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Prediction of soil available water-
holding capacity from visible near-
infrared reflectance spectra
Michael Blaschek   1, Pierre Roudier 1,2, Matteo Poggio 1 & Carolyn B. Hedley   1

Sustainable land management requires reliable information about soil hydraulic properties. Among 
these properties, available water-holding capacity (AWC) is a key attribute, as it quantifies the amount 
of water available for plants that the soil can hold. Since direct measurements of AWC are costly, 
pedotransfer functions (PTF) are often used to estimate AWC, leveraging statistical relationships 
with properties that are easier to measure, such as texture, bulk density, and organic carbon content. 
This study evaluates visible near-infrared spectroscopy (vis-NIR) as an alternative approach to predict 
volumetric water content at field capacity (FC) and permanent wilting point (PWP) — AWC being the 
difference between PWP and FC. A suite of 970 vis-NIR soil spectra, recorded from air-dried, 2-mm, 
sieved soil samples, were associated with FC and PWP analytical data obtained from New Zealand’s 
National Soils Database. Partial least squares (PLS) regression and support vector machines on PLS 
latent variables (PLS-SVM) were used for spectroscopic modelling. With root mean squared errors 
below 7% and 5% for FC and PWP, respectively, our results indicate that vis-NIR spectroscopy can be 
used to quantitatively predict volumetric water content at FC and PWP.

Soil data of adequate quality and reasonable quantity is critically important for sustainable land management. 
This is particularly true in light of an ever increasing pressure on agricultural land, along with rising demands for 
food production due to global population growth. Agriculture is already by far the biggest user of globally allo-
cated freshwater with over 70% used for irrigation1. To improve irrigation efficiency, governing factors that con-
trol the storage and release of water in the soil need to be known. Among these factors, available water-holding 
capacity (AWC) is a key attribute, as it quantifies the amount of water available for plants that the soil can hold. 
The AWC is defined as the amount of water held by the soil between field capacity (FC) and permanent wilting 
point (PWP). It is conventionally estimated under controlled laboratory conditions applying a known pressure to 
a soil core, typically 10–33 kPa (varying between countries) for FC and 1500 kPa for PWP. The method requires 
dedicated apparatus, and is time and cost consuming. For these reasons, indirect estimation using pedotransfer 
functions (PTF) is often preferred. PTF leverage the relationships between AWC and soil attributes that are rela-
tively easier to obtain, such as soil texture, bulk density, and soil organic carbon2–4. Recently, McNeill et al.5 pre-
sented a set of PTF to predict soil water content at different pressures for New Zealand soils, based predominantly 
on qualitative predictors such as soil classification and functional horizon designations, which are available from 
the national soil information system.

Alternatively, it has been suggested that diffuse reflectance spectroscopy could be used to predict soil hydraulic 
properties directly. This has as advantage that a single, rapid (spectral) reading obtained from a sieved, air-dry 
sample is used to infer attributes like FC and PWP rather than a set of multiple, lengthy lab measurements used 
by traditional PTFs. Soil spectroscopy relies on the fact that the fraction of reflected light received by the instru-
ment at any given wavelength (typically between 350 and 2500 nm in the visible and near–infrared parts of the 
spectrum) is related to vibrational and rotational states of molecules containing oxygen, hydrogen, carbon, or 
nitrogen atoms. The recorded spectrum is then used to derive a statistical model which relates a soil property to 
the spectral information. Such spectroscopic models have been derived for a range of soil attributes6,7, especially 
those related to organic molecules or water retention, such as soil organic carbon8–10, cation exchange capacity 
(CEC)11 and clay content12,13, as well as soil bulk density14,15 and saturated soil hydraulic conductivity16,17.

1Manaaki Whenua – Landcare Research, Private Bag 11052, Manawatu Mail Centre, Palmerston North, 4442, New 
Zealand. 2Te Pūnaha Matatini, A New Zealand Centre of Research Excellence, Private Bag 92019, Auckland, 1142, 
New Zealand. Correspondence and requests for materials should be addressed to M.B. (email: michael.blaschek@
posteo.de)

Received: 31 January 2019

Accepted: 21 August 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-49226-6
http://orcid.org/0000-0003-3042-6195
http://orcid.org/0000-0001-7431-2603
http://orcid.org/0000-0001-9909-3304
http://orcid.org/0000-0002-6998-0997
mailto:michael.blaschek@posteo.de
mailto:michael.blaschek@posteo.de


2Scientific Reports |         (2019) 9:12833  | https://doi.org/10.1038/s41598-019-49226-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

However, substantially fewer publications report prediction models for AWC components, i.e. FC and 
PWP18,19. Arslan et al.19 used visible and near-infrared (vis-NIR) spectroscopy to predict FC and PWP as well as 
particle size (clay, sand and silt content) for 305 soil samples collected within a study area of 8,000 ha in the Bafra 
plain, Turkey. They compared a number of different regression models, and concluded that multiple regression 
models provided best prediction results. The spectral reflectance at 350–420 nm was correlated positively with 
both FC and PWP, whereas spectral reflectance in the 500–2,500 nm region was negatively correlated. Excellent 
predictions were obtained for PWP, while predictions for sand were poor, reflecting the importance of large sur-
face area and moisture for relating spectral reflectance to soil attributes. A similar study by Viscarra Rossel and 
Webster18 used vis-NIR spectra recorded from 20,000 soil samples of soil collected across Australia to predict a 
wide range of properties, including FC and PWP. The authors used a decision tree approach, Cubist, to develop 
prediction models. They report prediction of FC and PWP, but do not provide specific details about contributing 
wavelengths.

Very recently, Pittaki-Chrysodonta et al.20 investigated the ability of vis-NIR spectra for predicting the 
Campbell soil water retention function and compared their results with classical PTF. The authors conclude that 
predicting the pore-size distribution parameter of the Campbell function as well as volumetric water content at 
100 kPa by vis-NIR spectra provided very good approximations of measured soil water retention data for various 
agricultural fields in Denmark. However, their study was limited to soils with percentages of clay fraction plus 
organic matter content below 20%, which is what they define as soil fines.

Mid-infrared (MIR) diffuse reflectance spectroscopy has also been used to predict soil hydraulic proper-
ties21,22. It has the advantage that it tends to provide slightly improved prediction accuracy for soil attributes (e.g. 
clay, carbon and CEC) than vis-NIR, but the disadvantage that it is more labour intensive (requiring fine grinding 
of the sample), and records data from a very small sample size. Minasny et al.21 and Tranter et al.22 found MIR 
spectroscopy to be a valuable predictor of fundamental soil constituents, but less so for moisture retention values. 
They recommend, instead, that MIR be used in conjunction with PTF to improve moisture retention predictions.

In this study, our goal is to ascertain how well the New Zealand vis-NIR spectral library, recorded from 2-mm 
sieved, air-dry soils stored in the New Zealand Soils Archive, can be used to directly predict water contents at FC 
and PWP for soils across the country. In doing so, we propose an approach that indirectly exploits the soil water 
relationships with clay content, clay mineralogy and soil organic carbon content by statistically analysing the dif-
ferences in shape and intensity of diffuse reflectance spectra measured from sieved, air-dry soils. Successful direct 
spectral prediction models for FC and PWP would enable higher density sampling for improved modelling, for 
example to produce AWC maps to better inform soil management practices such as irrigation planning and for 
agro-environmental assessments of climate change impacts on food production, because soil type-related yield 
variability generally outweighs simulated variability due to weather23. National calibration models of PWP and 
FC and, by difference estimates of AWC, provide an innovative approach to address these national environmental 
modelling imperatives.

Results and Discussion
Performance of the FC and PWP predictions.  Partial least squares (PLS) models were calibrated for 
FC and PWP showing optimal numbers of latent variables of 16 and 18, respectively. Figure 1 illustrates the per-
formances of the PLS regressions and PLS-SVM models calculated on the validation set. Results show little bias 
(less than 0.7%). The PLS-SVM prediction model for PWP outperformed that for FC (RMSE = 4.41 and 6.68%, 
R2 = 0.78 and 0.7, RPD = 2.12 and 1.81, respectively, on the validation set). Although the distribution of measured 
versus predicted FC and PWP values shows that most validation points are evenly distributed around the 1:1 line, 
the FC model exhibits some under-predictions of high values. Using SVM on the latent variables, as opposed 
to a linear model, mitigated the impact of non-linear relationships, and significantly helped reduce prediction 
errors. Table 1 provides summary statistics for FC and PWP calibrations, calculated from validation data using 
PLS-SVM. It also shows summary for AWC estimates obtained by subtracting the PWP from the FC predictions.

Vis-NIR spectra for FC and PWP modelling.  Figure 2 shows the PLS loadings for the first three latent 
variables of each PLS prediction model. For the PWP prediction model, the first factor accounts for 52.5% of the 
spectral variation. Another 25% is added by the latent variables 2 (9.9%) and 3 (15.5%). For FC the total amount 
of spectral variation explained by the first three factors is similar (78.3%). However, unlike for PWP, latent var-
iable 1 explains only 42.2% for FC with latent variables 2 and 3 adding another 25.3% and 10.8%, respectively. 
These loadings provide insights on the relative contribution of each wavelength to a particular prediction model. 
For both models, the most influencing wavelengths in the context of the first three latent variables were found 
around 500 nm, at 1400 nm and beyond 2000 nm. Bands in the visible portion (400–700 nm) of the electromag-
netic spectrum are related to soil colour and, therefore, may correspond to iron minerals and to a weaker extent 
to soil organic matter24. Important absorption features at 1400 nm and between 2100 and 2500 nm usually refer 
to metal-OH bending and OH stretching modes and are often attributed to the amount and type of clay min-
erals7,25,26. By detecting the mineral and organic components of the solid soil particles, soil spectroscopy can 
indirectly estimate both, water content at FC and PWP, because of their special link with clay and carbon content.

Performance of the models across soil orders.  Figure 3 shows the predicted versus the observed val-
ues for FC and PWP for 4 of the most abundant soils of the 15 soil orders, the highest level in the New Zealand 
Soil Classification (NZSC)27: Allophanic soils (Andosols in the FAO-WRB classification system28), Brown 
soils (Cambisols/Arenosols), Gley soils (Gleysols/Fluvisols), and Recent soils (Fluvisols/Regosols/Arenosols/
Leptosols).

Close examination of this figure shows that the soils with the highest FC values which are poorly predicted by 
the model are mostly Allophanic soils. One possible explanation for the difficulties encountered by the model to 

https://doi.org/10.1038/s41598-019-49226-6


3Scientific Reports |         (2019) 9:12833  | https://doi.org/10.1038/s41598-019-49226-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

adequately predict FC for Allophanic soils, typically of volcanic origin, is that these soils are more likely to have 
conventional lab analysis measurement error due to their specific characteristics. Allophanic soils have a high 
capacity for water retention associated with very high specific surface area. When FC is measured on a soil kept 
in its field moist state, FC is generally greater than 100% of the weight of dry soil (at 105 °C). It can reach 300%; 
however, if the soil dehydrates this dehydration is irreversible (hysteresis effect)29. This will influence lab estima-
tions of FC depending on whether FC measurements were undertaken on a field moist sample or on the same 
soil sample after drying and re-wetting. Therefore, the estimated FC values for Allophanic soils are likely to have 
a larger uncertainty than for other soil orders.

Another problematic soil order are Brown soils (N = 26), whose FC model is over-predicting lower values 
(positive bias of 3.1% for FC and 1.7% for PWP). Although Brown soils, some of which contain a minor allo-
phanic component, represent a very large, heterogeneous group within the NZSC, it is difficult to suggest a spe-
cific reason for their systematic over-estimation. On the other hand, very good results are obtained on Recent 
soils (N = 53). These soils are of particular interest due to their importance for agricultural use in New Zealand, 
which justifies a specific focus in our study.

Comparison with published prediction models.  Only a few studies have published attempts to 
use vis-NIR spectroscopy to predict directly volumetric water content at FC and PWP. One such attempt is 
described in Arslan et al.19, who obtained good results using PLS regression on 305 soil spectra for FC (R2 = 0.77; 
RMSE = 5.24%; RPD = 1.81) and PWP (R2 = 0.78; RMSE = 3.87%; RPD = 2.00). Viscarra Rossel and Webster18 

Figure 1.  Scatterplots of actual versus predicted values for volumetric water content at field capacity (FC) 
and permanent wilting point (PWP) using PLS regression and PLS-SVM models. Solid lines refer to linear 
regression models of observations on estimates for validation data (N = 186). Dashed lines are (ideal) 1:1 lines.

Attr. N Min (%) Max (%) Mean (%) SD (%) RMSE (%) R2 RPD Bias (%)

FC 186 5.02 54.6 36.8 9.82 6.68 0.70 1.81 −0.67

PWP 186 1.08 41.1 17.0 7.94 4.41 0.78 2.12 −0.06

AWC 186 5.24 34.8 19.9 5.93 4.86 0.58 1.54 −0.61

Table 1.  Overview statistics and performance measures for volumetric water content (%) at field capacity (FC) 
and permanent wilting point (PWP) calculated from the validation set using PLS-SVM as well as resulting 
available water-holding capacity (AWC) estimates.
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also reported predictions of FC (RMSE = 0.06 m3/m3; RPD = 1.68) and PWP (RMSE = 0.04 m3/m3; RPD = 1.95) 
based on vis-NIR data from the Australian soil spectral library using the machine learning algorithm Cubist. The 
results of our water content models are very similar to those obtained by these authors in terms of average errors 
(FC: RMSE = 6.68%, RPD = 1.81; PWP: RMSE = 4.41%, RPD = 2.12).

The models reported in this study outperform the ones obtained by the most recent PTF estimates for New 
Zealand soils, as reported by Cichota et al.4 (PWP: RMSE = 5.6%) and on a very similar dataset by McNeill et al.5 
(FC: RMSE = 7.6%, R2 = 0.6; PWP: RMSE = 4.9%, R2 = 0.78). This difference can be interpreted by the fact that 
McNeill et al.5 used mainly qualitative predictors. In particular, their inference system does not have access to 
quantitative estimates of critical covariables for FC and PWP, such as carbon or clay, while the correlation of these 
attributes with vis-NIR spectroscopy is well documented. This difference in performance illustrates the potential 
of vis-NIR spectroscopy to be included as a routine measurement in national soil information systems.

Implications and limitations.  PLS-SVM models, calibrated for water content at field capacity and perma-
nent wilting point, were successfully tested with RMSE values of 6.68% and 4.41%, respectively. Hence, our results 
indicate that vis-NIR spectroscopy can be used to model AWC components, and that SVM regression after data 
compression based on PLS factors is an effective and efficient tool to do so.

While overall performances are promising, and critical New Zealand soil orders (such as Recent soils) are well 
predicted, there are a few exceptions that need further attention. In particular, soils classified as Allophanic soils 
were found difficult to predict, particularly when modelling water content at field capacity. This is likely related to 
the fact that Allophanic soils are characterised by amorphous clay minerals of variable charge that undergo irre-
versible physical changes during drying which induce micro-aggregation of the soil which would not normally 
occur. This causes repeatability problems for lab estimations of particle size analysis and field capacity of these 
soils30,31. Future research will aim to enhance the prediction models for PWP and FC by including morphological 
soil features obtained, for example, from image analysis of the soil surface. Using our national scale models to 
eventually develop site-specific calibrations in a region known to be dominated by this type of soil will require 
adjustments based on local samples. This could be implemented using any memory-based learning method32, an 
augmenting approach like spiking33 or by more recent techniques based on resampling, such as RS-LOCAL34. In 
addition to issues introduced by varying soil orders, possible limitations associated with model robustness over 
different spatial extents need to be analysed26.

By providing nation-wide prediction models for water content at FC and PWP this work sets the stage for a 
quick and accurate determination of available water-holding capacity. Moreover, it provides the opportunity to 
generate large datasets that in turn can be used to produce a new generation of high resolution maps of AWC, 
given this soil attribute is key to sustainable land management and effective irrigation planning.

Methods
Substantial steps of the vis-NIR modelling exercise are summarised in Figure 4.

Soil properties.  The New Zealand Soils Archive is a physical collection of air-dried soil samples sieved finer 
than 2 mm, located in Palmerston North, New Zealand. The Archive stores samples collected across the country 
from the mid-1940s. For this study, soil samples that have volumetric water content recorded at two different 
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Figure 2.  PLS regression loadings for the first three latent variables for volumetric water content at field 
capacity (FC) and permanent wilting point (PWP). Coloured background represents wavelength regions of 
particular importance for the models.
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Figure 3.  Scatterplots of actual versus PLS-SVM predicted values for volumetric water content at field capacity 
(FC) and permanent wilting point (PWP) by soil order. Dashed lines are (ideal) 1:1 lines. Only the most 
common soil orders are shown. Soils are classified in accordance with the New Zealand Soil Classification27. 
Coloured dots are the validation samples that belong to the respective soil orders. Grey dots are the remaining 
samples of the validation set.
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pressure heads were selected, with their analytical data extracted from New Zealand’s National Soils Database. 
Water content for pressure potentials at 10 kPa (FC) and 1500 kPa (PWP) were determined by controlled drainage 
methods using intact soil cores (ring size = 100 mm diameter, 75 mm deep) for FC and repacked 2-mm sieved 
soil in rings (10 mm height by 50 mm diameter) for PWP35. Due to unreliable estimates of soil water content 
(for explanation see, e.g. Huntington36), samples were eliminated if soil bulk density observations were below 
0.5 Mg/m3. Samples from three soil profiles classified as Organic soils (Histosols in the FAO-WRB classification 
system28) were excluded. The total number of samples available for analysis was 970, from 210 unique profiles. 
The maximum soil depth found was 175 cm. 147 samples were taken from the soil surface layer.

Figure 5 shows the profile location of the retained samples. All major agricultural areas of New Zealand were 
captured by the sampled soils. Soil preparation and laboratory analyses were undertaken at the Manaaki Whenua –  
Landcare Research Environmental Chemistry Laboratory (located in Palmerston North, New Zealand), or its 
predecessor, the New Zealand Soil Bureau Laboratory (Soil Bureau, DSIR, Department of Scientific and Industrial 
Research, Lower Hutt, New Zealand).

The sample set has a comprehensive range of measured volumetric water content at field capacity (FC) from 
2.75% to 75%, with a mean value of 39% and a standard deviation of 11%. Volumetric water content at permanent 
wilting point (PWP) varied from 1.10% to almost 50%, with a mean value of 20% and a standard deviation of 10% 
(see Table 2). The large variations observed for both FC and PWP reflect the diversity of soils represented in the 
National Soils Database. Figure 6 shows the probability density functions for FC and PWP. While FC is rather 
symmetric (skewness ≈ 0), the distribution of PWP is slightly right-skewed (positive skewness, but still inferior 
to 1). Common transformations, such as square root and log-transformation, did not improve skewness for PWP.

Spectral library.  The New Zealand soil spectral library was developed from soils stored in the National Soils 
Archive, using an ASD FieldSpec 3 spectroradiometer (Analytical Spectral Devices Inc., Boulder, Colorado, 
USA) with an ASD High Intensity Contact Probe, in bench mode. The contact probe has a 10 mm spot size 
and uses a high intensity 4.5 W Halogen bulb as light source. Air-dried and 2 mm sieved soil samples were pre-
sented to the contact probe in a Petri dish (10 mm height by 85 mm diameter). The device records soil reflectance 
at wavelengths ranging from 350 to 2500 nm at a nominal spectral resolution of 3 nm at 700 nm and 10 nm at 
1400/2100 nm, that is then interpolated to 1 nm by the device’s software. A white reference measurement was 
made every 10 spectra using a piece of Spectralon. The reflectance spectra recorded for each sample was an aver-
age of 50 internal readings and sample positions were held constant for the duration of the experiments. Figure 7 
summarises the average spectra by showing the 5th, 25th, 50th, 75th and 95th percentiles of spectral reflectance 
before and after pre-processing.

Spectral pre-processing.  Reflectance spectra were exported from the FieldSpec unit, and imported into 
R37 for further analysis. The spectra were spliced in an additive manner38 [p.17], to remove the steps introduced at 
the junction between the 3 detectors (VNIR, SWIR1, and SWIR2) used to cover the vis-NIR spectral range. The 
noisiest part of the spectral range was excluded (350–400 nm). The Savitzky-Golay filter39 was used to derive and 
smooth the spectra (first derivative, with a filter length and order of 11 and 2, respectively).

Spectral information was further reduced for data exploration, outlier detection, and data splitting using prin-
cipal component analysis (PCA). The singular value decomposition method was used, and spectra were centered 

Figure 4.  Flow chart showing the AWC modelling from spectra.
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before factorization. The first three principal components were retained, and accounted for 80% of the overall 
variance. Based on a quantile threshold of 97.5% on the Mahalanobis distances calculated from the principal 
components, 39 spectra were considered as outliers, and discarded from further analysis.

Spectroscopic modelling.  The Kennard–Stone algorithm40 was used to uniformly split the remaining 931 
spectra into 745 samples used for model calibration, and a validation set of 186 samples not used for model 
development. Partial least squares (PLS)41 regression was used for spectroscopic modelling, as implemented in 
the pls package42. The caret package43 was used to identify the optimal number of latent variables, based on 
the one standard error rule from Breiman et al.44. To avoid over-fitting, this heuristic approach implements a 
parsimony rule, and selects the simplest model within one standard error of the optimal model determined from 
the cross-validated root mean square error (RMSE) on the calibration dataset. The calibration step used repeated 
10-fold cross-validation with 30 repeats and randomly generated segments.

To account for possible non-linear effects between AWC parameters and the spectra, an additional set of 
models were calibrated based on the first 16 and 18 latent variables of the PLS models derived for FC and PWP, 
respectively. These retained latent variables were centered and scaled, then used as predictors for a support vector 
machines (SVM) regression. SVMs for real-valued function estimation problems were introduced by Vapnik45 
offering a new non-linear regression technique based on the SVM framework which was rapidly adopted in the 
field of vis-NIR spectroscopy46. If applied to PLS factors rather than spectral wavelengths, SVM regression models 
were found to be more robust47, since PLS removes some of the unwanted noise inherent in reflectance spectra. 
The SVM models used in this study leverage Gaussian radial basis function (RBF) kernels, as implemented in 
the kernlab package48. For a constant epsilon (margin of tolerance) of 0.1, the remaining hyper-parameters 

0km 100km 200km

−4
5°

S
−4

0°
S

−3
5°

S

170°E 175°E
Longitude

La
tit

ud
e

Figure 5.  Location of the soil samples used to build the spectral library. The sampling scheme reflects the 
location of the major agricultural regions in New Zealand.
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Attr. N Min. Max. Mean SD IQR Skew. Kurt.

FC 970 2.75 74.85 39.55 11.04 13.70 −0.08 0.44

PWP 970 1.10 49.25 20.12 10.26 14.35 0.36 −0.36

Clay 350 0.00 66.00 24.34 11.91 16.00 0.18 −1.90

Silt 350 2.93 90.79 50.12 12.99 17.12 −0.19 −1.60

Sand 350 0.00 97.07 25.53 19.22 27.21 0.34 −1.64

SOC 948 0.07 20.60 2.28 2.61 2.62 2.07 5.61

Table 2.  Summary statistics of observed volumetric water content (%) at field capacity (FC) and permanent 
wilting point (PWP) as well as clay, silt and sand content, and soil organic carbon (SOC) content.
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Figure 6.  Probability density functions of measured volumetric water content at field capacity (FC) and 
permanent wilting point (PWP) (N = 970).
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sigma (inverse kernel width) and C (regularization term to fight over-fitting) were tuned using caret43, based 
on custom 10 times 10 grid searches running repeated 10-fold cross-validation with 30 repeats. The SVM model 
selection of hyper-parameters was made based on lowest RMSE values.

Model evaluation.  Model performance was quantified by metrics calculated on samples from the validation 
set. These samples were not used for calibration of the models. Those metrics were the root mean squared error 
(RMSE), the coefficient of determination from regression between estimated and observed values (R2), the ratio 
of performance to deviation (RPD, i.e. the ratio of the standard deviation of the sample to the standard error of 
prediction), and the bias.

Data Availability
The datasets analysed during the current study are available from the corresponding author on reasonable  
request.
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