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Analysis of influencing factors on 
soil Zn content using generalized 
additive model
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Sheng Huang2 & Li-Min Ruan2

Soil zinc (Zn) plays a crucial role in plant growth, but excessive accumulation in the environment 
may lead to air, water and soil pollution. It is affected by various chemical, environmental and spatial 
factors. Therefore, it is important to identify the factors influencing Zn content in the landscape. The 
main motivation for this study is to determine the suitability of a generalized additive model (GAM) 
to describe change in soil Zn content due to influencing factors. A total of 1497 soil nutrient samples 
were collected in Fangshan District, Beijing, China. Organic matter (OM), available phosphorus (AP), 
available potassium (AK), alkali-hydrolyzed nitrogen (AHN) and slowly available potassium (SAK) are 
considered. The relationship between Zn, nutrients and geographic location (latitude & longitude) is 
investigated using the GAM. More precisely, the Akaike information criterion (AIC) is used to select 
influencing factors on Zn content and cross-validated to avoid overfitting of the multivariate model. 
The results show that Zn content reaches its maximum at latitude 39.8°N and longitude 115.9°E. Zinc 
content increases as AP increases to 150 mg/kg. When OM content is greater than 90 g/kg, Zinc content 
decreases with an increase in OM content. Factors that affected Zn content, in descending order of 
significance derived from deviance explained and adjustment coefficient of determination (Adj.R2) were 
AP, latitude, AHN, AK and OM. Moreover, the interactions between latitude and longitude, AHN and 
AP, OM and AK have significant impact on Zn.

Zinc (Zn) in soil is one of the essential trace elements of plants1–3. When a plant is short of Zn, the growth in 
the stem and bud is reduced, and normal growth will be significantly affected. Similarly, Zn is required in the 
photosynthesis cycle4. Nevertheless, various influencing factors can affect the accumulation of Zn. For exam-
ple, geographic location (e.g., latitude & longitude) has influenced the distribution and content of vegetation, 
soil nutrients and heavy metals5–11. Moreover, a considerable number of interactions are taking place in the soil 
between physical and chemical properties, such as, organic matter (OM), soil reaction (pH), calcium carbonate 
(CaCO3) and essential macro and micronutrients (P, K, Ca, Mg, Mn, Fe, Zn, and Cu)12,13.

Previous studies investigating Zn in soils have mainly focused on the influence of Zn on plants14, Zn con-
tent prediction15, Zn pollution characteristics16, source analysis17 and potential ecological risk assessment18. 
Furthermore, spatial analysis and statistical methods, such as multivariate analysis19–21 have been used to ana-
lyze the relationships of nutrients and heavy metals on plant and soils. But the nonlinear relationship between 
soil nutrients and heavy metal elements in soils has not been identified. Moreover, the effect of interactions of 
influencing factors on variation of soil Zn content should be also figured out. The interactions have an important 
impact on the material circulation in the soil circle, and it is also important for maintaining the ecological balance 
of environmental materials and eliminating pollutants to soil, plants and even humans22. This aims to identify 
the interactions of geographical and physical factors that could affect Zn content in soil using a non-parametric 
model, such as generalized additive model (GAM).

GAM has been widely used in medical application23–25, financial research26, fishery survey27 and environmen-
tal and climate studies28–30, due to specific advantages31,32. For example, it can directly deal with the nonlinear 
relationship between response variables and multiple explanatory variables33, especially for analysis of large data 
sets34. Furthermore, GAM can be used to analyse interactions between influencing factors on the response var-
iable35–37. Conversely, traditional statistical methods cannot perform well in addressing the complex nonlinear 
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relationship38,39. In our study, soil Zn content (here after referred to as Zn) is taken as an example to study the 
relationship between soil heavy metals, nutrients and geographic location (latitude & longitude). In the GAM, Zn 
is used as the response variable, geographic location and five types of soil nutrients are used as the explanatory 
variables.

Results
Pre-analysis of selected variables.  The normal distribution is rejected at the significant level of 
5% depending on the Shapiro-Wilk test. It does not meet the data requirement for binomial distribution. 
Consequently, the log function is selected as the link function33,37. It is found that most explanatory variables 
could pass the significance test at the P-value < 0.01 level, but most of the Pearson correlation coefficients (Rs) are 
less than 0.3 (Table 1). The correlations are low among the variables. The largest R is between SAK and AK with 
the value of 0.443, which shows that the correlation is high in the large number of samples.

Univariate analysis of influences on Zn.  The regression model with cubic splines is used to analyze the 
influences of each individual explanatory variable on Zn and corresponding fitting degree of the model (Table 2). 
The results show that all the seven explanatory variables have passed the significance test at the P-value < 0.01 
level, suggesting that each individual variable is statistically significant for the influence of Zn, with a low deviance 
explained. The deviance explained of AP and longitude are higher with the values of 20.2% and 16.5%, respec-
tively. The corresponding adjustment coefficient of determination (Adj.R2) which increases with the increase in 
the number of independent variables are 0.16 and 0.2 for AP and longitude, respectively. The precision of model 
derived from each individual explanatory variable is low. Consequently, multiple variable interactions are consid-
ered for investigating their influences on Zn.

Multivariate analysis of influences on Zn.  The variables are gradually added to the GAM, and the tests 
are carried out using the Akaike information criterion (AIC) score (Table 3). It can be found that the AIC scores 
are generally reduced with the gradual increase of variables. Conversely, when SAK is added, the score increases 
by about 0.6, and the P-value is 0.031. SAK does not pass the significance test at the P-value < 0.01 level, which 

Latitude Longitude OM AHN AP SAK AK

Latitude 1 0.159** 0.233** 0.166** −0.105** −0.032 0.085**

Longitude 0.159** 1 −0.349** −0.220** −0.131** −0.152** −0.072*

OM 0.233** −0.349** 1 0.354** 0.099** 0.140** 0.211**

AHN 0.166** −0.220** 0.354** 1 0.181** 0.250** 0.199**

AP −0.105** −0.131** 0.099** 0.181** 1 0.225** 0.173**

SAK −0.032 −0.152** 0.140** 0.250** 0.225** 1 0.443**

AK 0.085** −0.072* 0.211** 0.199** 0.173** 0.443** 1

Table 1.  Comparison of the R among the explanatory variables. **Indicates significant differences at the 
probability level of 0.01; *Indicates significant differences at the probability level of 0.05.

Smoothing effect Edf Ref.df F-value P-value
Deviance 
explained (%) Adj.R2

S(latitude) 4.912 6.015 6.827 3.71e–07*** 2.99 0.027

S(longitude) 8.318 8.872 31.58 <2e–16*** 16.5 0.160

S(OM) 6.688 7.811 13.56 <2e–16*** 7.03 0.066

S(AHN) 6.824 7.926 15.32 <2e–16*** 7.94 0.075

S(AP) 5.812 6.905 53.03 <2e–16*** 20.2 0.200

S(SAK) 3.452 4.368 13.15 4.78e–11*** 3.97 0.037

S(AK) 8.038 8.753 13.93 <2e–16*** 7.84 0.073

Table 2.  Test of the GAM using univariate analysis. ***Indicates P-value < 0.01 level.

Index S(latitude) S(longitude) S(OM) S(AHN) S(AP) S(SAK) S(AK)

EDF 7.342 8.807 2.620 7.082 3.022 1.000 5.155

Ref.df 8.332 8.987 3.389 8.151 3.759 1.000 6.293

AIC 5796.933 5521.656 5451.596 5414.611 5183.496 5184.049 5181.697

F-value 13.048 23.945 4.094 5.241 47.390 4.648 5.157

P-value <2e–16*** <2e–16*** 0.00469*** 1.41e–06*** <2e–16*** 0.0312 1.96e–05***

Table 3.  Test of the GAM using multivariate analysis. ***Indicates P-value < 0.01 level.
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indicates that SAK has little effect on Zn. The other variables of latitude, longitude, OM, AHN, AP and AK signif-
icantly affected the changes of Zn at the P-value < 0.01 level. When all factors are added, the Adj.R2 = 0.4

Model fitting after concurvity diagnosis analysis.  Three index values of S(SAK) and S(AK) are all 
close to or greater than 0.5 (Table 4), suggesting that they have a concurvity (a correlation between S(SAK) 
and S(AK)). Combining the results of concurvity of SAK and the multivariate analysis, SAK was removed from 
the model. After refitting the model in the absence of SAK, it identified that AHN, AK, AP, longitude, latitude 
significantly influenced Zn (Table 5). The refitted GAM with the deviance explained of 70.4% and Adj.R2 of 0.6 
is an improvement on the model which does not have concurvity. The refitted GAM identifies the effect of the 
influencing factors on the changes in Zn content (Fig. 1) and the resulting nonlinear relationships (EDF ≠ 1). The 
model predicts that Zn content increases with the rise in latitude, peaking at 39.7°N. Zn reaches the maximum at 
longitude 115.9°E and 39.8°N, and it has little change with the change of OM content.

Cross-validation of the refitted multivariate GAM.  To avoid overfitting, cross-validation was used to 
test the refitted multivariate GAM. The difference between the predicted value and the measured value was small, 
and the six variables passed the significance test at the P-value < 0.01 level (Table 6). The optimal model can rea-
sonably reflect the influencing factors on Zn.

Interactions of multivariate factors on Zn.  The model deviance explained derived from GAM was 
72.1%, with the Adj.R2 of 0.63. The estimated degree of freedom of the longitude-HN interaction was 1 (Table 7). 
The F-value for the longitude-latitude interaction, the HN-AP interaction and the OM-AK interaction are 19.857, 
4.678 and 4.433, respectively. These interactions passed the significance test at the P-value < 0.01 level. Similarly, 
the latitude-AP interaction, the latitude-OM interaction and the latitude-AK interaction passed the significance 
test at the P-value < 0.05 level.

The interactions that passed the significance test (P-value < 0.01) demonstrates the impact of interactions 
on Zn (Table 7 and Fig. 2). Figure 2(a) shows the influence of interaction between latitude and longitude on Zn. 
When latitude is less than 39.6°N, Zn decreases rapidly with the increase of longitude until it reaches at about 
115.8°E. Zn reaches its local maximum at 115.8°E, 39.7°N, and then there is little increase with the increase of 
latitude and longitude. The influence of interaction between AHN and AP on Zn can be observed in Fig. 2(b). 
When AP content is less than 50 mg/kg, Zn varies little with the increase of AHN content. Above 50 mg/kg, AHN 
increases until AP reaches approximately 200 mg/kg until AP content reaches about 200 mg/kg. When AHN con-
tent is less than 50 mg/kg, Zn decreases with the increase of AP content. The influence of the interaction between 
OM and AK on Zn can be observed in Fig. 2(c). When OM content is less than 100 g/kg, Zn increase with a rise 
in AK. When both OM content and AK content increase, Zn increases. Figure 2(d) reveals the influence of the 
interaction between latitude and AP on Zn. Zn does not change significantly with the increase of AP content 
when the latitude is greater than 39.7°N. When the latitude is less than 39.6°N, Zn increases rapidly with the 
increase of AP content. Figure 2(e) shows the influence of the interaction between latitude and OM on Zn. When 
OM content approaches 400 g/kg, Zn decreases rapidly as latitude increases. Figure 2(f) shows the influence of 
the interaction between latitude and AK on Zn. The Zn content decrease with an increase in latitude when AK 
remains unchanged. Zinc reaches a minimum at latitude 39.8°N when AK is less than 200 mg/kg.

Discussion
Influencing factors on Zn.  Latitude and longitude have significant influence on soil Zn content 
(P-value < 0.01). Conversely, Richardson et al.40 have shown that there is no correlation between site location 
and Zn content. The difference in results from ref.40 may be due to the specific geographic location and land use 
change in the study area. The Fangshan district is a mountainous region with manufacturing and agriculture as 
the prime land uses. Zinc content in soil in urban and industrial areas may be an order of magnitude greater than 
that in rural areas41. For example, Zn reaches its maximum at 115.8°E, 39.7°N (Fig. 2).

Project Parameter S(latitude) S(longitude) S(OM) S(AHN) S(AP) S(SAK) S(AK)

Worst 6.62271e–22 0.570 0.549 0.405 0.471 0.286 0.639 0.854

Observed 6.62271e–22 0.200 0.189 0.372 0.319 0.262 0.584 0.695

Estimate 6.62271e–22 0.346 0.376 0.147 0.354 0.168 0.489 0.419

Table 4.  Test of the concurvity of the smooth function.

Index S(latitude) S(longitude) S(OM) S(AHN) S(AP) S(AK)

EDF 7.375 8.790 2.688 7.167 2.902 5.056

Ref.df 8.354 8.985 3.475 8.216 3.614 6.184

F-value 12.830 23.643 4.363 4.910 47.771 4.473

P-value <2e–16*** <2e–16*** 0.00285*** 4.03e–06*** <2e–16*** 0.0001***

Table 5.  Hypothesis test of the refitted GAM. ***Indicates P-value < 0.01 level.
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Figure 1.  Estimated smoothness of six variables on Zn; y-axis is the partial effect of the variable and shadow 
section is the standard-error confidence intervals.

Index Latitude Longitude OM AHN AP AK

F-value 7.593 14.276 4.187 17.880 36.804 12.643

P-value 1.79e–09*** <2e–16*** 0.001007** 2.57e–05*** <2e–16*** 0.000395***

Table 6.  Cross-validation of GAM based Zn variation. ***Indicates P-value < 0.01 level.

Smoothing effect EDF Ref.df F-value P-value

ti(latitude) 3.929 3.993 21.049 <2e–16***

ti(longitude) 3.009 3.452 8.718 3.86e–05***

ti(OM) 2.065 2.474 2.337 0.08300

ti(AHN) 2.110 2.534 15.574 1.38e–08***

ti(AP) 2.432 2.765 43.341 <2e–16***

ti(AK) 3.008 3.337 10.724 1.76e–07***

ti(longitude, latitude) 15.281 15.762 19.857 <2e–16***

ti(longitude, AHN) 1.369 1.615 0.421 0.65992

ti(longitude, AP) 3.762 3.947 1.159 0.36403

ti(latitude, AHN) 1.000 1.000 0.079 0.77829

ti(latitude, AP) 6.157 7.034 2.534 0.01354**

ti (AP, AHN) 3.475 4.625 4.678 0.00046***

ti(latitude, OM) 4.164 5.189 2.765 0.01565**

ti(latitude, AK) 3.331 4.446 3.200 0.01036**

ti(OM, AK) 9.811 11.028 4.433 1.53e–06***

ti(longitude, OM) 1.258 1.449 1.055 0.44977

ti(longitude, AK) 1.412 1.718 0.123 0.87059

ti(OM, AHN) 5.756 6.916 1.868 0.07717

ti(AK, AHN) 2.487 3.216 1.058 0.34313

Table 7.  Hypothesis test of the interaction GAM model. ***Indicates P-value < 0.01 level; **indicates 
P-value < 0.05 level.
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The increase of Zn due to an increase in OM and content is consistent with OM and heavy metals coexisitng 
in soil sediment, with OM been found to have important implications on heavy metal speciation, transport and 
bioavailability42,43. In addition, Zn content is also affected by other nutrient elements. For example, increase in 
flax yields in response to Zn application are most likely to occur where P fertilizer is broadcast at relatively high 
levels or on soils with a history of heavy P application44. Similarly, Zn increased as AP content increased in this 
study (Fig. 1).

Modeling the Zn content.  To explore the variation of Zn content in soil, the linearity of the influencing fac-
tors on Zinc were examined. On analysis of the EDFs of the smoothing functions from the univariate? GAM, it was 
identified that Zn content is affected by complex nonlinear influences. The univariate GAMs of Zn content in soil 
are able to estimate values for the significant influencing factors of latitude, longitude, OM, AHN, SAK, AP, AK. 
These factors are considered additive and hence a multivariate GAM was fitted, improving the goodness of fit over 
the univariate model. Nevertheless, SAK does not pass the significant test (P-value > 0.01) for the multivariate GAM 
but it does pass for the univariate GAM. This suggests there is a concave relationship between S(SAK) and S(AK).

Moreover, there is spatial correlation between AK and SAK in the study area. SAK refers to the potassium 
that exists between layers of layered silicate minerals and grain edges and cannot be reached by neutral salts in a 
short time. Conversely, AK can be quickly absorbed and utilized by plants. Zhang et al.45 have revealed that AK 
is affected more than other potassium forms and can be more sensitive in directly reflecting the productivity 
than SAK. On removal of SAK the goodness of fit of the multivariate GAM improved and identified that latitude, 
longitude, OM, AHN, AP and AK have significant influences on the Zn content in soil. Zinc content in soils is 
primarily affected by the interactions between latitude and OM, AP, AK (Fig. 2). The modelling suggests Zn con-
tent in soil is affected more so by the vertical direction (latitude) than the horizontal direction (longitude) in the 
study region. This could be due to location of manufacturing industries or natural landforms and soil types. In 
our study, the GAM derived from the pairwise interaction with the influencing factors can be used to analyze the 
influence characteristics of Zn content. Zn content is affected by multiple factors, and the interactive GAM can be 
constructed using three or more of these factors to analyse influences on Zn content in soil.

Materials and Methods
Description of the study area.  Fangshan District is located between longitudes 115.4°–116.3°E and lati-
tudes 39.5°–39.9°N in Beijing, China. It is situated to the east of the Taihang Mountains. The south-eastern region 
of the district is on a plain, with hill country intersecting the district from the northeast. It is in a warm temperate 
semi-humid monsoonal climatic zone.

Collection of soil samples.  The soil samples were primarily collected in five typical agricultural croplands 
including vegetable land, irrigated land, irrigated paddy field, dry land and orchards. A total of 1,497 soil sam-
ples is collected in the study area (Fig. 3). Representative soils samples were collected from random points in the 

Figure 2.  Three-dimensional effect graph of interacting influencing factors on the variation of Zn content.



www.nature.com/scientificreports/

6Scientific Reports |  (2018) 8:15567  | DOI:10.1038/s41598-018-33745-9

croplands to a depth of 20 cm. The hybrid samples were acquired by five points and then the samples were crushed 
and fully mixed. Two diagonal lines were used to divide the samples into four parts. Any two parts of the diago-
nal angles were reserved as the final samples. A portable sub-meter GPS receiver was used to accurately acquire 
latitude and longitude of the sample points. Atomic Absorption Spectrometry (TAS-990, Xian Yima Optolec Co 
Ltd) was used to analyze the soil samples for nutrients and heavy metals. Specifically, samples were analyzed for 
organic matter (OM) (g/kg), alkali-hydrolyzed nitrogen (AHN) (mg/kg), available phosphorus (AP) (mg/kg), 
slowly available potassium (SAK) (mg/kg) and available potassium (AK) (mg/kg). Heavy metals analyzed were 
Zn, Fe, Cu, Mn, B and S.

Generalized additive model.  It is a regression model that can define the relationships between the 
response variable and each explanatory variable through smooth functions18,31. GAM, using an identity link func-
tion with Gaussian error distribution, is used to determine the effects of various factors on soil Zn. The general-
ized additive model considering interactions of two factors can be given in a general form:

∑ ∑μ ε= + +g f X f X X( ) ( ) ( , ) (1)i i j k j k,

where μ = E Y X X X( / , , , )p1 2 ; g(μ) is a link function, in this study, the log() is used as a link function; fi (i = 1, 
2, …, 7) are the smooth functions of Xi, Xi (i = 1, 2, …, 7) are the explanatory variables, and they are latitude, 
longitude, OM, AHN, AP, SAK, AK, respectively. f ()j k,  are the smooth functions for the interaction between these 
explanatory variables X X( , )j k , X X( , )j k  are (latitude, longitude), (AHN, AP), (OM, AK), (latitude, AP), (latitude, 
OM), (latitude, AK) respectively. ε is the residuals and ( ε ε σ= =E Var( ) 0, ( ) 2).

The smooth functions with cubic regression splines were used in our work. Cubic regression splines were 
constructed with piecewise cubic polynomials joined together at points called knots. The definition of cubic 
smoothing spline basis arises from the solution of the following optimization problem. Among all the functions f, 
with two continuous derivatives, find one that minimize the penalized residual sum of squares.

∫∑ λ− + ″
=

y f x f x dx{ ( )} ( )
(2)i

n

i i
a

b

1

2 2

where = y i n( 1, 2, , )i  is a set of observed values of the response variable and = x i n( 1, 2, , )i  is a set of 
observed values of the explanatory variable. λ is the smoothing parameter. ∑ −= y f x{ ( )}i

n
i i1

2 measures the degree 
of fit of the function to the data, while ∫λ ″f x dx( )

a

b 2  adds a penalty for the curvature of the function, and the 
smoothing parameter controls the degree of penalty given for the curvature in the function. In our study, the 
position of the knots will be evenly spaced along the dimension of each explanatory variable.

Statistical analysis.  All statistical analysis in this study was undertaken in a free software environment for 
statistical computing and graphics (R version 3.1.2)46. A Shapiro-Wilk test was employed to check the normality 
of Zn. Correlation coefficient (R) was used to check the correlation between variables. In general, when there 
is a definite collinearity relationship between the influencing factors in the model, the concurvity relationship 
must exist between these factors. The existence of concurvity in GAM would not only increase the variance 
of coefficients but also enlarge the standard deviation of coefficients. It can cause the narrowing of confidence 
interval. Hence, it is necessary to test whether model has concurvity. The concurvity test has three indicators: 
worst, observed and estimate (Table 4). Generally, the three indicators ranging from 0 to 1 can be used to judge 
whether there is a concurvity. A value of 0 means no concurvity. As the test value approaches 1, the more obvious 
concurvity is.

Figure 3.  Spatial distribution of the collected soil samples in the study area.
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Validation of the model.  A forward stepwise procedure was used to choose the most appropriate model 
removing each explanatory variable from the model, and then evaluating the AIC score. The smaller the score, the 
better the model fits. The AIC score is calculated as follows:

= −AIC k L n(2 2 )/ (3)

where k is the number of parameters in the model; L is the log likelihood; and n is the number of observations.
The 95% confidence interval of the fitted values for Zn was obtained from bootstrapping. Additionally, the 

estimated degree of freedom (EDF) was used to determine whether the selected factors were nonlinearly associ-
ated with the response variables. In order to get a reliable and stable model, a cross-validation method was used 
to verify the model. We randomly selected 70% of the sampling data for modeling, and the remaining 30% was 
used as the test set.

Conclusions
Using the GAM, we analyzed the relationship of Zn content between latitude, longitude, OM, AHN, AK, AP and 
SAK in Fangshan District, Beijing. Based on our analysis, we find that Zn content in soil is significantly affected by 
latitude, longitude, OM, AHN, AK, AP and interactions of OM, AP, longitude, AK with latitude. Thus, by fitting 
a GAM, the influence of interactions between factors affecting Zn content in soil can be quantitatively predicted 
and analyzed. In addition, to gain a greater understanding on influencing factors on Zn content in soil, other 
influencing factors (e.g. pH) need to be included in the GAM.
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