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Deep Machine Learning Techniques 
for the Detection and Classification 
of Sperm Whale Bioacoustics
Peter C. Bermant1, Michael M. Bronstein1,2,7, Robert J. Wood   3,4, Shane Gero 5 & 
David F. Gruber   1,6

We implemented Machine Learning (ML) techniques to advance the study of sperm whale (Physeter 
macrocephalus) bioacoustics. This entailed employing Convolutional Neural Networks (CNNs) to 
construct an echolocation click detector designed to classify spectrograms generated from sperm 
whale acoustic data according to the presence or absence of a click. The click detector achieved 99.5% 
accuracy in classifying 650 spectrograms. The successful application of CNNs to clicks reveals the 
potential of future studies to train CNN-based architectures to extract finer-scale details from cetacean 
spectrograms. Long short-term memory and gated recurrent unit recurrent neural networks were 
trained to perform classification tasks, including (1) “coda type classification” where we obtained 97.5% 
accuracy in categorizing 23 coda types from a Dominica dataset containing 8,719 codas and 93.6% 
accuracy in categorizing 43 coda types from an Eastern Tropical Pacific (ETP) dataset with 16,995 codas; 
(2) “vocal clan classification” where we obtained 95.3% accuracy for two clan classes from Dominica 
and 93.1% for four ETP clan types; and (3) “individual whale identification” where we obtained 99.4% 
accuracy using two Dominica sperm whales. These results demonstrate the feasibility of applying ML to 
sperm whale bioacoustics and establish the validity of constructing neural networks to learn meaningful 
representations of whale vocalizations.

While human language epitomizes a peak in communicative complexity across biological taxa, cetaceans repre-
sent an important taxon for testing hypotheses relating to the evolution and development of sophisticated com-
munication systems. Despite the absolute magnitude and highly-developed neuroanatomical structure of the 
cetacean brain, the extent to which cetaceans possess a grammatical-syntactical language remains uncertain1. 
Regardless, cetaceans have cognitive abilities2 and societies3 that are commensurate with those of human phy-
logenetic relatives4, but their ocean habitat provides a difference in ecology, which can be revealing from a com-
parative perspective, especially with regards to evolutionary adaptations required for aquatic communication5. 
In contrast to the relative ease of investigating the communicative capabilities of humans and other terrestrial 
organisms, working with non-captive animals in the ocean environment presents numerous technical and logis-
tical difficulties6. Given these challenges, the development of improved computational techniques for analyzing 
cetacean sounds plays an important role in enabling researchers to address questions pertaining to cetacean 
vocal behavior. In particular, automated methods are increasingly employed to detect, classify, and identify ceta-
cean sounds and to efficiently process acoustic data without human bias7, which has significantly expedited and 
advanced the study of cetacean bioacoustics.

Modern analysis of human speech and language often takes advantage of Machine Learning (ML) techniques, 
which entail the design and development of self-learning algorithms that allow computers to evolve behaviors 
based on empirical data, such as from sensors and databases. In general, ML problems can be divided into three 
major subcategories: supervised learning, unsupervised learning, and reinforcement learning. Unsupervised 
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learning is concerned with uncovering structure within a dataset and extracting meaningful information, often-
times without prior knowledge of how the data are organized8. Supervised learning relies on prior knowledge 
regarding an example dataset in order to make predictions about new, unseen data points (“generalization”). This 
is accomplished through the use of a training set comprised of labeled data, whose ground truth response values 
are known, in order to train the predictor. Since supervised learning typically requires abundant labeled data, var-
ious techniques can be employed to alleviate this requirement, including pretraining on some different (“proxy”) 
task for which labeled data are easier to obtain9. Reinforcement learning involves the development of software 
agents that interact with the environment so as to maximize a numerical reward signal10.

The predominant modern ML paradigm is Deep Learning (DL), a representation learning method in which 
the machine automatically discovers the representations that are required for carrying out a feature detection or 
classification task using raw input data. In particular, DL enables multilayer computational models to learn rep-
resentations of data through the hierarchical composition of relatively simple non-linear modules that transform 
features into progressively higher levels of abstraction11. Effectively, by proceeding from low-level to high-level 
feature abstraction, deep networks—which can be constructed from many layers and many units within lay-
ers—are able to learn increasingly complex functions12. Importantly, the higher-level representations allow deep 
networks to extract relevant features from input data11, which can be used to accurately perform discrimination, 
classification, and detection tasks. Artificial Neural Networks (ANNs) are popular realizations of such deep mul-
tilayer hierarchies, acting as highly non-linear parametric mappings from the input to the output space, with 
parameters (“weights”) determined by the optimization of some objective function (“cost”). This optimization 
is performed by backpropagating the error through the layers of the network in order to produce a sequence 
of incremental updates of the neural network weights13. Popular among a plethora of different ANN architec-
tures are Multi-Layer Perceptrons (MLPs) typically used for general classification and regression problems, 
Convolutional Neural Networks (CNNs) for image classification tasks, and Recurrent Neural Networks (RNNs) 
for time series sequence prediction problems.

In the past decade, growing computational powers and the enhanced availability of large collections of labeled 
data have enabled the successful construction and training of neural networks with many layers and degrees of 
freedom11, yielding innovative breakthroughs in a variety of tasks in speech recognition9,14, machine translation15, 
image analysis, and computer vision16. As of today, revolutionary algorithms in these fields are primarily based on 
DL techniques. Furthermore, DL has matured into a technology that is widely used in commercial applications, 
including Apple’s Siri speech recognition, Google’s text translation, and Mobileye computer vision-based technol-
ogy for autonomously-driving cars17.

Cetacean bioacoustics has been an area of increasing study since the first recordings of marine mammals in 
the late 1940s18. Recently, ML-based methods have been applied to cetacean vocalizations, including the use of 
unsupervised self-organizing networks to categorize the bioacoustic repertoire of false killer whale (Pseudorca 
crassidens) vocalizations19. Gaussian Mixture Models (GMMs) and Support Vector Machine (SVM) algorithms 
have been used to construct cetacean species detectors to discriminate between signals produced by Blainville’s 
beaked whales (Mesoplodon densirostris), short-finned pilot whales (Globicephala macrorhynchus), and Risso’s 
dolphins (Grampus griseus)20; and similar computational techniques have been implemented in an effort to esti-
mate sperm whale size distributions21. It has been demonstrated that a radial basis function network could effec-
tively distinguish between six individual sperm whales22; and similarly, Hidden Markov Models (HMMs) and 
GMMs have performed the automatic identification of individual killer whales (Orcinus orca)23. In addition, 
ANNs have been constructed to classify the bioacoustic signals of killer whales based on call type, individual 
whale identity, and community dialect24,25. Most recently, Google obtained 90% accuracy using a ResNet-50 
architecture, typically used for image classification, to develop a CNN-based humpback whale (Megaptera novae-
angliae) detector for classifying non-speech audio26.

Among cetaceans, the sperm whale is known to have a sophisticated communication system27–29, based largely 
codas, which are stereotyped sequences of 3–40 broadband clicks that are, in general, transmitted between social-
izing whales27,29. The sperm whale communication system is thought to mediate a multileveled social structure30. 
Female and immature sperm whales live in small social units with stable, long-term membership often made up 
of kin29,31–34. In the Caribbean, units show decade-long social preferences to associate with specific other units 
into “Groups”35, while in the Pacific, no such preferences among units have been found34. All units which share 
a vocal dialect, made up of over 20 different coda types, are said to belong to the same vocal clan. Socially segre-
gated, but sympatric, clans have been found in both the Pacific and Atlantic Oceans29,36. Clans appear to demon-
strate differences in horizontal movement, social behavior, dive synchronies, diet, and foraging tactics, which may 
affect fitness of constituent units37–42. Sperm whale codas appear not only to encode clan identity, but they also 
may contain unit- and individual-level acoustic specificity43–45, which suggests that codas could potentially serve 
to identify individuals, social units, and the dialect as a whole. Differential coda production might function to 
delineate socially segregated, sympatric clans44. In addition to the communicative codas, sperm whales generate 
an extensive variety of click-based sounds, including (1) usual clicks for echolocation and foraging46–48, (2) buzzes 
for short-range prey detection and feeding49–51, and (3) reverberating slow clicks, also known as clangs, produced 
only by mature males47, in concert with other rare call types that have been poorly characterized. Given the com-
plexity of its acoustic behavior, the sperm whale serves as an ideal species for constructing, applying, and testing 
novel computational methods to improve the analysis of cetacean bioacoustics.

However, the study of sperm whale communication has been slowed by the immense time investment 
required to collect high-quality audio recordings in the field and then subsequently to analyze and annotate these 
recordings manually prior to being able to answer novel questions regarding communicative function of signals 
or information exchanged between animals. Here, we use Neural Network (NN)-based ML techniques pioneered 
in the study of human speech and language9,52 and apply them to sperm whale vocalizations to accelerate the 
abilities of researchers to address questions about cetacean communication systems. Specifically, we undertake 
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four primary tasks, including (1) detection of echolocation clicks using a CNN-based approach, (2) classification 
of codas into categorical types using a Long Short-Term Memory (LSTM) RNN-based method, (3) recognition 
of vocal clan coda dialects with LSTM RNNs, and (4) identification of individual whales based on coda produc-
tion with LSTM RNNs. LSTM RNNs are effective for this purpose since their architecture enables the network 
to preserve the non-independent sequential order of the input data8. As an alternative to LSTM, we also report 
results with a Gated Recurrent Unit (GRU) architecture, a similar but simpler RNN with lower computational 
complexity and fewer parameters than LSTM (the latter being important in our setting of little data due to a lower 
risk of overfitting). This study serves as a first step towards the development of an end-to-end system capable of 
automated detection, classification, and prediction based on audio recordings of sperm whale sounds.

Results
Using a CNN-based approach to detect sperm whale echolocation clicks.  We achieve a training 
detection accuracy of 99.5% using 650 spectrogram images, including 325 from each class (click vs. no click) (see 
Supplementary Fig. S1). We optimize the model by performing an exhaustive grid search through the high-di-
mensional hyperparameter space. Using 100 unseen images (50 belonging to each class) reserved for testing the 
trained network, the model categorizes all 100 images according to the correct annotation with zero mislabeled 
spectrograms (100% accuracy) (Fig. 1).

Using LSTM and GRU RNN-based approach to classify sperm whale codas.  One of the challenges 
of supervised learning is the need for labeled data that, in some cases, might be hard to obtain. An approach 
recently gaining popularity (e.g. in computer vision) is that of “self-supervised” learning (see53), wherein one 
defines a “proxy task” bearing some similarity to the main problem, in order to exploit large-scale data for which 
the labels are easier to obtain. The neural network trained this way often produces features relevant for the main 
task (“transfer learning”) and can be fine-tuned on a smaller dataset, optimizing the cost function associated with 
the main task. This procedure involves training a “base” network to carry out the proxy task and transferring the 
learned representations to a “target network” that is subsequently trained to perform the main task54.

We follow a similar philosophy here, initially pretraining a deep LSTM base model to perform a proxy task of 
time series prediction of the temporal distance between clicks n and (n-1) in an n-click coda, given the first (n-1) 
clicks in the coda (see Supplementary Fig. S2). Training this network involves minimizing the mean squared error 
(MSE) between the ground truth and predicted Inter-Click Interval (ICI) values (see Supplementary Fig. S3); the 
ground truth labels (ICI values) are abundantly available for this proxy task. Prior to training, the relative error of 
the prediction can exceed 300% while following training, the error can be reduced to as low as 12.4%. This sug-
gests that this pretraining procedure enables the base network to extract meaningful features and representations 
from the time series coda sequence inputs. However, the task of predicting the temporal position of the last click 
in the coda is not necessarily of express interest in the study of sperm whale vocal behavior and is used as a proxy 
task only55.

After pretraining the model, we implement the transfer learning procedure, in which we save the layers of the 
pretrained network as fixed (untrainable) parameters and add shallow trainable layers, the weights of which are 
determined during subsequent training on the main tasks of coda type, vocal clan, and individual whale identity 
(ID) classification. The use of pretrained layers greatly simplifies the architecture, reduces the number of parame-
ters, and makes it possible to train the model for the main task given the constraints associated with using a rela-
tively small labeled dataset. With three annotated labels (coda type, vocal clan, individual whale ID) present in the 
dataset, we construct three different models, each optimized for the particular task. During the training phase, the 
target network adjusts the trainable parameters in such a way as to minimize the objective loss function, which, 
in this case, is the conventional categorical cross entropy function. As training progresses, accuracy (defined as 
the fraction of coda inputs labeled appropriately) increases (see Supplementary Fig. S4). Following training using 

Figure 1.  Input testing spectrogram images with the trained network’s predicted output labels of (a) Click and 
(b) No Click. The lack of labeled axes and the image resolution reflect that these are the images that are used 
purely as input data when training the CNN. The resolution suffices for training a CNN-based echolocation 
click detector.
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the Caribbean dataset, the losses for the coda type, clan class, and whale ID networks are 0.018, 0.160, and 0.071, 
respectively, and the respective accuracies are 99.4%, 95.1%, and 98.3%. Evaluating the networks using 8,032 
codas labeled by coda type, 1,898 codas labeled by clan class (949 belonging to each class “EC1” and “EC2”), and 
516 codas labeled by whale identity (258 belonging to each whale #5722 and #5727), we obtain respective accura-
cies of 97.5%, 95.3%, and 99.4%. For the clan class and whale ID tasks, we ensure to normalize the datasets such 
that each of the two labels present comprise half of the total dataset as a means to remove potential bias. In an 
effort to address possible overfitting, we repeat the analysis, ensuring to segment the codas into separate training 
and testing datasets. For the coda type network, we train the model using 90% of the 8,032 codas and obtain an 
accuracy of 99.7%, and we test the model on 804 unseen codas, yielding an accuracy of 99.9%, suggesting that 
the trained model generalizes effectively to data. Carrying out this procedure for the clan classifier, we train the 
model on 1,708 codas (95.1% accuracy) and test on 190 unseen codas, achieving an accuracy of 96.8% using the 
two clans “EC1” and “EC2”. Given the relatively small number of codas labeled by whale ID, we opt to evaluate the 
model using the entire dataset. These results suggest the validity of employing ML-based techniques to advance 
the study of sperm whale bioacoustics and provide a practical technique to deal with the scarcity of labeled data 
by using self-supervised pretraining on a proxy task. In addition, the results of the clan class and whale ID anal-
yses indicate clan-level and individual-level characteristics of sperm whale vocalizations, in accordance with the 
findings of43,44. Thus, not only do our results provide novel computational methods and techniques; they also offer 
important biological insight into sperm whale vocal behavior.

To visualize the activations of the networks, we employ the t-Distributed Stochastic Neighbor Embedding 
(t-SNE) algorithm to reduce the dimensionality of the hidden features within the models and to plot the outputs 
of the models in lower-dimensional feature spaces. We use Principal Component Analysis (PCA) to reduce the 
dimensionality of the feature space from 256 to 20, followed by t-SNE to further reduce the dimensionality from 
20 to three (for the coda type model, Fig. 2) or two (for the vocal clan, Fig. 3, and whale ID, Fig. 4, models). The 
conspicuous clustering provides qualitative insight into the behavior and efficacy of the trained models, as cluster-
ing shows the ability of the NNs to extract features distinguishing different signals. Lastly, we carry out a PCA to 
better understand the output of the networks and to examine how the networks might be using extracted features 
to perform the classification tasks (see Supplementary Fig. S5).

GRU and LSTM are similar recurrent network architectures that share the ability to retain memory from 
previous allocations. However, GRU-based networks are known to be more lightweight and to require fewer 
parameters, which is advantageous in our situation due to the risk of overfitting. For the coda type and vocal clan 
classification prediction tasks, we obtain respective training accuracies of 99.6% and 94.1% and testing accuracies 
of 99.6% and 95.3%. For the whale ID classification problem, we once again evaluate the trained model using 
the entire training dataset, yielding an accuracy of 99.6%. Noting the similar accuracies as those obtained using 
the LSTM approach, we investigate the architectures of the various models. The coda type, vocal clan, and whale 
ID LSTM models respectively contain 932,887, 855,810, and 855,810 total parameters, while the correspond-
ing GRU models involve 735,511, 658,434, and 658,434 parameters. While the classification performance of the 
GRU-based model is comparable to that of the LSTM-based network, the simpler architecture of the GRU RNN 
(which is reflected in its relatively fewer trainable parameters) suggests that the GRU approach might provide an 
improved means to achieve high classification accuracies while avoiding overfitting.

We repeat the LSTM methods using the Eastern Tropical Pacific (ETP) dataset, which contains codas labeled 
according to type and vocal clan. For the coda type analysis, we obtain an accuracy of 93.6% using 43 distinct 
coda types. While the entire dataset includes 4,071 codas categorized as non-noise signals, there are a number 

Figure 2.  t-SNE visualization of the coda type classifier with colors denoting different coda type. Standard PCA 
and t-SNE techniques are used to plot the coda type hidden features in a three-dimensional feature space.
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of relatively rare coda types, which might be challenging to classify correctly. Partitioning the dataset into a 
disjoint 90/10 training/testing, we train the model on 3,663 codas and obtain 94.2% accuracy, and we test on 
the remaining 408 unseen codas, yielding an accuracy of 94.4%. For the vocal clan classification task, the model 
yields an accuracy of 93.1% using 6,044 total codas, 1,511 belonging to each of the four vocal clan classes (two of 
the vocal clans present in the ETP dataset were discarded due to an insufficient number of recordings present). 
Repeating the analysis on segmented training (5,741 codas) and testing (303 codas) datasets yields accuracies of 
92.5% and 90.4% for training and testing, respectively. These findings demonstrate that the models are able to 
generalize to unseen datasets with a high degree of robustness.

Lastly, in an effort to address the ability of the NN-based methods to accommodate data from different data-
sets, we initially pretrain a coda type classification base model using the Dominica dataset and proceed to train 

Figure 3.  t-SNE visualization of the vocal clan classifier with the two classes representing the two clans 
identified in the eastern Caribbean (purple points “EC1”, red points “EC2”). We implement PCA and t-SNE to 
visualize the hidden features of the clan class network.

Figure 4.  t-SNE visualization of the whale ID type classifier distinguishing between two identified whales from 
the “EC1” clan recorded off Dominica (purple points indicate codas produced by whale #5722, and the red 
points are codas generated by whale #5727). We implement PCA and t-SNE to visualize the hidden features in 
the whale ID classifier network.
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and test the network using ETP coda data. Explicitly, using 7,847 Dominica ICI coda vectors with nine or fewer 
elements, we pretrain a network to perform the usual proxy task, resulting in a mean relative error in final ICI 
value prediction of 12.4%. After implementing the transfer learning procedure, we prepare segmented training/
testing datasets using codas from the ETP (restricting the analysis to coda vectors consisting of fewer than nine 
elements), and we train the target network to perform the coda type classification. Evaluating the model on train-
ing (3,012 codas) and testing (335 codas) datasets yields accuracies of 99.1% and 97.9%, respectively. The results 
of our study show the feasibility and advantages of using automated ML and NN-based computational approaches 
to analyze sperm whale acoustic signals.

Methods
We implement two distinct methods for applying machine learning techniques to sperm whale vocalizations: the 
first involves a CNN-based approach with spectrogram image inputs to construct an echolocation click detec-
tor; and the second uses LSTM and GRU RNNs with time series sequence inputs of coda interclick intervals to 
classify coda types and to recognize both vocal clans and individual whales. These classification tasks involve 
supervised learning and transfer learning procedures, during which we train the models using high-quality 
manually-annotated time-series data.

Using a CNN-based approach to detect sperm whale echolocation clicks.  For the CNN-based 
method, we construct a sperm whale echolocation click detector designed to label a spectrogram image as “click” 
or “no click” depending on the network’s classification of the input image. This requires a multi-step proce-
dure involving: (1) processing the raw acoustic data; (2) developing a threshold-based click detector in the time 
domain; (3) generating an image dataset consisting of appropriately labeled spectrogram images; (4) constructing 
and training a CNN; (5) testing the trained CNN to assess its ability to generalize to new data; (6) analyzing the 
robustness of the network and investigating its feature extraction behavior.

We process the raw acoustic data using two publicly available audio datasets: (1) the ‘Best Of ’ cuts from the 
William A. Watkins Collection of Marine Mammal Sound Recordings database from Woods Hole Oceanographic 
Institution (https://cis.whoi.edu/science/B/whalesounds/index.cfm), and (2) sample sperm whale acoustic 
recordings from the Centro Interdisciplinare di Bioacustica e Ricerche Ambientali (CIBRA) Cetacean Sound 
Archive (http://www-3.unipv.it/cibra/res_cesar_uk.html). We initially apply a Butterworth bandpass filter of 
order five with a low-frequency cutoff fl = 2 kHz and a high-frequency cutoff fh = 20 kHz; this enables us to 
remove unwanted (low-frequency) noise while preserving the broadband structure of clicks. We subtract the 
mean and normalize the peak amplitude to process the signal prior to developing our threshold-based click 
detector algorithm. For the threshold-based detector, we employ a local maximum search algorithm to identify 
suprathreshold (th = 0.15) peaks separated from nearest neighbors by a temporal distance greater than some 
canonical minimum ICI value (th_ICI = 0.2 s) determined by inspecting a histogram of detected inter-click time 
intervals, which allows us to identify clicks while neglecting interferences such as reflections, echoes, and subse-
quent click pulses. However, the primary motivation for devising this threshold-based method is to generate an 
appropriately-labeled spectrogram image dataset.

To construct the spectrogram image dataset, we perform the standard spectral analysis and transform to 
the time-frequency domain. The algorithm automatically labels spectrograms (created using a tapered cosine 
Tukey window with shape parameter of 0.25, optimized for transient signals), as “click” or “no click” depending 
on whether or not the threshold-based detector has identified a click as present or absent over the time interval 
(0.5 s) of the spectrogram. With this approach, we generate a training dataset consisting of 650 images and a 
testing dataset with 100 spectrograms, ensuring to normalize these datasets with equal numbers of images from 
each class (“click” and “no click”). Note, however, that a potential source of classification error could be derived 
from label noise in the training dataset, which should be addressed in a more comprehensive study investigating 
CNN-based click detectors.

We then proceed to construct the CNN by designing a custom architecture involving three consecutive con-
volutional and max pooling layers, followed by fully-connected dense layers56 (see Supplementary Fig. S6). We 
include a dropout regularization to prevent potential overfitting. Minimizing the conventional categorical cross 
entropy objective loss function, we train the network using the annotated training dataset. Performing an exhaus-
tive grid search through the hyperparameter space, we obtain a dictionary of optimal hyperparameters so as to 
maximize accuracy while still avoiding potential overfitting. For this study, these include filter size 5, batch size 
64, a sigmoid activation function, the ‘adam’ optimizer with learning rate 1 × 10−3, and 50 training epochs (see8 
for machine learning fundamentals). Following training, we use the trained model to evaluate the testing dataset 
as a means to investigate the network’s ability to generalize to unseen data. Finally, after having trained and tested 
the model, we use standard computational techniques to analyze the feature extraction behavior of the network. 
Namely, we sequester the high-dimensional hidden features within the network, and we employ a number of 
dimensionality reduction methods in order to visualize the ability of the network to cluster and classify input 
data. Firstly, we use PCA to understand how the different features contribute to the variance of the data. Also, we 
employ PCA to reduce the dimensionality of the hidden feature data from 80 to 20, and then we apply the t-SNE 
algorithm57 to further reduce the dimensionality in order to observe the clustering behavior of the trained model 
in a two-dimensional plot.

Using LSTM and GRU RNNs to classify codas, determine vocal clan, and recognize individual 
whales.  Using LSTM RNNs, we construct deep artificial neural networks, which we train to perform a num-
ber of classification tasks based on high-quality manually annotated datasets. Data used in this study comes 
from two long-term field studies on sperm whales: (1) off the island of Dominica in the eastern Caribbean31; and 
(2) across the ETP but with a focus on the Galapagos Islands58. The two study sites employed similar methods 
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common in the study of this species to detect, follow, and record sperm whales as well as similar analytical tech-
niques to define coda types, delineate vocal clans, and identify individual whales (details in29,44,59). The Dominica 
dataset contains ~9,000 annotated codas that were collected across 3,834 hours with whales on 406 days over 530 
days of effort from 2005–2016. This represents recordings from over 10 different social units who are members of 
two vocal clans referred to as “EC1” and “EC2”31,44. The ETP dataset contains ~17,000 annotated codas collected 
between 1985–2014 based on recordings of over 89 groups who are members of six vocal clans29,59. The annotated 
datasets contain inter-click interval (the absolute time between clicks in a coda, ICI) vectors classified according 
to categorical coda type, vocal clan membership, and (in the case of the Dominica dataset) individual whale 
identity using the methods outlined in the publications listed above. While codas tend to be comprised of 3–40 
clicks27, we restrict the analysis to codas with at most 10 clicks using the Dominica dataset or at most 12 clicks 
using the ETP dataset.

Whereas the click detector CNN described above is optimized for image inputs, the LSTM RNN used here 
accepts time-series sequence inputs. In this case, we use vectors whose elements consist of the ICI values between 
successive clicks within a given coda. The basic procedure for this time-domain approach to ML-based sperm 
whale bioacoustic analysis involves (1) pretraining an initial base model to perform a related proxy task and (2) 
train a model comprising the fixed neural network pretrained on the proxy task and a small trainable neural 
network to carry out the relevant classification tasks (coda type, vocal clan, and whale identity classification). 
After training the model, we proceed to test the model and visualize the networks’ activations, primarily by 
implementing dimensionality reduction algorithms. Initially, we pretrain a custom-built model to perform the 
proxy task (see Supplementary Fig. S7). In this case, we construct an architecture consisting of two LSTM layers 
with 256 hidden units followed by a fully connected layer and train the network (by minimizing the root mean 
square error using the ‘adam’ optimizer with a learning rate 1 × 10−3 for 20 epochs) to carry out a supervised 
time-series forecast. For each coda ICI vector of length n, we train the network to predict the nth ICI value given 
the first (n-1) values in the sequence. This pretraining procedure enables the network to extract features from the 
input data, and these features become relevant as we proceed with the transfer learning procedure. To implement 
transfer learning, we save the deepest (first) layers of the architecture of the pretrained model, and we fix the 
trained weights as untrainable parameters. After removing the shallowest (last) fully connected layers from the 
network, we add a supplemental LSTM layer with 256 hidden units (as well as additional fully connected layers) 
which involve randomly initialized trainable weight parameters. We use both rectified linear unit (ReLU) (ex.60) 
and softmax activation functions (see8), and we appropriately adjust the hyperparameters for each task. Using the 
ground truth labels (coda type, vocal clan, and whale identity) annotated by human experts, we train the model to 
perform the particular classification task of interest. We seek to minimize the categorical cross entropy loss func-
tion in which the network’s predicted label for the coda is compared with the ground truth annotated label. After 
training the model, we once again test the model on unseen data (so as to address the possibility of overfitting the 
training dataset), and we also use the standard PCA and t-SNE algorithms to investigate and visualize the feature 
extraction behavior of the trained model. Finally, we repeat the analysis replacing LSTM layers with GRU layers, 
and we compare the performances and architectures of the trained models.

Discussion
The large amounts of high-resolution data collected from increasingly wide regions of the oceans demand 
novel tools to automate the detection and classification of signals, which can accelerate cetacean bioacoustics 
research and promote species population assessment and management. Our results show that the sperm whales’ 
click-based sonar and communication system is well-suited for ML-based techniques. In particular, we estab-
lish that CNNs, neural network architectures used for computer vision tasks, can successfully be used to detect 
sperm whale echolocation clicks from spectrograms. This introduces the prospect of future studies aiming to con-
struct CNN-based models that automatically carry out finer-scale classification tasks (i.e. coda type, vocal clan, 
whale ID classification) by directly using spectrogram image inputs and avoiding the pre-processing stage of click 
extraction. This approach to sperm whale classification problems, however, demands large amounts of labeled 
raw acoustic data, which are not presently available. Instead, we opt to employ RNN-based methods to perform 
classification tasks on time-series of inter-click intervals. We demonstrate that LSTM and GRU, RNN architec-
tures used for speech recognition and text translation, are able to classify codas into recognizable types and to 
accurately predict the clan membership and individual identity of the signaler. This is a significant improvement 
over previous methods used to classify codas as it minimizes the role of the observer in determining any param-
eters a priori, which was required for coda type statistical clustering techniques involved in prior studies43,44,59. 
Nonetheless, the high coda type classification accuracies we obtain using novel ML-based methods support the 
previous categorization of sperm whale codas into existing, predefined types. In addition, our results show the 
feasibility of using “self-supervised” learning on proxy tasks and applying trained neural networks to label unseen 
coda data according to type, clan, and individual whale, which could drastically expedite the analysis of recorded 
sperm whale signals.

The datasets in this study collectively contain ~26,000 annotated sperm whale codas and represent the largest 
available labeled data of sperm whale coda signals. Using these datasets, this study exhibits the potential appli-
cations of ML to sperm whale vocalizations by demonstrating the ability of NNs to perform detection and clas-
sification tasks with high degrees of accuracy. However, because large volumes of high-quality data are required 
for training deep neural networks–which aim to achieve state-of-the-art classification accuracy–our analysis is 
limited to the coda types, clan classes, and individual whales with sufficiently sizable volumes of data to train the 
networks. In order to improve our methods, even larger datasets would be computationally and methodologi-
cally optimal, especially when performing more specialized tasks (e.g. individual whale identification). With that 
said, such large quantities of high-quality sperm whale data are difficult to obtain (due to the intensive nature of 
marine fieldwork) as well as to annotate/analyze since such processing tends to require trained human experts. 
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Presently, sperm whale bioacoustics research studies require significant time and oversight by researchers (e.g. 
to define dialects and extract codas), but the ML-based approaches remain somewhat restricted by the paucity 
of readily accessible data (including the bulk available data in addition to certain components of the data such as 
rare coda types). Given the constraints imposed by the limited available data, we show the use of pretraining with 
proxy tasks as a valid alternative. Our novel techniques achieve high classification accuracies and robustly and 
effectively generalize to new, unseen data while avoiding overfitting.

This study establishes the numerous advantages that ML-based methods provide for sperm whale bioacous-
tics research. The techniques presented in this study can also be helpful in the design of next-generation sensors 
and systems, which should directly intake and analyze sperm whale acoustic data from raw audio recordings. By 
automating the detection and classification steps, large-scale audio datasets could potentially be processed in near 
real-time, enabling ML approaches to successfully and efficiently address questions regarding sperm whale vocal 
behavior and communication (e.g. the cultural distinction between codas produced by different vocal clans) while 
simultaneously reducing the need for manual oversight.

Given that culture is important for the conservation of wide-ranging species61 and that human impacts can 
greatly erode the cultural diversity within a species62, it is critical to have a complete understanding of the cultural 
boundaries between clans of sperm whales in order to design a framework for the conservation of cultural diver-
sity.The novel ML-based techniques employed in this study enhance the scientific community’s understanding 
of sperm whale bioacoustics and provide an efficient means for analyzing large datasets, which can facilitate the 
development of improved conservation and management strategies designed to protect global sperm whale (and 
other cetacean) populations.

Data Availability
The Dominica coda dataset used to train and evaluate the neural networks is available as Supplementary File S6 
and the ETP coda dataset used to train and evaluate the neural networks is available as Supplementary File S7. 
The custom-written algorithms (Python 3.0) used in this study are available at: https://github.com/dgruber212/
Sperm_Whale_Machine_Learning. All data generated or analyzed during this study are included in this pub-
lished article and its Supplementary Information files. The machine learning code is available on Github.
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