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Rice Blast Disease Recognition 
Using a Deep Convolutional Neural 
Network
Wan-jie Liang1,2, Hong Zhang2, Gu-feng Zhang3 & Hong-xin Cao1

Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep 
convolutional neural network (CNN) is generally considered the state-of-the-art solution in image 
recognition. In this paper, we propose a novel rice blast recognition method based on CNN. A dataset 
of 2906 positive samples and 2902 negative samples is established for training and testing the CNN 
model. In addition, we conduct comparative experiments for qualitative and quantitatively analysis 
in our evaluation of the effectiveness of the proposed method. The evaluation results show that the 
high-level features extracted by CNN are more discriminative and effective than traditional hand-
crafted features including local binary patterns histograms (LBPH) and Haar-WT (Wavelet Transform). 
Moreover, quantitative evaluation results indicate that CNN with Softmax and CNN with support vector 
machine (SVM) have similar performances, with higher accuracy, larger area under curve (AUC), and 
better receiver operating characteristic (ROC) curves than both LBPH plus an SVM as the classifier and 
Haar-WT plus an SVM as the classifier. Therefore, our CNN model is a top performing method for rice 
blast disease recognition and can be potentially employed in practical applications.

Rice as a food source provides protein and energy to more than half of the world’s population1. Moreover, rice 
consumption and demand are increasing with the growth of the population. To meet the increased food demand, 
rice production must be increased by more than 40% by 20302. Unfortunately, rice diseases have caused a great 
deal of loss in yield, and rice blast disease is considered as one of the main culprits3, reducing yield by between 
60% and 100%4. Currently, the use of pesticides and deployment of blast-resistant cultivars are the main methods 
of combating the disease5. However, excessive use of pesticides not only increases the cost of rice production but 
also causes considerable environmental damage6. Moreover, in practice, diagnosis of rice blast is often manually 
conducted and this is subjective and time-consuming even for well-experienced experts. In modern agricultural 
practices, it is very important to manage pests and diseases using highly efficient methods with minimum damage 
to the environment7. In recent decades, combined with crop images, computer-aided diagnostic methods have 
become dominant for monitoring crop diseases and pests8–10. An automated rice disease diagnostic system could 
provide information for prevention and control of rice disease, set aside time for disease control, minimize the 
economic loss, reduce the pesticide residues, and improve the quality and quantity of agricultural products. In 
order to achieve such a system, research in effective algorithms of feature extraction and classification of rice 
disease is critical.

Currently, there exists no public dataset for rice blast disease classification. To fill this void, we establish in this 
work a rice blast disease dataset and use it for training and testing a disease classification model, based on convo-
lutional neural network (CNN). The rice blast disease images are obtained from the Institute of Plant Protection, 
Jiangsu Academy of Agricultural Sciences, Nanjing, China. These images are captured in a naturally-lit envi-
ronment while plant protection experts conduct field investigation. As a result, the trained CNN model on the 
dataset can be expected to have direct applicability. At the same time, the dataset is useful for other people who 
are interested in rice or even crop disease classification research.

In recent years, due to its ability to extract good features, CNN has been employed extensively in machine 
learning and pattern recognition research11–17. Hinton et al.18 stated that a multi-layer neural network has excel-
lent learning ability, and that the learned features can abstract and express raw data conveniently for classification. 
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CNN provides an end-to-end learning solution that avoids image pre-processing, and extracts relevant high-level 
features directly from raw images. The CNN architecture was inspired by the visual cortex of cats in Hubel’s and 
Wiesel’s early work19. In particular, Krizhevsky20 performed object classification and won the first place in the 
ImageNet Large Scale Visual Recognition Challenge 2012 using a deep CNN. This is followed by the emergence 
of many improved algorithms and applications of CNN21–23. Since20, similar CNN architectures have been suc-
cessfully developed to solve a variety of image classification tasks.

With full consideration of CNN’s excellent performance, we propose a method that uses CNN for rice blast 
image feature extraction and disease classification, and we are able to obtain remarkable performance through 
fine tuning the structure and the parameters of a CNN model. We conduct comparative experiments for rice blast 
disease recognition with two traditional feature extraction methods, LBPH and Haar-WT. As well, we combine an 
SVM classifier with the deep features extracted from the CNN to further investigate and verify the effectiveness 
of deep features of CNN.

The major contributions of this paper are summarized as follows. First, we introduce a rice blast disease data-
set with the assistance of plant protection experts. The dataset is used to train and verify our model. The dataset 
is useful for other researchers who are interested in rice or even crop disease recognition. The dataset is available 
from the, http://www.51agritech.com/zdataset.data.zip. Second, we propose an effective rice blast feature extrac-
tion and classification method using CNN. The evaluation results show that the high-level features extracted by 
the CNN are more discriminative than LBPH and Haar-WT, with classification accuracies above 95%.

The remainder of this paper is organized as follows. Section 2 describes the dataset and the feature extrac-
tion and the rice blast disease classification methods. Section 3 describes the evaluation criteria of the feature 
extraction and recognition methods. The experiments and results are also provided and discussed in this section. 
Finally, the conclusions and future work are given in Section 4.

Rice Blast Disease Dataset and Proposed Classification Method
Dataset.  Rice images with rice blast disease are obtained from the Institute of Plant Protection, Jiangsu 
Academy of Agricultural Sciences, Nanjing, China. The Institute mainly conducts research in the mechanism 
and the technologies in controlling the disease and insect pests of such crops as rice, wheat, cotton, rape, fruit 
and vegetables in Jiangsu Province and across China. To avoid duplicates and ensure label quality, each image 
in our dataset is examined and confirmed by plant protection experts. There is no special requirement for rice 
blast disease images and their pixels, and no special preprocessing is done. All the rice blast images are patches 
of 128 × 128 pixels in size, extracted from original larger images with a moving window of a stride of 96 pixels. 
Then, the patches containing rice blast lesions are identified by domain experts and used as positive samples, 
and patches without lesions are used as negative samples. The final dataset includes 5808 image patches of which 
2906 are positive and 2902 negative. Some positive and negative samples are shown in Fig. 1. In addition to scale, 
rotation, illumination and partial viewpoint changes, the dataset also has the following characteristics. First, the 
background of rice canopy texture, water body, and soil can cause great difficulty to recognition, as do dead leaves 
and other plant lesion. Second, rice blast lesion shape and location are not predictable. Overall, the combination 
of above factors poses significant challenges for rice blast disease recognition.

Feature extraction from rice blast images.  Feature extraction is a key step in object recognition. It 
requires the features to be sufficiently discriminating to be able to separate the different object classes while 
retaining invariant characteristics within the same class. Feature extraction is also a dimension reduction process 
for efficient pattern recognition and machine learning in image analysis. In this work, CNN, Harr-wavelet and 
LBPH feature extraction methods are employed and compared to process rice blast images.

The CNN model.  CNN24 is a multi-layer neural network with a supervised learning architecture that is often 
made up of two parts: a feature extractor and a trainable classifier. The feature extractor contains feature map 
layers and retrieves discriminating features from the raw images via two operations: convolutional filtering and 
down sampling25. Convolutional filtering as the key operation of CNN has two vital properties: local receptive 
field and shared weights. Convolutional filtering can be seen as a local feature extractor used to identify the rela-
tionships between pixels of a raw image so that the effective and appropriate high-level features can be extracted 
to enhance the generalization ability of a CNN model26. Furthermore, down sampling and weight sharing can 
greatly reduce the number of trainable parameters and improve the efficiency of training. The classifier and the 
weights learned in the feature extractor are trained by a back-propagation algorithm.

Figure 1.  Example images of the rice blast disease dataset: (a) positive samples and (b) negative samples.
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A convolutional layer computes feature maps by applying convolution kernels to input data followed by an 
activation function as follows27:
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l is the offset. For a more detailed explanation of convolutional neural net-
works, we refer the reader to LeCun et al.24 and Krizhevsky et al.20.

In this study, two network structures similar to Lenet5 (LeCun et al.)24 are established. As shown in Fig. 2, the 
first network contains four convolutional layers, four max-pooling layers, and three fully connected layers, and 
ReLU is added after each layer (Fig. 2(a)). The second network has the same convolutional layers and max-pooling 
layer structure as the first network, but has two fully connected layers (Fig. 2(b)). To avoid over-fitting, one spatial 
dropout layer is added after the C5 layer for the both models, and another dropout layer is added after the F10 
layer for the first model and after the F9 layer for the second model, respectively. The related parameters of CNN 
are shown in Fig. 2.

The models are implemented using Torch7 which is a scientific computing framework. The main steps of the 
second model are shown in Fig. 3. Stochastic gradient descent (SGD) is employed for training, and the number of 
training epochs is 150. Other training parameters are as shown in Fig. 3.

Comparative experiments are conducted for the two CNN models, and classification accuracy are computed. 
To reduce possible biases in the selection of the validation set, 5-fold cross-validation is employed. In 5-fold 
cross-validation, the original sample is randomly partitioned into five equal size subsamples. Of the five subsam-
ples, a single subsample is retained as the validation set, and the other four subsamples are used for training. The 
cross-validation process is then repeated five times, and the results are averaged. As shown in Table 1, there is no 
obvious performance improvement of the first CNN model with more connected layers. In order to ensure that 
there is no over-fitting, the learning curves are generated. Here, 10% of the original samples are reserved as a test 
set, and 500 samples are randomly selected from the remaining dataset as training samples at starting point. By 
increasing 500 samples for training incrementally, we repeat the training process ten times in each step. The clas-
sification accuracy of training set and validation set are averaged, and the learning curves are obtained (Fig. 4). It 
can be seen that the two models have low bias and variance, good convergence, and high accuracy, and that there 
is no over-fitting. However, the stability of the first model is poor with small samples. Therefore, the second CNN 
model is chosen in the remainder of this study.

Haar-WT.  Haar-WT is chosen as a competing hand-crafted feature in our evaluation. Haar-WT is an extension 
of the wavelet transform to simplify computation, and it is commonly used in image feature extraction. Haar-WT 
is a multi-resolution approach for image texture analysis28 that employs two important functions of WT: the high 

Figure 2.  Structure of the two CNN models.
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Figure 3.  The main code of the second model.

1th model 2th model

Accuracy 95.37 95.83

Table 1.  The 5-fold cross-validation results of the two CNN models.

Figure 4.  Learning curves of the two CNN models: (a) for the first model and (b) for the second model.
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pass filter and the high pass filters29. At each level, a 2D-image is processed through low pass and high pass filters, 
separately. The result includes four sub level images which are one sub level of approximation of the original 
image (LL) and three sub levels of detail in horizontal, vertical and diagonal directions, respectively (LH, HL and 
HH). This process is called one level decomposition. With repeated decomposition on the approximation sub 
level, more sub level decomposition of an image can be obtained. The low pass filtering and high pass filtering of 
Haar-WT are computed as follows30:
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where xi and xi+1 are two adjacent elements, Ai is the low-pass filtering, wci is the high-pass filtering, and N is the 
number of elements along row and column of input 2D data.

In this study, we perform Haar-WT decomposition of the rice blast image in the RGB color space. The decom-
position is done up to level 5, and approximation sub levels are integrated as a single feature vector on each level. 
The feature vectors of 3rd, 4th and 5th level of decomposition are obtained. Using SVM as the classifier, compar-
ative experiments are conducted, and classification accuracy is computed via 5-fold cross validation (Table 2). It 
could be seen that the 4th level obtains higher classification accuracy than any of the other levels. Therefore, the 
fourth level is chosen in our study as the Haar-WT feature, and compared with CNN.

LBPH.  Local Binary Pattern Histograms (LBPH) is chosen as the second competing hand-crafted feature in 
our study. The LBP is a simple and efficient operator, which has been used for texture discrimination and image 
feature extraction and has shown to be robust with respect to the variations in rotation and illumination31,32. The 
operator labels the pixels by thresholding the 3 × 3 neighbourhood of each pixel with the center value to produce 
a binary patch. LBPH uses the histogram of the labels as a texture descriptor of the patch. Later the operator is 
extended to a circular neighborhood of different sizes, named as circular LBP33. Another extension of the original 
operator is called uniform pattern34,35.

In our study, we first obtain the circular LBP of all images from the dataset, and then compute the uniform 
LBP patterns. The LBP feature image is then divided into m × m local blocks36, and the histogram of each local 
block is extracted and integrated as a single feature vector. Using SVM as the classifier, comparative experiments 
are conducted, and classification accuracy is computed via 5-fold cross validation (Table 3). It can be seen that the 
1 × 1 division obtained a higher classification accuracy than any of the others. Therefore, the undivided uniform 
LBPH patterns are chosen as the image feature, and compared with CNN.

SVM.  The SVM is a powerful classifier that works well on a wide range of complex classification problems25. 
SVM with different kernel functions can transform a nonlinear separable problem into a linear separable problem 
by projecting data into a higher dimensional space to maximize the classification distance and achieve the desired 
classification. In this study, the radial basis function (RBF)37, a popular kernel function of SVM, is chosen as the 
kernel function. The LIBSVM38, as an efficient open source tool, is chosen to build SVMs in our experiments. 
Szarvas et al.39 have evaluated the automatically optimized features learned by CNN on pedestrian detection, 
and showed that the CNN + SVM combination can achieve a very high accuracy. Therefore, we employ SVM as 
classifier for two purposes: comparison of feature extraction methods and improvement of the performance of 
rice blast disease classification.

Results and Discussion
Evaluation metrics.  To evaluate the performance of the competing methods, several statistical parameters 
are used to be as the performance metrics. The selected quantitative measures are accuracy, ROC, and AUC, all 
of which are popular evaluation metrics for classification methods. The classification accuracy is the principal 
indicator; the higher the accuracy, the better the performance by a classifier. The accuracy can be computed by 
Eq (5). ROC is another important objective evaluation metric in the task of image classification, which is defined 
by true positive rate and false positive rate; the larger the area under the ROC curve, the better the classification 

3th level 4th level 5th level

Train accuracy 83.74 83.8 70.29

Test accuracy (c:2.0,g: 
0.03125) 75.78 83.85 69.06

Table 2.  The 5-fold cross-validation results of the 3th, 4th and 5th layer Haar-WT.

1 × 1 2 × 2 4 × 4

Train accuracy 83.73 82.7 80.83

Test accuracy (c:8.0,g: 0.125) 82.59 80.08 51.82

Table 3.  The 5-fold cross-validation result of three LBPH feature extraction method.

https://doi.org/10.1038/s41598-019-38966-0
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performance. To analyze the reliability and the generalization ability of the feature extraction and classification 
methodology, the 5-fold cross-validation (CV) technique40 is applied.

= + + + +Accuracy (TP TN)/(TP TN FP FN) (5)

where TP, FP, TN and FN are the numbers of true positives, false positives, true negatives, and false negatives in 
the detection results, respectively.

To assess the performance of feature extraction, the t-distributed stochastic neighbor embedding (t-SNE)41 
method is employed. The t-SNE was proposed by Hinton and has proven to be an effective qualitative indicator. 
In this study, we select the two-dimensional space as the mapping space for visualization, and a more linearly 
separable two-dimensional map implies better feature extraction performance.

Results and observations.  To investigate the performance of three feature extraction methods, the t-SNE 
method is used to visualize the feature maps of CNN, LBPH, and Haar-WT using the same dataset. Figure 5(a–c) 
present the maps of the S8 layer features of CNN, LBPH features, and Harr-WT, respectively. The map of CNN 
in Fig. 5(a) clearly indicates that samples are almost separated in the two-dimensional space. In contrast, it is 
difficult to separate the two classes using LBPH and Haar-WT features, shown in Fig. 5(b,c). This result suggests 
that the features extracted using CNN are more discriminative than those extracted using LBPH and Haar-WT.

To further explore the effect of the features extracted by CNN, we conduct comparative experiment and quan-
titatively analyze in terms of accuracy, ROC, and AUC. For consistency, SVM is employed as the classifier, RBF is 
used for the kernel function, and the grid method is used to select the optimal c (cost) and g (gamma) parameters. 
To reduce possible biases in the selection of the validation set, all evaluation metrics were computed in 5-fold 
cross validation experiments.

First, CNN is primarily used to obtain high-level features from raw images and the Softmax is often used to 
classify and evaluate the accuracy. In addition, we employ SVM for classification combined with the CNN features 
(generated from its S8 layer). After parameter optimization, the accuracy of SVM-based classifier reached 95.82% 
(c = 8.0, g = 0.0078125; Table 4). Using the SVM combined with LBPH and Haar-WT features, on the other hand, 
we obtain two sets of comparison results shown in Fig. 6 and Table 4. To obtain accurate comparison results, we 
ensure that the same set of training and testing datasets were used for every method.

As shown in Table 4, it can be observed that the feature extraction method of CNN model combined with the 
SVM classifier achieves a remarkable performance in terms of the recognition rates, far superior to the LBPH and 
Haar-WT. The results of quantitative analysis in terms of accuracy, ROC and AUC are in agreement with the qual-
itative analysis using t-SNE. Therefore, the results verify that the features extracted using CNN can be effective in 
solving the rice blast classification problem.

For the same CNN features, the SVM and Softmax obtain higher accuracy (SVM:95.82%, Softmax:95.83%) 
and AUC value (SVM:0.99, Softmax: 0.99) than LBPH and Haar-WT (Fig.  6). Hence, the CNN and 
CNN + SVM showed a remarkable performance and are better for rice blast identification than LBPH + SVM 
and Haar-WT + SVM. In comparison, the SVM classifier has similar accuracy and AUC value to the Softmax. 
However, CNN is a black box model with random parameter initialization and, as a result, the output features of 
each trained model are different. SVM is a data-driven classifier that needs to optimize its parameters for different 

Figure 5.  The t-SNE maps of (a) CNN, (b) LBPH, and (c) Haar-WT.

Accuracy AUC

CNN 95.83 0.99

CNN + SVM 95.82 0.99

LBPH + SVM 82.59 0.9

Haar-WT + SVM 83.85 0.92

Table 4.  Comparison results of the four recognition methods.

https://doi.org/10.1038/s41598-019-38966-0
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feature data. Therefore, CNN + SVM is less convenient than CNN + softmax in terms of efficiency and system 
implementation, although it can be considered as a strong competitive method for rice blast recognition.

In order to understand the reasons of the misclassification, we analyze the misclassification samples some of 
which are shown in Fig. 7. We can observe from Fig. 7 that most notable mistakes in images of Fig. 7(a) are caused 
by blur, water droplets and small or incomplete lesion, and the main reason of misclassification in Fig. 7(b) are 
shadow, light spot, water droplets and complex background.

Finally shown in Fig. 8 is an example classification result of the CNN model presented by this study on a 
complete original image. This example demonstrates that the CNN model can correctly and effectively recognize 
almost all of the rice blast lesions.

Conclusions and Future Work
In this study, we present a rice blast feature extraction and disease classification method based on deep convolu-
tional neural networks (CNN). Because of the absence of image dataset for this particular recognition research, 
as our first contribution, we established a rice blast disease dataset with the assistance of plant protection experts. 
The dataset can be combined with other rice disease images to build a content-rich dataset. Our hope is that 
this dataset will be useful for other people who are interested in rice or even crop disease recognition research. 

Figure 6.  ROC curves of CNN, CNN + SVM, LBPH + SVM, and Haar-WT + SVM.

Figure 7.  Example images of misclassification: (a) false negatives and (b) false positives.

https://doi.org/10.1038/s41598-019-38966-0
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In addition, we conduct comparative experiment based on the dataset and analyze the experimental results. 
Qualitative assessment by t-SNE indicates that the high-level features extracted by CNN are more discriminative 
and representative than LBPH and Haar-WT. Quantitative analysis results indicate that CNN with Softmax and 
CNN + SVM have almost the same performance, which is better than that of LBP + SVM and Haar-WT + SVM 
by a wide margin.

The occurrence of rice disease is regular, and the type and the probability of the rice disease vary with the 
stages of rice growth. Therefore, different rice disease identification systems should and can be established using 
the method presented by this study, and then the automated rice disease diagnosis can be realized by combining 
identification models and domain knowledge of rice disease.

Although our method of automatic identification of rice blast has achieved satisfactory results, substantial 
further work is needed to improve its accuracy and reliability in rice disease diagnosis systems. In particular, we 
plan to address the following two issues in future studies:

	(1)	 Expand the dataset of rice disease, and establish a comprehensive tool for rice disease diagnosis system. 
The data augmentation method will be employed for building a good classifier when the number of sam-
ples is insufficient.

	(2)	 Study other deep neural network architectures and take full advantage of the deep learning algorithms to 
improve the classification accuracy, and enhance the reliability and robustness of the rice disease diagnosis 
systems.

Data Availability
The rice blast disease dataset used for training and testing CNN model is available from the, http://www.51ag-
ritech.com/zdataset.data.zip, and all the data generated during and/or analyzed during the current study are 
included in the manuscript.
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