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A Fast and Refined Cancer Regions 
Segmentation Framework in 
Whole-slide Breast Pathological 
Images
Zichao Guo1, Hong Liu1, Haomiao Ni1, Xiangdong Wang1, Mingming Su2,3,4, Wei Guo5,6, 
Kuansong Wang5,6, Taijiao Jiang2,3 & Yueliang Qian1

Supervised learning methods are commonly applied in medical image analysis. However, the success of 
these approaches is highly dependent on the availability of large manually detailed annotated dataset. Thus 
an automatic refined segmentation of whole-slide image (WSI) is significant to alleviate the annotation 
workload of pathologists. But most of the current ways can only output a rough prediction of lesion areas and 
consume much time in each slide. In this paper, we propose a fast and refined cancer regions segmentation 
framework v3_DCNN, which first preselects tumor regions using a classification model Inception-v3 and then 
employs a semantic segmentation model DCNN for refined segmentation. Our framework can generate 
a dense likelihood heatmap with the 1/8 side of original WSI in 11.5 minutes on the Camelyon16 dataset, 
which saves more than one hour for each WSI compared with the initial DCNN model. Experimental results 
show that our approach achieves a higher FROC score 83.5% with the champion’s method of Camelyon16 
challenge 80.7%. Based on v3 DCNN model, we further automatically produce heatmap of WSI and extract 
polygons of lesion regions for doctors, which is very helpful for their pathological diagnosis, detailed 
annotation and thus contributes to developing a more powerful deep learning model.

Breast cancer is a common disease among women, which is responsible for about 15% of all new cancer cases 
in the U.S.A, 20181. But its diagnosis often involves the detection of tumor regions from a huge histopathologic 
whole slide image (WSI), which can be extremely time-consuming and error-prone. To assist in this examination, 
more and more researchers focus on automated detection of cancer metastases in the WSI. Most of the current 
methods just concentrate on the rough localization of lesion areas and producing low-resolution probability 
heatmap. However, in this paper, we emphasize more on refined segmentation of WSIs. This is because refined 
segmentation has more benefits. Firstly, now supervised learning approaches are still mainstream in medical 
image analysis. But the success of these methods depends on the availability of a large amount of high-quality 
manual annotations. It is obvious that refined segmentation can better help doctors label huge whole slide images 
than those rough segmentation schemes. Secondly, refined segmentation also makes it easier for the subsequent 
grading algorithm to extract reliable features from finer heatmaps. Thirdly, pathologists can also grade breast 
cancer more accurately if given better segmentation results.

However, it is not a simple task to process whole-slide images (WSIs) like nature images. Typically, WSIs 
contain many data layers and there can be billions of pixels, such as 100,000 × 100,000 at the highest resolution, 
such as 40×, which makes it more complex and time-costing to perform detection on such huge images. Many 
researchers only analyzed small histopathological images sampled from certain lesion regions of WSI2–4 and eval-
uated their strategies on some small datasets and in low resolution, which are not robust in the real application.
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Recently, due to the advancement of the high-resolution scanner and computer technology, more researchers 
begin to assess their algorithms on WSI datasets. For example, Bejnordi et al.5 detected the ductal carcinoma in 
situ (DCIS) in WSIs using a multiscale superpixel segmentation method. Balazsi et al.6 realized a system to detect 
invasive ductal breast carcinoma. They firstly segmented the WSI by superpixel method in low resolution and 
then classified every superpixel region into health or cancer tissue using random forest classifier.

Besides the aforementioned traditional image processing and machine learning approach, deep learning is 
also applied to WSIs. On the task of invasive breast carcinoma detection, CruzrRoa et al.7 used a simple convo-
lutional neural network (CNN) with three layers to detect invasive breast carcinoma in WSIs on 2× resolution, 
which made 4% and 6% improvement compared with traditional methods using feature extraction. However, the 
above methods are evaluated on their own small datasets.

In 2016, IEEE International Symposium on Biomedical Imaging (ISBI) organized Camelyon16 Challenge8 to 
detect cancer metastasis in lymph node and provided 400 WSIs with detailed annotations for training and testing. 
Different from the natural image, WSI can’t be used for training the neural network directly because of containing 
billions of pixels. Most of the current methods9–11 train deep neural networks on patch images extracted from 
WSIs at a certain level and they obtained the best performance at 40×. Wang et al.10 finally won this compe-
tition. They firstly cut WSIs into lots of region images with the size of 256 × 256 named patches and trained a 
GoogLeNet12 classification model using these patches to detect cancer regions. They also carried out experiments 
using patches at different resolutions respectively, such as 10×, 20×, and 40×, and the experiments show that 
patches at the largest resolution 40× got the best results. On the same dataset, Liu et al.9 trained an Inception-v313 
classification model based on 299 × 299 patches and improved the metric of cancer location. Finally, they pro-
duced a low-resolution prediction heatmap with the 1/128 side of original WSI.

However, these existing classification methods have some limits. Firstly, patches extracted with different sizes 
contain different contextual information, but these models are all trained based on small patches which leads to 
the contextual information loss. Secondly, each slide includes 10,000 to 400,000 patches (median 90,000)9, which 
makes these ways very time-consuming. Thirdly, these classification models can only create a low-resolution pre-
diction instead of refined segmentation because thousands of pixels in one patch images are given only one label, 
such as Liu’s work9. If they want to produce a denser prediction, like a heatmap with 1/8 side of original WSIs, the 
test stride should be decreased from 128 pixels to 8 pixels. So the number of patch images and processing time for 
inference will be increased from N to 256 × N. It’s sharply time-consuming and unpractical in the real application.

Different from classification methods, semantic segmentation network can classify every pixel in the patch into 
tumor or normal instead of classifying the whole patch image into tumor or normal. Due to pooling layers, the output 
prediction will be downsampled. And the sampling rate will be decreased as the network architecture goes deeper. In 
order to maintain a dense output, Chen et al.14 proposed a semantic segmentation framework, dense deep convolu-
tional neural network (DCNN), which utilized an atrous convolution operation to replace traditional convolution and 
pooling operation. It can generate dense prediction and maintain the same receptive field by upsampling operations. 
But performing semantic segmentation on WSI can spend much time and memories for processing billions of pixels. 
Besides this, most of the tissues in WSI are normal, where are not necessary to perform semantic segmentation.

In this paper, we propose a cascade framework v3_DCNN for fast and refined breast cancer regions seg-
mentation. Firstly, we apply OTSU segmentation to remove most of the non-tissue background quickly in WSI. 
v3_DCNN firstly employs a classification model, slimmed-down Inception V3 to rapidly preselect those possi-
ble lesion regions in a WSI. Then, a semantic segmentation DCNN model is adopted for refined segmentation. 
Compared with current methods, our framework can get a dense prediction with the 1/8 side of original WSI 
in 11.5 minutes, which saves more than one hour for each WSI to produce the same resolution heatmap using 
semantic segmentation model. Here we give up to produce the heatmap with the same resolution as initial WSI 
because of the following considerations. (1) In the actual application, we find that the 1/8 side of original WSI 
is sufficient to assist pathologists in annotation and grading. (2) Upsampling the predictions of 1/8 side to the 
original size requires quite more time and computer memory, which may be unpractical. Also, we train different 
models using patches with different contextual information and verify that training model on larger patches can 
make better use of contextual information and show better overall performance. On Camelyon16 dataset, our 
framework achieves FROC score 83.5%, which is higher than 80.7% from the champion’s method of Camelyon16 
challenge. We also calculate the mIoU metric and Tumor-mIoU metric to measure the result of refined segmen-
tation and the highest Tumor-mIoU metric is 80.69%. Finally, based on v3_DCNN framework, we automatically 
produce heatmap of WSI and extract polygons of tumor region for the doctors, which is very helpful for patholog-
ical diagnosis, computer-aided annotation and thus contributes to developing new deep learning models.

Camelyon16 Dataset and Evaluation Metrics
To compare with the state-of-the-art strategies, we also evaluate our method on the Camelyon16 dataset8, which 
contains 400 WSIs of lymph node from Radboud University Medical Center and the University Medical Center 
Utrecht. Table 1 lists the number of slides for training and testing in the Camelyon16 dataset. WSIs are generally 
stored in a multi-resolution pyramid structure. The largest resolution is 40× magnification, also named level 0. 
Level 1 is at 20× and the width and height of the image at 20× is a half of that at 40×, and so on. Typically there 
are seven or eight levels in a WSI.

Result and Discussion
Experimental setting.  Based on the Camelyon16 test dataset, we design three experiments to justify our 
proposed method. (1) To analyze the influence of different contextual information on semantic segmentation 
model, we evaluate our DCNN models using three different training patch size. (2) To illustrate the effectiveness 
of proposed framework v3_DCNN, we measure the performance of tumor localization and segmentation by 
several metrics and analyze the running time to produce a dense heatmap. (3) We also evaluate model ensemble 
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among different v3_DCNN models to promote segmentation result. Finally, we compare our method with state-
of-the-art methods. To speed up processing time, OTSU segmentation is adopted as a preprocessing stage to 
remove most of the non-tissue background quickly for each WSI.

Metrics.  In our experiments, besides the aforementioned AUC and FROC metrics, we adopt another metric 
mIoU (Mean Intersection over Union), which is often used in semantic segmentation, to validate the pixel-level 
labeling performance.

The way to calculate mIoU is shown as formula (1). The k + 1 in formula (1) means the number of classes. The 
i is the label of the groundtruth, and the j is the prediction label. The pij is the total number of those pixels that are 
labeled as j but predicted as i. The mIoU represents the mean of IoUs calculated on both tumor and normal slides. 
To provide a more reasonable measure on the results of tumor area segmentation, we also employed another met-
ric, Tumor-mIoU, which is the mean of IoUs calculated on tumor slides. All the experiments are carried out just 
using a single GeForce GTX 1080Ti GPU.
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Evaluation of DCNN models trained with different contextual information.  As discussed above, 
different patch images contain different contextual information, so we train and evaluate our DCNN models with 
different training patch sizes. We select three patch size of 321 × 321, 768 × 768 and 1280 × 1280 to train our 
DCNN model respectively. And since semantic segmentation model can adapt to inputs with different sizes during 
inference, we test our models with 2560 × 2560 patches, the largest size that can be fed into our GPU, to reduce 
testing time. The AUC and FROC metrics are calculated for comparison. For the AUC calculation, we use the max-
imum probability of tumor to be the prediction in WSI classification task. In tumor localization task, we use the 
maximum probability within every lesion region to be the prediction of each region and calculate the FROC metric.

Figure 1 shows the results of three DCNN models based on the different contextual information. Compared 
with the groundtruth, the heatmaps of the three models cover most of the cancer areas, which verifies the validity 
of our DCNN model.

For quantitative analysis, we calculate AUC and FROC metrics as Table 2 shows. We also report their 95% 
confidence intervals using a bootstrap approach: We first random sample slides with replacement from the test 
dataset and form a new resampled dataset with the same size as the initial test dataset. Then we compute AUC 
and FROC for this resampled dataset. We repeat these operations for 2000 times and finally report the 2.5% and 
97.5% percentile values. The DCNN-1280 model achieves the best result with an overall AUC of 95.0% and an 
overall FROC of 74.4%, which demonstrates that training utilizing patches with the larger size that containing 
more contextual information can facilitate tumor localization and segmentation performance.

Evaluation of our fast and refined v3_DCNN segmentation framework.  In this part, we evaluate 
our proposed v3_DCNN framework, which adopts a classification model for fast preprocessing and employs 
DCNN for refined segmenting. Here we directly follow the existing work9 and utilize a slimmed-down Inception 
V3 model for classification.

As Fig. 2 shows, the classification model can remove most of the normal areas, such as the area inside the 
yellow rectangle. What’s more, the heatmap produced by the classification model has a low resolution and exists 
noises. Our segmentation model DCNN can produce a dense prediction which makes the boundary smoother 
and performs a second filtration on some error detection, such as the normal area in green rectangle.

Institution Train (Normal) Train (Tumor) Test

Radbound UMC 90 70 80

UMC Utrecht 70 40 50

Table 1.  Number of slides in Camelyon16 dataset.

Figure 1.  Heatmap from the three models trained on different patches. Redder pixels have the higher 
probability of being tumor while bluer pixels are more likely to be normal. In Groundtruth, the black regions 
are tumor and the white areas are normal. From left to right: (a) DCNN-321 result (b) DCNN-768 result (c) 
DCNN-1280 result (d) Groundtruth.
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Table 3 shows the metrics and processing time of different models on the Camelyon16 test set. Our fast seg-
mentation framework v3_DCNN achieve better overall results on all metric than a single classification model 
and a single segmentation model. The best result was achieved by v3_DCNN-1280 with an overall AUC of 96.6%, 
an overall FROC of 82.9%, mIoU 68.54% and Tumor-mIoU 80.69%. Through the results of v3_DCNN trained 
on patches with different sizes, we can also find that the model trained on patches with larger size achieves a 
better overall result. Larger training patch may contain more contextual information, which will contribute to 
better segmentation performance. However, note that the performance of our classification model slimmed-down 
Inception-v3 is lower than the previous work9. This may be due to the limitation of our computational resources 
and detailed parameters selection. We only use one GTX 1080Ti GPU for training while existing method9 
adopted 8 NVIDIA Pascal GPU in total, which gave an advantage in their model training.

In Table 3, the column Time/slide shows the average processing time for each slide, which includes all the 
stages, such as preprocessing, extracting patch, model inference and stitching heatmap. To obtain the heatmap 
with the 1/8 side of WSI, the running time of single segmentation model is 79 minutes, while our v3_DCNN 
framework only takes 11.5 minutes for each slide. Proposed v3_DCNN can reduce more than one hour for each 
WSI because the classification model removes most of the normal areas and the number of patches for segmen-
tation is reduced to 6% from 198 K to 12 K. The single classification model Inception-v3 can produce a heatmap 
with 1/128 side of original WSI by costing 6.5 minutes for each slide. But for a dense heatmap like that with the 
1/8 side of WSI, Inception-v3 classification model should reduce the test stride from 128 pixels to 8 pixels, which 
will sharply increase the number of patches and rise the processing time to about 6.5 × 256 = 1664 min/slide. It is 
more time-consuming than using a single segmentation model DCNN for the same dense heatmap.

Model AUC (%) FROC (%) Heatmap size

DCNN-321 93.6 (89.4, 97.2) 62.8 (51.9, 75.5) 1/8 side of original WSI

DCNN-768 93.4 (88.4, 97.4) 66.5 (55.1, 79.4) 1/8 side of original WSI

DCNN-1280 95.0 (90.7, 98.3) 74.4 (63.0, 85.1) 1/8 side of original WSI

Table 2.  AUC and FROC of the three models trained with different contextual information (95% confidence 
intervals).

Figure 2.  Comparison results of the classification model and our v3_DCNN-1280. From left to right: (a) Original 
image (b) Heatmap with 1/128 size (c) Groundtruth (d) Heatmap with 1/8 side.

Model AUC (%) FROC (%) mIoU (%) Tumor-mIoU (%) Time/slide (min)

DCNN-1280 95.0 (90.7, 98.3) 74.4 (63.0, 85.1) 62.6 79.43 79

Inception-v3 95.8 (90.9, 99.1) 72.9 (63.4, 83.0) 59.05 74.14 6.5*

v3_DCNN-321 95.9 (91.5, 99.3) 80.0 (70.8, 88.6) 66.14 79.51 11.5

v3_DCNN-768 95.9 (90.9, 99.2) 82.1 (73.8, 89.4) 64.72 79.88 11.5

v3_DCNN-1280 96.6 (92.2, 99.6) 82.9 (75.0, 91.0) 68.54 80.69 11.5

Table 3.  Comparison of v3_DCNN framework, DCNN-1280 and Inception-v3. *Inception-v3 takes 
6.5 minutes per WSI to generate the heatmap with the 1/128 side of WSI, but the other listed models create the 
heatmap with the 1/8 side of WSI.
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Evaluation of ensemble models.  In order to further improve our segmentation result, we perform the 
average operation among different v3_DCNN models.

As Table 4 shows, the average of v3_DCNN-768 and v3_DCNN-1280 achieve the best FROC 83.5%. But com-
pared with the model v3_DCNN-1280, the overall AUC, mIoU, and Tumor-mIoU are declined slightly. The best 
Tumor-mIoU is achieved by v3_DCNN-1280 with 80.69%. It is 6.55% higher compared with 74.14% produced by 
v3 classification model in Table 3. This shows that our v3_DCNN model can output a more refined segmentation 
of tumor regions than the classification model.

To evaluate our methods, we compare with the top methods in Camelyon16 challenge11 in Table 5. The HMS 
and MIT won the challenge by combining the results of two GoogLeNet with an overall AUC of 99.4% and an 
overall FROC of 80.7%. In our methods, the best overall FROC can reach 83.5%, which is comparable with their 
method. For the AUC metric, HMS and MIT extracted 28 features from the heatmap and trained a random forest 
classifier to predict the probability of a WSI containing tumors. However, we simply use the maximum probabil-
ity within a WSI without any complex post-processing for AUC, which may make our AUC metric lower than 
them. Besides, note that the side of their heatmap is 1/4 of the original WSI. When using a single GTX 1080Ti 
GPU as ours, the processing time of two GoogleNets will be more than 13000 minutes per slide. However, though 
our heatmap has a relatively lower resolution, our v3_DCNN achieves comparable performance while using an 
obviously shorter time. Besides this, compared with pathologists, who requires about 14 minutes per WSI11, our 
proposed v3_DCNN-1280 outperforms these experts in both slide classification and tumor localization while 
taking about 11.5 minutes per slide.

Also, we notice that an unpublished approach9 in arXiv has reported quite high results in AUC and FROC. 
When using single slimmed-down Inception-v3 model, their overall AUC and FROC are 97.1% and 86.4% 
respectively. After applying the model ensemble, the overall AUC and FROC can be improved to 97.7% and 
88.5%. Actually, we tried hard to repeat their experiments and wanted to justify the effectiveness of our v3_
DCNN based on their Inception-v3 model. But due possible to the restriction on computational resources, our 
final Inception-v3 model can only achieve 95.8% and 72.9% in the overall AUC and FROC.

Refined segmentation can be also useful for computer-aided annotation on new huge WSI images for doctors. 
In the real application, the pathologists label tumor regions by drawing the contour with a polygon, which is 
time-consuming and tedious work. To show our refined segmentation performance, we select the v3_DCNN-
1280 model with the highest Tumor-mIoU to produce a binary image from the heatmap using threshold 0.5. And 
then we adopt a contour retrieving method15 to obtain external polygons of all segmented tumor areas. Finally, 
we draw the polygons using the ASAP open source platform16 on the WSIs. As Fig. 3 shows, the first row in Fig. 3 
is the external polygons of tumor regions produced by our Inception-v3 model shown at 40×, which is produced 
based on the heatmap with 1/128 side of WSI by our Inception-v3 model. We can see that it can’t fit the bound-
ary very well. The second row and the third row are the external polygons of tumor regions based on our dense 
heatmap with 1/8 side of WSI by our v3_DCNN-1280 model in 5× and 40× respectively. Here 5× has equivalent 
resolution with our dense heatmap with 1/8 side. We can see that the polygons can fit the boundary of tumor 
areas closely, even at 40×. With our external polygons of tumor regions, doctors can further check or modify the 
labeling information of tumor regions easily, which will save much time for their labeling work.

Conclusion
This paper proposes a fast and refined cancer regions segmentation framework in breast pathological WSIs. 
Firstly, we apply OTSU segmentation to remove most of the non-tissue background quickly. Then we use a 
simplified Inception-v3 classification model9,13 to obtain a rough prediction of tumor areas. We further use our 
DCNN semantic segmentation model on those preselected areas to get refined segmentation of tumor regions. 
Experimental results illustrate our proposed v3_DCNN framework can generate a dense heatmap with high 

Model AUC (%) FROC (%) mIoU (%) Tumor-mIoU (%)

v3_DCNN-321 + v3_DCNN-768 95.8 (90.8, 99.5) 81.9 (74.0, 89.5) 66.76 80.11

v3_DCNN-321 + v3_DCNN-1280 96.7 (92.2, 99.6) 82.4 (74.2, 89.6) 67.96 80.18

v3_DCNN-768 + v3_DCNN-1280 96.3 (91.8, 99.5) 83.5 (75.5, 91.1) 67.76 80.68

v3_DCNN-321 + v3_DCNN-768 + v3_DCNN-1280 96.2 (91.6, 99.5) 83.3 (74.9, 90.5) 64.72 80.39

Table 4.  Comparison results of ensemble models.

Team Architecture AUC (%) FROC (%)

Pathologist11 N/A 96.6 (92.7, 99.8) 72.4 (64.3, 80.4)

HMS and MIT11 GoogLeNet 99.4 (98.3, 99.9) 80.7 (73.2, 88.9)

HMS and MGH ResNet 97.6 (94.1, 99.9) 76.0 (69.2, 85.7)

CULab VGG-16 94.0 (88.8, 98.0) 70.3 (60.5, 79.9)

Our method v3_DCNN-1280 96.6 (92.2, 99.6) 82.9 (75.0, 91.0)

Our method v3_DCNN-768 + v3_
DCNN-1280 96.3 (91.8, 99.5) 83.5 (75.5, 91.1)

Table 5.  Comparison results of our methods and the Camelyon16 methods.
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localization performance and less processing time, which is important and useful for further tumor diagnosis, 
grading and computer-aided annotation of huge WSI for pathologists. In the future, we will further improve our 
tumor segmentation method and test on more breast histopathological images from cooperant hospitals.

Proposed Method
Figure 4 shows our proposed fast and refined cancer regions segmentation framework v3_DCNN. To reduce 
time, we firstly apply OTSU17 segmentation method to remove the non-tissue background in both training and 
test stages. Then in training stage, we extract patch images from WSI to train classification model slimmed-down 
Inception-v39,13 and semantic segmentation model DCNN14 respectively. The purpose of the classification model 
is to detect the tumor areas quickly, while the segmentation model is to perform refined segmentation. During 
testing, we extract small patch to run inference of classification model and then we can get a low-resolution 
heatmap quickly. Based on this heatmap, we only apply our semantic segmentation model to those regions pre-
dicted as tumor by classification model, which can drastically reduce the number of testing patches and save 
much time for segmentation. The details will be introduced in followings.

Preprocessing of WSI by Removing Non-tissue Background.  As Fig. 5 shows, a typical WSI contains 
many non-tissue backgrounds. We filter out the background using a quick segmentation method OTSU17. It is 
unreasonable to apply OTSU directly to the WSI at 40× magnification, which contains about 100,000 × 100,000 
pixels. So we employ OTSU on lower 1.25× magnification. Then we map the position of the foreground in the 
filtered slide to the WSI at 40× magnification for patch extraction. Specially speaking, we first convert RGB to 
HSV color space and then apply OTSU on H, S and V three channels respectively. The experiment shows that the 
best result was achieved on the S channel as Fig. 5 shows. Using this preprocessing, about 82% background region 
will be removed, which will be used on both training and test stages.

Cancer Regions Refined Segmentation by Semantic Segmentation Model.  As discussed in the 
introduction, existing methods with classification models can only produce a rough prediction instead of refined 
segmentation. Decreasing the test stride of inference will extremely increase the number of patches and process-
ing time. We adopt semantic segmentation model to realize refined segmentation of cancer regions. We improve 
the DCNN14 model by using Resnet-10118 architecture as our segmentation model. In our model, most of the 

Figure 3.  External polygons of tumor regions produced by v3_DCNN-1280 and Inception-v3. From top to 
bottom are external polygons of tumor regions produced by (a) our inception-v3 model shown at 40x (b) v3_
DCNN-1280 model shown at 5x (c) v3_DCNN-1280 model shown at 40x.
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traditional convolution layers and pooling layers are replaced by atrous convolution. Considering computation 
ability and memory of a general computer, we abandon the bilinear interpolation operation in the model and 
produce a dense output with 1/8 side of original 40× WSI.

Different from the classification model using patch loss, our DCNN model use pixel loss to calculate loss for 
gradient backpropagation. Assumed that the size of input patches is L × L, p (x, y) represents that the probability 
that the pixel at coordinate (x, y) is a tumor pixel in prediction image, where 0 ≤ x < L/8 and 0 ≤ y < L/8, m repre-
sents the corresponding mask of input patch, where the tumor is labeled with 1. So we can calculate the pixel loss 
of a patch image by the following formula.

∑ ∑= − + −
= =

−
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pixel loss p x y p x y1 [ ln ( , ) ln(1 ( , )) ]
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L x
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m x y m x y
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After testing all patch images from one WSI, we stitch all patch predictions to a whole heatmap, which is as 
large as the image in level 3, at 5× magnification. In detail, we will record the top left coordinate of every patch in 
level 0 image as (xi, yi). After inference, the size of output prediction is 1/8 side of the original patch. So the coor-
dinate of output prediction of every patch in level 3 image is (xi/8, yi/8). Since there are some overlaps of patches, 
we take the average of the probability of all predictions at the same coordinate. So the probability at the coordinate 
(x, y) in heatmap can be calculated by following formula.

∑= = =p x y
n

p x y for x x and y y( , ) 1 ( /8, /8), /8 /8 (3)h i i i i

where n represents the number of the coordinates satisfying the condition xi/8 = x&&yi/8 = y.

Figure 4.  Our fast and refined cancer regions segmentation framework v3_DCNN.

Figure 5.  Image preprocessing results using OTSU segmentation. The yellow pixels are the foreground and the 
purple pixels are the background. From left to right: (a) Original image (b) OTSU on H channel (c) OTSU on S 
channel (d) OTSU on V channel.
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Our DCNN model can produce a denser heatmap with 1/8 side of WSI using less time than classification 
model with the same heatmap size. However, most WSIs are normal slides in a real application and even in tumor 
WSI, most of the tissues are normal, which are unnecessary for refined semantic segmentation. So if we can filter 
out most of the normal regions quickly, our DCNN model can be speeded up greatly.

A Fast and Refined Cancer Regions Segmentation Framework v3_DCNN.  Based on 
above-mentioned advantages of the classification model and semantic segmentation model, we propose a fast 
and refined cancer regions segmentation framework v3_DCNN based on the preselection of tumor regions using 
classification model and the further refined segmentation results utilizing our DCNN model.

As Fig. 4 shows, we firstly apply OTSU method to remove most of the non-tissue background in a WSI. Then 
we sample small patches to run inference of classification model for selecting the candidate tumor areas and 
producing a rough heatmap quickly. Based on this rough heatmap, we separate the tumor areas predicted by clas-
sification model with a threshold 0.5 and extract large patches centered on the position of candidate tumor pixel 
from the WSIs at 40× for refined segmentation. Finally, we stitch the output predictions according to the formula 
(3) to create a dense heatmap. The details are introduced as follows.

Classification model.  We adopt slimmed-down Inception-v3 architecture9,13 to be our classification model. 
Compared with the GoogLeNet used in Wang’s10 paper, an important improvement of Inception-v3 is factoriz-
ing symmetric convolution into small asymmetric convolutions, such as using a 3 × 1 convolution followed by 
a 1 × 3 convolution to replace a 3 × 3 convolution. The spatial factorization can reduce much processing time, 
enhance the nonlinearity and increase the depth of the neural network, which is very suitable for preselection 
of tumor areas in our v3_DCNN framework. To further reduce computing time of Inception-v3, we also cut 
down the number of convolutional filters and only remain the 10% of the original model. So this slimmed-down 
Inception-v3 model has less calculation complexity and can preselect tumor areas faster.

Different from the natural image, WSI can’t be used for training the neural network directly because of con-
taining billions of pixels. Most of the current methods9–11 train deep neural networks on patch images extracted 
from WSIs at a certain level and they obtained the best performance at 40×. As Fig. 6 shows, the patch image at 
a lower magnification contains a larger receptive field, but it suffers from more cell-level information loss. Our 
classification model uses patch images with 299 × 299 size (the default size of Inception-v3) at 40× to extract 
features of cells more effectively.

Figure 6.  The patch images with the same size at different magnification. From left to right: (a) 10× (b) 20× (c) 30×.

Figure 7.  The patch images with different sizes at 40× magnification. From left to right: (a) 321 × 321 (b) 
768 × 768 (c) 1280 × 1280.
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Implementation details: In the training stage, we first remove the non-tissue background by OTSU segmenta-
tion on the Camelyon16 training set. And then we extract 299 × 299 patch images from the rest tissues and label 
them as tumor or normal according to their groundtruth. A patch image located in a tumor region is treated as a 
tumor patch and labeled with 1. Assumed that the probability of the patch containing tumor pixel is p, the label 
is g, n represents the number of patches in a batch. So the patch loss can be calculated by the following formula.

∑= − + −
=

−patch loss
n

p p1 [ln ln(1 ) ]
(4)i

n

i
g

i
g

1

1i i

Since our Inception-v3 model has less calculation and can be iterated quickly during training, we use all the 
patch images extracted from the training set to train our classification model. To enrich the diversity of training 
samples, we also apply the usual data augmentation operation, such as mirror flip, rotation, color jittering, to sam-
ples when training. In the test stage, we apply OTSU firstly and then extract 299 × 299 patch images at 40× with 
a stride 128 pixels from the test WSIs. After testing all patches from a WSI, we stitch all the output predictions 
according to the formula (3) and produce a low-resolution heatmap with 1/128 side of WSI in final.

Semantic segmentation model.  Different from the classification model to produce a rough prediction quickly, 
the goal of our semantic segmentation model DCNN is to obtain the refined segmentation of tumor regions. But 
training model on small patch images will lose lots of contextual information. Obviously, the patch image with a 
larger size contains more contextual information. To our best knowledge, when pathologists diagnose breast can-
cer, they will not only check the characteristics of cells but also observe the tissue around. It may be difficult for the 
pathologists to find out the cancer region just through observing a small patch image. So we believe that different 
patch images containing different contextual information will have a different impact on model training and test-
ing. We sample patches with different sizes at 40× to train our DCNN model including 321 × 321, 768 × 768 and 
1280 × 1280. As Fig. 7 shows, the larger patch at 40× contains larger context and contains detailed cell information.

Implementation details: Figure 8 shows our DCNN training framework. We train three DCNN models inde-
pendently with different patch images. According to the sizes of training patches, we name three DCNN models 
as DCNN-321, DCNN-768, and DCNN-1280 respectively. In the training stage, we firstly filter out the back-
ground by OTSU method and then extract patches. To accelerate the training process, we select normal patch 
images randomly instead of using all of them and make the rate between normal and tumor is 1:1. We also 
implement the data augmentation operation, such as mirror flip, rotation, color jittering, to enrich the diversity 
of training samples. Different from the classification model using patch loss, we need to calculate the pixel loss for 
gradient backpropagation of semantic segmentation model. Since the output of our DCNN model will be down-
sampled with a 1/8 sampling rate, we downsample the patch label mask to calculate the loss as formula (2) shows.

Inference of our cascade framework v3_DCNN: In the test stage, we separate the tumor areas predicted by 
classification model with a threshold 0.5 and extract large patch images centered on the position of tumor pixel 
from the WSIs at 40× for refined segmentation. Because our segmentation model can adapt to inputs of different 
sizes, we extract patch image as large as possible to decrease the number of test patches and reduce processing 
time. In our experiments, the size of the test patches for the three models is the same 2560 × 2560. We also make 
every two adjacent patches contain a half overlap in order to improve the robustness of our segmentation model. 
After testing all patches in a WSI, we stitch all the patch heatmaps into a whole-slide heatmap. The side of the 
dense heatmap is 1/8 of original WSI, which equivalent to the size of the image in level 3.

Data Availability
The data used in this study was waived review and consent by the institutional review board. All data was being 
anonymized. The dataset is available in the Camelyon16 challenge [https://camelyon16.grand-challenge.org].
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