when the aspect transformed from sun to shadow, the DN value 
of the near infrared band decreased more rapidly than the red band (Fig. 1). Based on the DPM formula, the pre-
dicted value of rocky outcrop cover increases in shadow. The differences between sunlit and shadow areas caused 
by topographic effects influenced the accurate inversion of land surface information of KRD and further affected 
KRD mapping. Therefore, topographic effects based on DPM could not be ignored when using optical remotely 
sensed monitoring in this mountainous region.

Conclusions
With the objective of overcoming obstacles to monitoring heterogeneous, rugged terrain on rocky deserts 
using remote sensing, our study applied high spatial resolution ALOS images and compared DPM, SESMA and 
MESMA to extract the key indicators of KRD at a sub-pixel scale. The optimization results of accuracy assessment 
were acquired using MESMA. The overall accuracy in the sunlit and shadow areas were 83.7% and 60.4%, respec-
tively. The SESMA approach attained lower accuracy because it underestimated between 1% and 25.7% of the 
fractional cover of rocky outcrops. However, mean coverage of the same objects was similar in sunlit and shadow 
areas although the accuracy in the shadow was lower based on these two SMA methods. Correlation analysis and 
spatial statistics demonstrated that SMA methods could reduce shadow effects on fractional cover extraction in 
karst regions.

Shadows that came from mountains, tall trees or raised rocks, were widespread and shadow effects were one of 
the critical factors affecting classification accuracy of land use and land cover in remote sensing applications in the 
karst region of southwestern China. One of the advantages of the SMA model is that it accounts for the shadow 
fraction and can remove its influence. We concluded that SMA provides a new perspective on topographic cor-
rection for remote sensing applications in mountainous regions. KRD distribution can be mapped accurately with 
the fractional estimation by MESMA. Approaches cannot ignore that the fractional cover of rocky outcrops may 
be underestimated in the sunlit areas and overestimated in shadow areas when using DPM methods. Therefore, 
the topographic impacts on NDVI could not be overlooked in karst vegetation monitoring.

Materials and Methods
Study area.  Our study area is in Du’an, Guangxi Province, southwestern China. The topography is rugged 
with elevations between 230 and 1050 m. Typical landforms in this region are tower karsts and depressions. 
Although the climatic vegetation climax community in this area is subtropical evergreen forest, dominant vege-
tation communities are grass and shrub because of severe human disturbance (Fig. 4).

This area has a relatively high population density (52 people per km2 in 2005) and a >1000-year history of 
agricultural development. Timber and firewood harvesting and intensive agricultural practices on the slopes have 
led to the disappearance of the climax community in this region during the 1950s to the 1980s. By the 1990s, 60% 
to 70% of the forested area in the karst regions was cleared, and most existing forests were early seral, secondary 
vegetation45 (Fig. 5). Severe human disturbance and soil erosion also caused slow vegetation recovery. The coex-
istence of rocky outcrops and vegetation cover at a fine scale is common in the karst region.

Data and preprocessing.  Advanced Land Observing Satellite (ALOS) imagery was acquired on June 4th, 
2009. These data contained four multispectral bands commonly used in remote sensing studies (blue, green, 
red and near infrared) with a 10 m spatial resolution and a panchromatic band with 2.5 m spatial resolution. We 
choose multispectral ALOS imagery for KRD information extraction at the sub-pixel scale. The solar elevation 
and azimuth of this image is 73.3° and 93.8° respectively. Although the relatively acute solar elevation reduces 
shadow effects on images41, there was still a high percentage (about 25% of total area in this study) of shadow in 
images (Fig. 4A). Images were processed using level L1G systematic correction.

Atmospheric correction of multispectral ALOS imagery was conducted using the MODTRAN5 model. 
We georeferenced images and projected them to a Universal Transverse Mercator (UTM) map projection. The 
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original multispectral and panchromatic images were fused by the Gram–Schmidt procedure in the ENVI soft-
ware package46 to produce four-band, pan-sharpened multispectral ALOS images. A matched digital elevation 
model (DEM) was applied to calculate the cosine of solar incident angle as quantified shadow effects of ALOS 
imagery33,42.

Dimidiate pixel model.  DPM was used to calculate fractional vegetation cover (FVC)47. The percentage 
of rocky outcrops equals one minus the FVC value as soil background was covered by crops. The Normalized 
Difference Vegetation Index (NDVI) was applied:

ρ ρ ρ ρ= − +NDVI ( )/( ) (1)nir red nir red

where ρnir and ρred are the surface reflectance of near infrared and red bands respectively. It has been demonstrated 
that FVC follows a linear relationship with the NDVI:

= − −F NDVI NDVI NDVI NDVI( )/( ) (2)DPM S V S

where NDVIs and NDVIv are representative values of NDVI for bare rock pixels (where FDPM = 0) and 100% veg-
etated pixel (FDPM = 1) respectively. The calculation of DPM was implemented with ITT ENVI software.

Spectral unmixing models.  Simple endmember liner spectral mixture analysis (SESMA) and 
multi-endmember spectral mixture analysis (MESMA) were applied to extract bedrock cover. SESMA extracts 
only one optimal endmember for each independent class. MESMA expands the numbers and focuses on selecting 
one or several representative endmembers within each land cover type. Both SESMA and MESMA assume that 
the spectrum measured by a sensor is a linear combination of the spectra of all components within the pixel48. The 
mathematical model can be expressed as:

∑ ε= +=R f R (3)i
n

k ik ik 1

where i is the number of spectral bands used, k is the number of endmembers 1, …, n, Ri is the spectral reflectance 
of band i of a pixel that contains one or more endmembers, fk is the proportion of endmember k within the pixel, 
Rik is the spectral reflectance of endmember k within the pixel on band i, and εi is the error for band i. A common 
approach for obtaining fk is to use a least-squares solution by minimizing the residual error with the sum of fk of 
all optical endmembers equal to one. The spectral mixture analysis consists of three primary steps: (1) selection 
of candidate endmembers to build a spectral library, (2) optimal endmember selection, and (3) decomposing the 
mixed pixels to extract fractional images.

We applied the vegetation-high albedo-shadow model that was found to be most suitable for non-urban areas 
to extract remotely sensed information49. Vegetation endmembers included grass, shrub, forest and crops in the 
karst region. Ground features with high albedo include rocky outcrops, road surfaces, and rooftops. Low albedo 
features include shadow and water. As only three endmembers could be selected for model inputs, road surfaces 
and rooftops were masked identified by their reflectance in the red band. Their values are generally higher than 
that of rocky outcrops based on field surveys. Water areas were also masked using the ratio of green and near 
infrared bands50. Consequently, other features, including vegetation, rocky outcrops and shadow, were kept for 
SMA modeling. We used a spectral scatter plot to select candidate endmembers. The scatter plot triangulated with 
the three vertices representing vegetation, rocky outcrop and shadow. Finally, 291, 185 and 159 candidate end-
members for the three land types (vegetation, rocky outcrop and shadow) were identified for further processing.

Identifying high quality image endmembers has been described as a critical stage of spectral mixture mod-
eling51. We initially selected optimal endmembers on images according to field survey sites to compare with 
two other methods. The SESMA method is a fully-constrained linear spectral unmixing method based on a 
high-vegetation-high albedo-low albedo model31. The spectral scatter plots were generated as a triangle (here 
defined as ΔOAB). The best three endmembers could be identified by the largest area (S) among all triangles 
formed by any three pixels:

Figure 5.  Typical landscapes of rocky desertification in the study area. The rocky desertification in panels a and 
b were the result of cultivation on steep slopes. Panel c shows the consequence of firewood harvesting where 
only a few trees remained.
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= |→ ×
→

|S a b /2 (4)

where →a  and 
→
b  denote the endmember vectors of OA and OB, respectively. The detailed calculation of SESMA 

in this research follows Yang31.
For the MESMA method, an endmember average RMSE (root mean squared error) (EAR) approach was 

used to select the most appropriate endmembers. The endmembers were selected by calculating the lowest RMSE 
within a class31. EAR was calculated using Eq. (4) using:

∑= −=EAR RMSE n( )/( 1) (5)i i
N

i j1 ,

where i is an endmember, j is the modeled spectrum, N is the number of endmembers, and n is the number of 
modeled spectra. The “−1” corrects for the zero-error resulting from an endmember model itself. Here, eight 
endmembers of vegetation, rocky outcrop and shadow were selected according to the lowest RMSE. MESMA in 
this study was implemented with VIPER Tools, a plug-in software under ITT ENVI26,31.

Fractional maps of endmember land cover components were generated by optimal endmember models using 
least-squares solutions. To reduce shadow effects, we performed a shade normalization of the fraction images 
obtained by dividing the cover of each endmember by the total percent cover of all non-shade endmembers (1 
minus shade fraction) in each pixel. This suppresses the shade fraction so that we obtain more information from 
the other two fractions (vegetation and rock)43.

Accuracy assessment.  Accuracy assessments for rocky outcrop coverage were conducted using error matri-
ces. A Kappa coefficient was used to measure the accuracy of the predicted rocky outcrop coverage52. Overall 
accuracy (OA) for each class was also calculated. The percentage of rocky outcrop was classified into five catego-
ries (0–10%, 10–30%, 30–50%, 50–70% and 70–100%, which generally represent, in order, non-KRD, potential 
KRD, light KRD, moderate KRD and severe KRD) using the suggested threshold values for KRD assessment53.

Field validation sites were sampled from 2009 to 2011 in Du’an county. Each site was 30 × 30 m. Transect 
sampling methods54, visual observations and photograph interpretation were combined to estimate the fractional 
cover of vegetation and rocky outcrop at each site. The measured sample sites were principally located near a 
road or path as large-relief mountain areas are difficult to access. Most validation sites for accuracy assessments 
were determined by the coordination of visual estimates of rocky outcrop cover during field visits. Images from 
Google Earth were also used to validate land types in shadow. Finally, 539 validation points (159 of which were 
in shadow) were collected to verify the accuracy of the fractional cover estimates from the SESMA, MESMA and 
DPM with ALOS data.

KRD mapping.  Based on the accuracy assessment results, an estimate of severity levels (non-KRD, potential, 
light, moderate and severe KRD) was achieved by classifying the optimal fractional cover of rocky outcrops using 
a decision tree classifier. Rules for the decision tree were established by expert knowledge and C5.0 decision tree 
algorithms. The threshold value of KRD levels referenced previous studies15,38,53 (see above).
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