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Efficient Deep Network 
Architectures for Fast Chest 
X-Ray Tuberculosis Screening and 
Visualization
F. Pasa1,3, V. Golkov3, F. Pfeiffer1,2, D. Cremers3 & D. Pfeiffer2

Automated diagnosis of tuberculosis (TB) from chest X-Rays (CXR) has been tackled with either hand-
crafted algorithms or machine learning approaches such as support vector machines (SVMs) and 
convolutional neural networks (CNNs). Most deep neural network applied to the task of tuberculosis 
diagnosis have been adapted from natural image classification. These models have a large number of 
parameters as well as high hardware requirements, which makes them prone to overfitting and harder 
to deploy in mobile settings. We propose a simple convolutional neural network optimized for the 
problem which is faster and more efficient than previous models but preserves their accuracy. Moreover, 
the visualization capabilities of CNNs have not been fully investigated. We test saliency maps and grad-
CAMs as tuberculosis visualization methods, and discuss them from a radiological perspective.

Tuberculosis is classified as the fifth leading cause of death worldwide, with about 10 million new cases and 1.5 
million deaths per year1. Being one of the world’s biggest threats and being rather easy to cure, the World Health 
Organization recommends systematic and broad use of screening to extirpate the disease. Posteroanterior chest 
radiography, in spite its low specificity and difficult interpertation1, is one of the preferred tuberculosis screening 
methods. Unfortunately, since TB is primarily a disease of poor countries, the clinical officers trained to interpret 
these chest X-Rays are often lacking2,3.

In these settings, an automated algorithm for tuberculosis diagnosis could be an inexpensive and effective 
method to make widespread tuberculosis screening a reality. As a consequence, the topic has attracted the atten-
tion of the machine learning community, which, in a range of publications3–12, tackled the problem with methods 
ranging from hand-crafted algorithm to support vector machines and convolutional neural networks. The results 
are encouraging, as some of these methods achieve nearly-human sensitivities and specificities.

Over the last years, end-to-end trained convolutional neural networks (CNNs) have shown drastically supe-
rior performance on a multitude of image analysis challenges when compared to more classical hand-crafted 
algorithms or even other machine learning approaches such as support vector machines, in particular when the 
challenge can be sufficiently well characterized by abundant labeled training data. This makes deep learning a 
promising approach for medical image analysis9 and showed state-of-the art performances in tasks spanning from 
breast cancer classification13, organ14 and tumor segmentation15,16 to scan time reduction for diffusion MRI17, to 
name a few.

The use of deep learning on chest X-Rays has attracted some attention18,19 due to the cheapness of this imaging 
technique, the abundance of data20 and the similarity to natural images, which allows the transfer of models to 
medical tasks. The effectiveness of these algorithms on chest x-ray data has been shown in various publications, 
with some even generating automatic annotations for the symtoms18.

For the case of tuberculosis diagnosis, deep convolutional networks have demonstrated performances at least 
on par with those of the best competing approaches, while being conceptually simpler. Competing approaches 
often make use of complex machine learning pipelines3,4,8,11. For instance, Vajda et al.11 use a pipeline that starts 
with an atlas based lung segmentation algorithm, then extracts manually selected features such as shape and 
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curvature descriptor histograms or the eigenvalues of the hessian matrix, and finally uses a classifier to diagnose 
the disease. They obtain results on par with results using deep learning6, but their multi-stage pipeline is more 
complex that an end-to-end trained convolutional neural network and requires more development work.

Previous publications using deep learning adopt deep learning models such as AlexNet, GoogLeNet and 
ResNet, which were developed for natural images classifications tasks5–7,18. While these are very powerful clas-
sifiers, they have been developed and optimized to be trained on more than a million images and to distinguish 
between a thousand classes. As a consequence, they require large amounts of memory and computation, both for 
training and inference, and their large number of degrees of freedom makes them prone to overfitting and less 
likely to generalize well when applied to medical tasks with limited amounts of data21.

Additionally, previous studies tackle only superficially the task of visualization6, which is important to assess 
the limitations of such techniques from a radiological perspective and to provide a second opinion to radiologists. 
A deeper understanding of the radiological aspects could be helpful for further advances and to build trust among 
the medical community in light of a future practical application.

In the present work we address these issues. We present a deep learning architecture tailored to tuberculosis 
diagnosis. With this approach we reduce the computational and memory requirement significantly, without sac-
rificing the classification performance. We further discuss the results of the training through the use of saliency 
maps and grad-CAMs. These techniques, which, to the best our knowledge, were never applied to this problem, 
provide an approximate visual diagnosis that might be a useful additional tool for clinicians.

Methods
Classification.  The architecture of our network is shown schematically in Fig. 1. It consists of 5 convolutional 
blocks, followed by a global average pooling layer (which compresses each feature map to its mean value) and a 
fully-connected softmax layer with two outputs. Each convolutional block contains two 3 × 3 convolutions with 
ReLUs, followed by a max-pooling operation. The pooling size is 3 × 3 with stride 2, similarly to AlexNet22. Each 
block also has a shortcut connection implemented by a 1 × 1 convolution: the output of the shortcut is summed 
to that of the 3 × 3 convolutions just before pooling. The convolutions are all zero-padded in order to preserve 
the input resolution. Each convolutional layer also makes use of batch normalization23 to speed up the training 
procedure and reduce overfitting.

The convolutions of the first block have a stride of 2 in order to reduce the amount of computation required by 
the network. The resolution of the input is reduced by a factor of 8 by the first block, allowing us to use 512 × 512 
images as input. A similar strategy is used by AlexNet22. The shortcut connection of the first block has stride 4 to 
match the resolution of the other convolutions. In our tests, using a stride of 2 had no effect on accuracy while 
decreasing the computational requirements significantly. Remarking that the first layer extracts very basic fea-
tures, such as edges and stripes patterns24, a possible explanation for this is that the patterns can be extracted as 
easily with strided convolutions as with dense ones.We might as well invest the computational resources deeper 
in the network, where the represented features are much more complex and dense convolutions can be used more 
efficiently.

The depth of 5 blocks was chosen because this number corresponds to receptive window that covers the whole 
input image, and this window size allows the network to access a large context for its decisions at each location. 
The receptive window is the region around each location that can contribute to the activation of the neuron at that 
location. Empirical tests confirmed that this depth leads to good classification performances.

The input data is preprocessed with the following steps: (1) any black band or border is cropped from the 
edges of the image, (2) the image is resized so that the smaller edge is 512 pixels long and (3) the central 512 × 512 
region is extracted. After this, the mean over all pixels in the whole dataset is subtracted and the pixel values are 
divided by their standard deviation.
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Figure 1.  Schematic representation of the network architecture. conv = convolution, pool = pooling, 
GAP = Global Average Pooling, fc = fully connected. Convolutions and pooling sizes are reported as 
height × width/stride. The additional number indicates the number of feature maps for convolutions and the 
number of output neurons for the fully connected layer. Circled pluses indicate an addition operation.
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Training was performed using categorical cross-entropy as the error function and with mini-batches of 4 
samples. The samples are shuffled each epoch before forming the mini-batches, in order to randomize the whole 
learning procedure and reduce overfitting. The samples are augmented with elastic deformations with 80% prob-
ability. To deform the images, we lay a 4 × 4 square grid (e.g. with the tile side 128 pixels long) on the image and 
randomly displace the central grid vertices with random vectors whose component are sampled from a normal 
distribution with standard deviation of 32 pixels. The image is then interpolated with linear interpolation accord-
ing to the displaced grid’s reference system25. We found deformations with small grid sizes but relatively high 
displacements to generate more realistic images than fine grids with small displacements, because fine grids tend 
to introduce a lot of small-scale deformation (i.e. ribs become wiggled).

For the weight initialization we used He normal initialization26 on all layers (in the last layer we divided the 
variance by 2  compared to the previously cited paper, because it uses softmax instead of rectification27). We 
trained for 150 epochs with the Adam optimizer28 using the following parameters: β = .0 91 , β = .0 9992 , 
 = × −1 10 8 and learning rate × −8 10 5.

Our implementation of this architecture is available for download at https://github.com/frapa/tbcnn.

Visualization.  Once the network was trained for classification, we also generated saliency maps24 and gra-
dient class activation maps (grad-CAM)29,30. These visualization techniques help us understand the network and 
may also be useful as an approximate visual diagnosis for presentation to radiologists.

Saliency maps and grad-CAMs generate a heatmap that shows which region of the image weights more for the 
classification. The principle these visualizations are based is the following: the derivative of the output class score 
w.r.t to an activation in a feature map indicates the impact this activation has on the class score. If the derivative 
is small, then a change in the activation will have a negligible impact on the output score, therefore the activation 
is unimportant for the classification. On the contrary, a big derivative indicates that the activation is important 
for the class score. Since the units in a feature map are spatially arranged, calculating the derivative for each unit 
generates an image.

The two techniques differ in how the derivative is back-propagated through the ReLUs, and in which feature 
map is used. Saliency maps calculate the derivative w.r.t. the input image, and thus generate a heatmap with the 
same resolution of the input. Grad-CAM use deeper feature maps, which typically results in better localization29 
due to the higher-level nature of the features in deeper layers, but are available only at reduced resolution due to 
pooling. This is a trade-off which may or may not lead to better results.

We implemented these two visualizations as described in the original papers29,30. All the saliency maps and 
grad-CAMs are generated for the positive class, because we want to visualize the regions where tuberculosis in 
present and not the other way around.Materials

In our numerical experiments we used data coming from two different public databases: (1) the NIH 
Tuberculosis Chest X-ray dataset31, which is subdivided in two separate datasets from Montgomery County in 
Maryland and Shenzhen, and (2) the Belarus Tuberculosis Portal dataset32. The Montgomery and Shenzhen data-
set contain 138 and 662 patients respectively, with and without TB, while the Belarus dataset has a total of 304 
chest x-ray images of patients with confirmed TB. Table 1 shows some more information about the datasets.

We trained our network on the dataset from Maryland and Shenzhen for comparison with other publications. 
We also trained on the combination of all the three datasets to exploit all the available data and to take advantage 
of the differences in acquisition between the different datasets, which allows the network to learn more robust 
features.

Results and Discussion
Classification performance.  A 5-fold cross-validation study was performed on each of our three datasets 
(Maryland, Shenzhen and Combined). The cross-validation study is very useful to estimate the accuracy of the 
model especially if the dataset is small (e.g. in the case of the Montgomery dataset), because the performances 
can change significantly between test sets. If many outliers are chosen to be in the test set, then the performances 
might be unsatisfactory because the neural network cannot learn to predict them from the training set. On the 
contrary, if most outliers are in the training set, then they do not count in our accuracy measurement and we 
might overestimate the quality of the model. Averaging among sets ensures the results are reliable.

The Receiver Operation Characteristic (ROC) curves for the three experiments are shown in Fig. 2. The 
accuracy and Area Under the ROC curves (AUC), shown in Table 2, are in line with the results in many other 

Montgomery Shenzhen Belarus Total

Patients 138 662 304 1104

without TBC 80 326 0 406

With TBC 58 336 304 698

Male 63 442 194 699

Female 74 213 110 397

Other/Unknown 1 7 0 8

Cross-validation subset 27–28 132–133 — 220–221

Table 1.  Overview of the datasets used for training and evaluation of tuberculosis classification. The last row 
indicates the size of a subset used for the cross-validation study, which is about one-fifth of the total size of the 
dataset. It also represents the size of the validation and test sets.
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publications, which demonstrates that our architecture choice does not impact the classification performance. 
Note that in Table 2 we try to make the fairest comparison possible, including the best results on the exact same 
datasets from the cited papers, but excluding methods like pre-training on ImageNet and ensemble methods.

If we do not restrict ourselves to the Montgomery and Shenzhen datasets and we include also ensemble meth-
ods and pre-training, we can find better accuracies and AUC scores than ours. Among other publication not 
using convolutional networks, Chauhan et al.10, for example, obtain 94.2% accuracy and AUC of 0.957: interest-
ingly they use an SVM classifier based on whole-image features. Another example is the work is of Vajda et al.11,  
whose results are significantly better than ours, at 95.6% accuracy and 0.99 AUC for the Shenzhen dataset. Their 
approach consists in segmenting the lungs with an atlas-based algorithm, extracting features such as shape 
descriptor histograms and using a simple neural network for classification. The disadvantages of this method, 
apart from being rather complicated, is the need for annotated lung shapes and the use SIFT for segmentation, 
which is a patented algorithm for edge-detection and therefore not freely usable.

Among papers making use of CNNs, Hwang et al.5 obtain 90.3% accuracy and AUC of 0.964 using they use 
transfer learning from ImageNet and training on a dataset of 10848 CXRs. However, the accuracy and AUC they 
obtain without pre-training are lower than ours, despite having a database ten times larger. Training the network 
presented here on a database of this size is likely to outperform these results.

Lakhani and Sundaram6 of the other hand, use the well-known AlexNet and GoogLeNet with excessive aug-
mentation and without pre-training to reach an AUC of 0.94-0.95. Using transfer learning and an ensemble of the 
two networks they achieve an AUC of 0.99. A similar approach is used by Islam et al.7: in their work the AlexNet, 
VGG and ResNet models are compared. Only ResNet, the most recent and powerful model, achieves slightly 
better accuracies (88% versus 86.2%) but with lower AUC (0.91 vs 0.925) than the present work. They also build 
an ensemble of 6 CNNs and obtain 90% accuracy and 0.94 AUC.

It seems plausible that, increasing the amount of training data or performing pre-training on a bigger dataset, 
it would be possible to obtain similar results with our architecture. The use of pre-training is however out of the 
scope of this work.

Time and size requirements.  The advantage of this network is that it has only about 230,000 parameters, 
whereas the second smallest network (GoogLeNet) has 7 million33. Other architectures used in the studies cited 
above have up to 60 million parameters22. Therefore, the architecture presented here has the highest parameter 
efficiency. A more compact network with fewer degrees of freedom is less prone to overfitting and more likely to 
generalize well, which is confirmed by the fact that the only regularization measures used were batch normaliza-
tion and data augmentation.

The number of parameters and the complexity of the network affect the training and inference speed and 
its hardware, energy and memory requirements. Our best network can be trained in about 1 hour on a low-end 
Nvidia GeForce GTX 1050 Ti, which currently (as of 2019) costs less than $ 200. Training requires about 800 MB 
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Figure 2.  Receiver Operation Characteristic (ROC) curves of the 5-fold cross-validation study on three 
different datasets. The accuracy and Area Under the ROC (AUC) score are (a) 0.811 for the Montgomery 
dataset, (b) 0.9 for the Shenzhen dataset and (c) 0.925 for the combined dataset. For a description of the three 
datasets refer to Table 1.

MC SZ CB

MC SZ Other†

5 4 11 5 4 7 11 6

Accuracy [%] 79.0 84.4 86.2 67.4 78.3 78.3 83.7 84.1 88.0 95.6 —

AUC 0.811 0.900 0.925 0.884 0.869 0.87 0.926 0.900 0.91 0.99 0.94–0.95

Table 2.  Accuracy and AUC on the Maryland (MC), Shenzhen (SZ) and combined (CB) datasets 
withcomparison to other publications (cited in the second row). Among the various results reported in these 
publications, we selected the best ones which are comparable to our results, for example excluding those that 
make use of models pre-trained on the ImageNet database. †This dataset is similar to the combined dataset used 
here, as it uses part of the same data and has a similar number of patients.

https://doi.org/10.1038/s41598-019-42557-4


5Scientific Reports |          (2019) 9:6268  | https://doi.org/10.1038/s41598-019-42557-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

of graphic memory. The inference on the same GTX 1050 Ti takes about 5–6 milliseconds and uses less than 200 
MB of memory. Inference requires less computational power and memory than training, therefore the neural 
network could even be deployed on much cheaper, less powerful and energy hungry hardware, such as a low-cost 
board computer like a Raspberry Pi, while keeping the inference time acceptable for the use case.

A case for simpler and more efficient methods has already been made by previous publications10–12, since it 
would make it easier to deploy these models cheaply and effectively, for low resource regions where tuberculosis 
is more dominant. Unfortunately, no other publication reports processing time and memory requirements. We 
will nonetheless attempt a comparison with other works, using the number of floating-point operations, or FLOP, 
as a meter for speed. Such comparison is not always proportional to actual performances, but is useful as a rough 
estimate.

Our architecture has about 350 MFLOPs and 230 thousand parameters. The AlexNet used by Lakhani and 
Sundaram6 has 1.5 GFLOPs and about 60 million parameters, while GoogLeNet, used by the same authors, has 
about 3 GFLOPs and 7 million parameters. ResNet 152, which is the model we report in Table 2 for Islam et al.7,  
has about 11 GFLOPs and 60 million parameters. The only work not using a standard architectures is those 
of Hwang et al.5: the model reported in their work has about 11 GFLOPs. As a confirmation for this fact, they 
report using a top-of-the-line Nvidia Titan with 12 Gb of memory, while training on 500 × 500 images instead of 
512 × 512 and having similar accuracy. Moreover, the ensemble methods used by some of these papers increase 
the requirements still further.

The publications making use of other machine learning techniques are harder to compare without reproduc-
ing the experiments, partly due to missing information in the publications but also because of differences in the 
datasets and hardware used. Karargyris et al.12 report that splitting their classifier leads to faster processing. The 
similar paper of Vadja et al.11 use a limited set of features to improve accuracy and reduce the inference time. How 
they both compare to our results is unclear: we can only guess that inference for the work of Vadja et al.11 could 
take more than 1 second, because the SIFT algorithm they use for edge detection has been reported to have such 
performances in similar cases34. A more promising approach is the one of Chauhan et al.10, because they skip the 
segmentation entirely, but they unfortunately do not report any performance information. Melendez et al.3 report 
their training time using an SVM, their best method has a training time of about 3 hours, about 3 times ours, 
while having slightly lower accuracy and training on only 300 images.

Therefore, our architecture achieves at least a 4-fold reduction in computational complexity compared to other 
deep learning models, and does it without affecting classification accuracy. A general comparison with other 
techniques is difficult, but seems to indicate that our approach is competitive. We believe the main advantage of 
our work is that a smaller network allows the use of cheaper and less power-hungry hardware, which could help 
the adoption of these algorithms, especially in low-income countries and remote locations.

Visualization.  In this section we discuss some selected saliency maps and grad-CAMs, and argue that they 
are useful tools to visualize tuberculosis. The samples presented in the following paragraphs have been generated 
with the network trained on the Montgomery dataset, unless noted. In the supplementary materials we provide 
about ten random saliency maps generated for each case (true positives and negatives and false positives and 
negatives) in order to prove the usefulness of this approach. All these supplementary saliency maps have been 
generated with the network trained only on the Montgomery dataset.

The first row of Fig. 3 shows an example of a chest X-ray truly classified as positive for tuberculosis. The Chest 
X-ray shows patchy opacities in the right upper lobe with pleural apical thickening and upward deviation of the 
right hilum. These findings are consistent with pulmonary tuberculosis. In the saliency map, the outline of the 
soft tissue structures of the mediastinum are highlighted, and especially the area of the right upper lobe. This 
correlates perfectly with the pathological changes seen in the X-ray image.

The second row of Fig. 3 gives an example of the chest X-ray of a healthy patient, which was correctly iden-
tified as negative for tuberculosis. Saliency map (panel f) shows symmetric high lightening of the borders of the 
mediastinum. There is no increased signal in any of the lobes of the lung.

The first row of Fig. 4 shows a healthy patient, which was wrongly classified as positive for tuberculosis. The 
saliency map indicates an area in the right upper lobe as suspicious for tuberculosis. Indeed, this area presents 
with decreased radiolucency, however, this is caused by superposition of several bones, namely the clavicle and 
the ribs.

The patient in the second row of Fig. 4 suffers from tuberculosis; however, the algorithm rated this X-ray 
image as negative. There are patchy opacities and bronchiectasis in the left upper lobe of the lung. These findings 
are consistent with pulmonary tuberculosis. Saliency map shows a main focus on the border of the mediastinum 
on the right and also the edges of several ribs on the left hemithorax.

In general, neural networks usually identify edges and use this information for detection of findings and 
decision-making. In our examples, the saliency maps always highlight the edges between the organs of the medi-
astinum, which present with a high attenuation, and the transparent lung tissue.

Figure 5 shows the grad-CAMs of different layers for one on the correctly classified patients. All the images 
were generated for the positive class in order to highlight features that are important for the detection of TB. 
Grad-CAMs can be generated for each layer in the network and have been reported to offer better localization 
than saliency maps for natural image recognition tasks29. However, one characteristic of grad-CAMs is that they 
show better localization ability when generated on deeper layers that represent higher-level features, but for these 
layers they are also of lower resolution due to pooling. Since tuberculosis’ features are typically rather small, we 
found that grad-CAMs are not as useful as saliency maps for diagnostic purposes.

Qualitatively, the saliency maps benefit from the bigger dataset more than the sheer classification accuracy 
or AUC score. Figure 6 shows the saliency map for the patient which is also shown in the first row of Fig. 3, but 
produced using the network trained on the combined dataset. In this figure we can see that, in spite of a relatively 
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Figure 3.  Saliency map with overlay for two correctly classified cases. Panels (a) and (d) show the chest images 
of the patients, panels (c) and (f) show the saliency maps, while panels (b) and (e) show the saliency maps 
overlaid on the chest images for comparison. The first row shows a patient with tuberculosis, with output score 
0.98 (the maximum was 1). The second row shows a healthy patient with score 0.00 (the minimum was 0). Both 
scores suggest high confidence in the prediction.

Figure 4.  Saliency map with overlay for two misclassified patients. Panels (a) and (d) show the chest images of 
the patients, panels (c) and (f) show the saliency maps, while panels (b) and (e) show the saliency maps overlaid 
on the chest images for comparison. The first row shows a healthy patient classified with output score 0.98 (the 
maximum was 1). The second row shows a patient with tuberculosis with output score 0.04 (the minimum was 
0). Both scores suggest serious misclassifications.
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low accuracy increase of 7%, the image appears much easier to interpret (compare with the radiologist’s diagnosis 
above). The focus of the saliency map is indeed on the tuberculosis-affected areas, while the noise and the disturb-
ing edge-detection effect are reduced. This result is remarkable for its precision, if the absence of any annotation is 
taken into account. Localization seems to benefit from a bigger dataset more than other metrics.

Conclusion
This work presents an advanced neural network architecture optimized for tuberculosis diagnosis. We can train 
this specialized architecture from scratch and achieve good results compared to other publications, while reduc-
ing the computational, memory and power requirements significantly.

We also analyzed the output with saliency maps and grad-CAMs and found that saliency maps offer a good 
visual explanation of the network decision. Saliency maps were interpreted by an expert radiologist (one of the 
authors, D.P.) and were found to highlight areas where tuberculosis was visible in many cases. We believe that sali-
ency maps can be an important tool for clinical officers to review and interpret the decision making of the algorithm.

Open points that need to be addressed in future work include the use of pre-training and bigger datasets to 
bring the classification accuracy and AUC on par with other works, while preserving our speed advantage. Since 
the network is able to localize the symptoms of tuberculosis, it could even be possible to generate a textual anno-
tation for each case, as was successfully done in similar publications18.

Data Availability
The Montgomery and Shenzhen dataset used in this study are published by the U.S. National Institute of Health 
(NIH) and are accessible at https://ceb.nlm.nih.gov/repositories/tuberculosis-chest-x-ray-image-data-sets/31. 
The Belarus dataset is published by different Institutes in Belarus on the Belarus Tuberculosis Portal32, accessible 
at http://tuberculosis.by.
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Figure 5.  Gradient class activation maps (grad-CAMs) for different layers of the same patient. Panel (a) shows 
layer 1, (b) layer 4, (c) layer 7, (d) layer 10 and (e) layer 13. The scales of each panel are independent of each 
other. The patient is also shown in the first row of Fig. 3 (the true positive). The activation maps are calculated 
for the positive class and are shown for the last layer of each convolutional block (e.g. the one just before 
pooling). Activation maps of the higher layers show higher level features, which should be tuberculosis specific.

Figure 6.  Saliency map of our network trained on the combined dataset, using about 660 patients for training. 
Panels (a) shows the chest images of the patients, panel (c) shows the saliency maps, while panel (b) shows the 
saliency maps overlaid on the chest images for comparison. This figure should be compared to the first row of 
Fig., which shows the saliency map predicted for the same patient, but with the network trained only on the 
Montgomery dataset. The localization ability of this saliency map is drastically improved. The image appears less 
noisy in unimportant regions and more intense in the areas where tuberculosis is really present.
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