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Complex Network Geometry and 
Frustrated Synchronization
Ana P. Millán1, Joaquín J. Torres   1 & Ginestra Bianconi   2

The dynamics of networks of neuronal cultures has been recently shown to be strongly dependent on 
the network geometry and in particular on their dimensionality. However, this phenomenon has been 
so far mostly unexplored from the theoretical point of view. Here we reveal the rich interplay between 
network geometry and synchronization of coupled oscillators in the context of a simplicial complex 
model of manifolds called Complex Network Manifold. The networks generated by this model combine 
small world properties (infinite Hausdorff dimension) and a high modular structure with finite and 
tunable spectral dimension. We show that the networks display frustrated synchronization for a wide 
range of the coupling strength of the oscillators, and that the synchronization properties are directly 
affected by the spectral dimension of the network.

Network Theory has provided a large evidence that network topology affects the dynamics and function of com-
plex networks1–7. Recently, growing attention has been devoted to analyze networks not only from the topological 
viewpoint but, also, from a geometrical perspective8–11. Characterizing the geometry of complex networks is 
particularly relevant for brain research12,13, where the embedding in a three-dimensional space is essential to 
understand the wiring diagram characterizing the connections between brain regions – or connectome14–16 – 
and also at a more microscopic neuronal level. Interestingly, recent experimental results have shown that the 
synchronization properties of neuronal cultures grown on 2D slices differ considerably from those grown on 3D 
scaffolds; these last ones turn out to be much more likely to maintain synchrony and have two regimes: a highly 
synchronized regime and a moderately synchronized regime17. This result can be compared with results obtained 
in the framework of the Blue Brain project where it has been observed that pairs of neurons have a more signifi-
cant correlations in their dynamics if they belong to higher dimensional simplicies18.

These results reveal that not only network topology but also network geometry plays a crucial role in deter-
mining the dynamical properties of a network. However, the connection between network geometry and 
dynamics has been so far mostly unexplored. Here, we provide a theoretical framework based on simplicial com-
plexes13,19–24 to investigate the effect of network geometry on synchronization dynamics. Our study reveals that a 
finite spectral dimension of geometrical networks can be combined with a complex modular network structure 
to give rise to frustrated synchronization and spatio-temporal fluctuations of the order parameter of the synchro-
nization dynamics. In this way, we provide a clear evidence of the important effect that network geometry has on 
the dynamics of complex networks.

Synchronization phenomena are the subject of extensive research in physical, biological, chemical and social 
systems25,26. The synchronization properties of a network are influenced by the network topology27 and by its 
spectral properties28,29. For instance the stability of a fully synchronized state is known to depend crucially on 
the ratio between the Fiedler eigenvalue (i.e. the smallest non zero eigenvalue) and the largest eigenvalue of 
Laplacian28,29.

Interestingly, complex network topologies characterized by a hierarchical modular structure have been shown 
to display a dynamical phase called frustrated synchronization30 in which the order parameter at large times is 
not stationary but it is instead affected by large spatio-temporal fluctuations. This exotic phase occurs in highly 
modular networks where contact processes have also a dynamical behavior dominated by rare regions of activity 
in correspondence with the so-called Griffith phase31–33. However, in ref.30 the considered network structures 
have a finite Hausdorff dimension while a large number of brain networks is known to be small-world2,12, (i.e. 
have an infinite Hausdorff dimension). Therefore exploring whether such dynamical phase can appear in small 
world networks, such as those that characterize the structure of the brain, has particular relevance in the field of 
neuroscience and neural computation.

1Departamento de Electromagnetismo y Física de la Materia and Instituto Carlos I de Física Teórica y Computacional, 
Universidad de Granada, 18071, Granada, Spain. 2School of Mathematical Sciences, Queen Mary University of 
London, E1 4NS, London, United Kingdom. Correspondence and requests for materials should be addressed to J.J.T. 
(email: jtorres@onsager.ugr.es)

Received: 14 February 2018

Accepted: 19 June 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-6175-9676
http://orcid.org/0000-0002-3380-887X
mailto:jtorres@onsager.ugr.es


www.nature.com/scientificreports/

2SCIEnTIFIC REPOrTS |  (2018) 8:9910  | DOI:10.1038/s41598-018-28236-w

Here, we show that it is possible to generate network geometries called Complex Network Manifolds19,20,22,23 
combining both modular hierarchical structure and a small-world property of the network (i.e. Hausdorff dimen-
sion dH = ∞). Interestingly, Complex Network Manifolds tessellate D dimensional spaces and the dimension 
D, together with their modular structure, strongly affects their synchronization properties. As a result of their 
complex network geometry, these network structures can sustain frustrated synchronization for a large range 
of their parameter values, with the stability of this phase depending crucially on the dimension D. The observed 
spatio-temporal fluctuations of the order parameter appear when the dynamics is strongly affected by localized 
eigenvectors, identifying “rare” regions of activity, and driving global oscillations of the synchronization global 
order parameter.

Complex Network Manifolds
Definition and basic structural properties.  Simplicial complexes are natural objects to be considered 
when investigating network geometry. In fact, intuitively they can be interpreted as geometrical network struc-
tures built by geometrical “LEGO blocks” (the simplices).

A d-dimensional simplicial complex is formed by d-dimensional simplices (fully connected networks of d + 1 
nodes) such as nodes (d = 0), links (d = 1), triangles (d = 2), tetrahedra (d = 3) etc., glued along their faces. Here 
by a face of a d-dimensional simplex, we indicate a δ-dimensional simplex with δ < d formed by a subset of its 
nodes. A simplicial complex has the additional property that if a simplex α belongs to the simplicial complex  
(i.e. α ∈ ) then also all its faces α′ ⊂ α belong to the simplicial complex  (i.e. α′ ∈ ).

Complex Network Manifolds (CNM)19,20,22 are generated by a non-equilibrium growing network dynamics. 
Specifically, Complex Network Manifolds are growing simplicial complexes of dimension d. CNM are discrete 
manifolds generated by gluing subsequently d-dimensional simplices along their (d − 1) faces. Every (d − 1) face 
α of the CNM is characterized by an incidence number nα indicating the number of d-dimensional simplices 
incident to it minus one. Initially (at time t = 1), the CNM is formed by a single d-dimensional simplex. At any 
subsequent step (at time t > 1) a new d-dimensional simplex is glued to a (d − 1) - face α with probability
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In ref.22 the exact degree distribution of CNMss has been analytically derived. Mainly, the degree distribution 
is an exponential degree distribution for dimension d = 2 and a power-law for dimension d > 2 with power-law 
exponent γ given by

γ = +
−

.
d

2 1
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The resulting network is small-world and has an infinite Hausdorff dimension (see Supplementary 
Information).

Network dimensions.  Complex Network Manifolds can be considered as manifolds of dimension d with all 
the nodes placed on the boundary of the manifold. Alternatively, CNMs formed by d-dimensional simplices can 
be interpreted as D = d − 1 dimensional manifolds without boundary.

For instance, if we consider a CNM of dimension d = 3, we can embed the manifold in a d = 3 dimensional 
sphere of radius one without any crossing of the faces. To this end, the first tetrahedron is a regular tetrahedron 
inscribed into the 3-dimension sphere of radius one, and every new tetrahedron has the new node on the surface 
of the sphere and shares a triangular face with the already existing simplicial complex. Since in this embedding all 
the nodes of the CNM are on the D = 2 dimensional surface of the sphere, the network can be also interpreted as 
a tessellation of the D = 2 dimensional manifold formed by the surface of the d = 3 sphere (see Fig. 1).

In this D = 2 triangulated space, the elementary move of adding a new tetrahedron corresponds to the place-
ment of a new node in a middle of a randomly selected triangle of the D = 2 triangulation and the establishment 
of three new links between the new node and each of the nodes of the selected triangle. Most notably, this con-
struction reveals that CNMs in d = 3 are random Apollonian Networks34–36.

Similarly, a CNM of dimension d = 4 can be interpreted either as a 4-dimensional manifold with boundary or 
as the tessellation of a D = 3 space. In this case, the addition of a new 4-d simplex corresponds to the selection of 
a tetrahedron forming the tessellation of the D = 3 space, the placement of a new node in the middle of it and the 
establishment of four new links between the new nodes and each of the nodes of the selected tetrahedron.

Therefore, we can naturally associate both dimension d and dimension D of its natural embedding spaces to 
the CNM formed by simplices of dimension d.

A further dimension of any CNM is its spectral dimension characterizing the property of its Laplacian spec-
trum. This dimension will be characterized in the next paragraph.

Spectral and localization properties.  The spectral properties of complex networks have been shown to 
be particularly relevant to reveal the interplay between network structure and synchronization dynamics on the 
network. Here, we emphasize the relationship between spectral properties and network geometry. To this end, 
we characterize the spectral properties of the normalized Laplacian matrix L characterizing any given CNM. The 
normalized Laplacian L has elements

L a k/ , (3)ij ij ij iδ= −
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where aij define the adjacency matrix (with 0 entries for non-connected nodes and 1 entries for connected ones) 
and ki the degree of node i in the associated network skeleton. The normalized Laplacian has real eigenvalues 
0 = λ1 ≤ λ2 ≤ … ≤ λN.

A large number of complex networks are characterized by a spectral gap, i.e. their second smallest (so-called 
Fiedler) eigenvalue λ2 does not approach zero as the network size grows. On the other hand, CNMs, like regular 
lattices, have a spectral gap that approaches zero for large network sizes (see Fig. 2). This ensures that one can 
define the spectral dimension dS, which characterizes the power-law scaling of the density of eigenvalues ρ(λ) for 
λ ≪ 1 as37,38,

ρ λ λ .−( ) (4)d /2 1S

ds can be calculated starting from the associated cumulative distribution ρc(λ) determining the probability that a 
random eigenvalue is less than λ, i.e.

∫ρ λ λ ρ λ λ= ′ ′ .
λ

d( ) ( ) (5)c
d

0

/2S

For finite D-dimensional lattices, it holds that dS = D (where D is both the Euclidean and the Haussdorf 
dimension) but, in general, the spectral dimension does not have to coincide with the Hausdorff dimension of the 
network nor with the dimension of the space it tessellates21,37.

Remarkably, CNMs formed by d-dimensional simplices have spectral dimension

Figure 1.  Complex Network Manifold’s dimensions. The Complex Network Manifold constructed from d-
dimensional simplicies with d = 3 can be interpreted either (panel (a)) as a d = 3 dimensional manifold with 
boundary (topologically equivalent to a sphere) or alternatively as a D = 2 dimensional manifold without 
boundary tessellating the D = 2 dimensional surface of the sphere. Panel (b) represents the projection of the 
D = 2 manifold on the plane with the Cartesian coordinates indicating the azimuth and elevation of each point 
on the surface of the sphere, respectively. Note that for better visualization purposes we have omitted the links 
connecting nodes at opposite sides of the plane. The node colors indicate different communities detected using 
the Gen-Louvain algorithm44,45.

Figure 2.  Spectral properties of Complex Network Manifolds. Panel (a) shows the cumulative distribution of 
eigenvalues ρc(λ) for CNMs of dimension d = 2, 3, 4. Solid (black) lines indicate the power-law fit of ρc(λ). Panel 
(b) shows the cumulative distribution Pc(Y) of the participation ratio Y of the CNM modes (legend is the same 
as in panel (a)). Data are extracted from a single realization of CNMs of size N = 6400.
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d d (6)S 

as we have checked numerically for dimensions d = 2, 3, 4. Indeed, in Fig. 2(a), we show the cumulative eigenvalue 
distribution ρc(λ) and the fitted power-law behavior for small λ, which yields dS = 2.00(2) for d = 2, dS = 3.02(4) 
for d = 3, dS = 3.96(8) for d = 4.

The eigenvectors of the normalized Laplacian are also useful to reveal relevant properties of the CNMs. Given 
that the normalized Laplacian is an asymmetric matrix, it is characterized by a set of left uL

λ and a set of right 
eigenvectors λuR which, in general, do not coincide. Left and right eigenvectors associated with the same eigen-
value are normalized according to the condition

u u
(7)i
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The localization of any given eigenvector can be quantified using the participation ratio Y, which is an indica-
tor of the number of nodes on which such an eigenvector has a significantly different from zero value, i.e.
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In Fig. 2(b), we show that a very large fraction of eigenvectors are localized on a small fraction of nodes, as 
indicated by a small value of their participation ratio Y compared with the total number of nodes of the net-
work, N. This differs from what happens in regular lattices, where eigenfunctions (oscillation modes) are typically 
delocalized.

Results
Synchronization.  Here we investigate the synchronization properties of coupled oscillators –defined as in 
the Kuramoto model25,26,39–41 – running on top of CNMs as a function of the network dimensionality. To each 
network node i, we associate a non-linear oscillator whose phase θi changes in time according to its own internal 
frequency ωi and the coupling to other connected oscillators, obeying

t
a
k

( ) sin( ),
(9)
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where σ is the control parameter tuning the overall coupling strength, and the internal frequencies ωi are random 
variables independently drawn from a normal distribution with mean 0 and variance 1, i.e. (0, 1) . Previous stud-
ies on frustrated synchronization on complex networks have shown that whereas the particular choice of the dis-
tribution of ωi can affect quantitatively the phase transition between the asynchronous and a synchronous phases, 
its qualitative properties are quite robust31, therefore we restrict the study to this exemplary case. In order to atten-
uate the effect of possible heterogeneities in the degree distribution – and to emphasize that of network geometry 
– in Eq. (9) the effective coupling between node i and its neighbours has been normalized by its degree ki. In order 
to quantify the degree of synchronization, we employ the standard Kuramoto order parameter, defined as

∑= =φ θ

=
Z t R t e
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N
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where R(t) ∈ [0, 1] is a real variable (function of t) that quantifies the level of global synchronization, and φ(t) 
gives the average global phase of collective oscillations2,25,39.

Several previous works have analyzed the effect that the underlying network topology has on the synchroniza-
tion properties of Kuramoto oscillators. For instance, in fully connected networks, as well as in random 
Poissonian networks, the dynamics of the Kuramoto model yields a continuous phase transition from an incoher-
ent state (with R 0) to a coherent one (with R 1) at the critical coupling σc

39–41. In regular lattices of dimen-
sion d it has been shown that global synchronization is only possible for d > 4; in dimensions 2 < d ≤ 4 only 
entrained frequency synchronization, but not phase synchronization, is observed, whereas in dimension d ≤ 2 
synchronization is not observed42,43. Furthermore, as mentioned above, it has been recently shown that also a 
regime of frustrated synchronization – akin to Griffiths phases30 – characterized by global oscillations of R(t), can 
emerge in complex networks with hierarchical and modular structure31. This regime has been previously associ-
ated only with large-world networks, i.e. networks with a finite Hausdorff dimension30.

In what follows we illustrate that it is the network spectral dimension what mostly determines the resulting 
synchronization properties, so that small-world networks – with an infinite Haussdorf dimension – of which 
CNMs are an example here, can also display a regime of frustrated synchronization.

Synchronization and Frustrated Synchronization.  We have performed numerical analysis of the 
Kuramoto dynamics on CNMs which reveals, for a wide range of coupling values, a frustrated synchroniza-
tion phase in which the global order parameter has large temporal fluctuations. In Fig. 3 we show the global 
order parameter R(T) calculated at large times T for a given fixed CNM of size N and given internal frequencies 
{ωi}i=1,2,…,N, and for different values of the coupling σ; the same figure (bottom panels) also shows some examples 
of typical time series of the global order parameter R(t) for D = 1, 2, 3. One can observe that there are regimes (of 
values of the coupling strength σ) in all dimensions where the synchronization dynamics does not reach a steady 
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state with small fluctuations around a mean value. While for D = 1 a synchronized steady state is never reached, 
for D = 3 a synchronized phase is observed (on a finite network) for large values of the coupling σ between the 
oscillators. The synchronization properties in the case D = 2 reveal an intermediate scenario with respect to the 
cases D = 1 and D = 3, with a wide region of large oscillations of the global synchronization parameter R(T), i.e. 
frustrated synchronization.

In order to characterize the frustrated synchronization phase and to assess whether a true synchronization 
transition is observed for CNMs of D = 2 and D = 3, we have performed an extensive computational analysis 
of the considered Kuramoto dynamics averaged over different CNMs and different realizations of the internal 
frequencies. As a way to characterize network oscillations, in Fig. 4 the average order parameter R and its stand-
ard deviation σR, calculated after a transient time, are shown as a function of the coupling constant σ. The large 
values of the standard deviation indicate the region of the phase space in which frustrated synchronization is 

Figure 3.  Frustrated synchronization. The synchronization order parameter R(T) is plotted versus the coupling 
strength σ for D = 1 (a) D = 2 (b) and D = 3 (c), for a single network realization of N = 1600 nodes. Here, we 
have taken T = 500 in all graphs. The arrows in the panels (a–c) indicate the specific values of the coupling 
strength σ for which we show the time series R(t) in panels (d) for D = 1, (e) for D = 2 and (f) for D = 3.

Figure 4.  Synchronization transition. The synchronization order parameter R and its variance σR are shown 
for D = 1 (panels (a and d)), D = 2 (panels (b and e)) and D = 3 (panels (c and f)). Different lines are drawn for 
different networks sizes: N = 100 (blue), 200 (green), 400 (red), 800 (cyan), 1600 (pink) and 3200 (black). The 
data are averaged over 50 realizations of the CNMs and the internal frequencies. A finite size scaling analysis 
shows decay in the synchronization order parameter with network size for every dimension (from 2 to 4) 
indicating that synchronization fades away in the infinite-network-size (thermodinamic) limit43.
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observed. Our finite size analysis (see Fig. 4) reveals the strong influence of the CNM dimension on the macro-
scopic dynamics. In D = 1 global synchronization is never achieved for large network sizes, indicating that in the 
large-size (thermodynamic) limit synchronization is impossible. On the other hand, synchronization in CNMs 
with D = 2 and D = 3 is possible for small networks but gets delayed to higher couplings for increasing system 
sizes, and a much broader regime of large fluctuations is observed in the D = 2 case.

These numerical observations can be understood in connection with the spectral dimension of the corre-
sponding CNM. In fact, by linearizing the Kuramoto dynamics, it is possible to extend the results obtained in42 for 
regular lattices to complex networks with finite spectral dimension. These theoretical considerations reveal that 
for dS ≤ 2 networks cannot synchronize, whereas for dS > 4 there is always a critical value of the coupling above 
which synchronization is possible. Finally, for 2 < dS ≤ 4 global synchronization is not possible but an entrained 
synchronized state can be observed.

Interestingly, CNMs show that it is possible to realize tessellations of a D = 3 space that have spectral dimen-
sion dS = 4. These networks have the critical spatial dimension for the onset of the synchronized state. This sug-
gests that it could be possible to have marginal synchronization in three-dimensionally embedded networks.

Spatio-temporal fluctuations of the order parameter.  Here, we investigate further the regime of frus-
trated synchronization by characterizing the spatio-temporal fluctuations of the order parameter. As a matter of 
fact, CNMs are characterized by significantly modular structures that can be revealed by community detection 
methods (see Supplementary Material). These communities define regions of the networks that include a set of 
nodes close in the embedding space. Additionally, these nodes are also more densely connected with each other 
than with other nodes of the network. In order to give a visual representation of these communities, in Fig. 5 we 
visualize single instances of CNMs in D = 1, D = 2, D = 3 and plot, by employing different colors, the communi-
ties found by using a standard (Gen-Louvain) algorithm for community detection44,45.

It is, thus, natural to explore the differences between the dynamical state of these communities. For that, we 
define a “mesoscopic” synchronization parameter as

Z t R t e e( ) ( ) 1 ,
(11)

mod n mod n
i t

n i

i
, ,

( )mod n

n

i, ∑= =
| |

φ θ

∈ 

where n is the set of nodes in the nth community and n| | indicates the total number of nodes in the community. 
Here,

= | |R t Z t( ) ( ) (12)mod n mod n, ,

is a real variable taking values in the range [0, 1]. Figure 6 displays the trajectory of Zmod(t) in the complex plane 
for some modules of exemplary cases of CNMs in D = 1, 2, and D = 3 for coupling values that maximize σR as 
indicated in the caption. In these plots, a circular trajectory describes a situation in which Rmod(t) is constant in 
time, with full synchronization of the module corresponding to Rmod(t) = 1. Random trajectories around (0, 0) 
describe unsynchronized modules. Partially synchronized modules, on the other hand, may describe more com-
plex, i.e. chaotic, trajectories. We can distinguish between trajectories that oscillate within a circular crown of 
relatively large radius, in which Rmod(t) oscillates between different states of partial synchronization, and trajecto-
ries that visit the center (unsynchronized state) too. Figure 6 also displays the time series Rmod(t) and the spectral 
decomposition S(f) of the temporal series Rmod(t) − 〈Rmod(t)〉 for the considered exemplary modules. Interestingly, 
the spectral decomposition shows that, whereas some frequencies are in fact dominant, different modules can 
oscillate in quite different ways, indicating diverse synchronization states.

Figure 5.  Geometric representation and community structure of Complex Network Manifolds. CNMs 
of N = 400 nodes and dimension D = 1 (a) D = 2 (b) and D = 3(c) are visualized and their corresponding 
community structures, as detected using the Gen-Louvain algorithm44,45, are indicated by different colors. 
D = 2 and D = 3 CNMs are displayed by using their holographic representation, as indicated in section Network 
dimensions. In D = 2 the 2-dimensional coordinates indicate the elevation and azimuth of the nodes on the 
surface of a sphere, respectively. Finally, the D = 1 CNM is represented on a bounded 2-dimensional manifold. 
The holographic 1-dimensional representation is equivalent to this one but all links should be superimposed on 
the circumference.
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This numerical analysis reveals the relevant spatio-temporal fluctuations observed in the frustrated synchroni-
zation phase where different modules synchronize at different frequencies. Therefore, CNMs are stylized network 
geometries that might provide an important framework to characterize the geometrical network properties of 
neuronal networks and their role in brain dynamics.

Communities and localized eigenvectors.  In order to reveal the relation between the community struc-
ture of CNMs and their spectral decomposition, we have characterized the localization properties of the eigenvec-
tor corresponding to the eigenvalue λ on different network communities. To this end we have evaluated for each 
eigenvector λ the community participation ratio YQ, defined as

Y u u ,
(13)
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where n indicates the nth community and C is the total number of communities. The community participation 
ratio YQ ∈ [1, C] indicates the number of communities on which the eigenmode is localized. Figure 7 indicates 
that a large number of eigenvectors are localized in one or few communities. Thus, diverse modes are activated at 
different communities (and at different local coupling strengths), justifying the emergence of local patches of 
synchronization and overall frustrated synchronization. This therefore explains the fact that in the frustrated 
synchronization phase we observe a dynamics highly correlated with the modular structure of the network.

Figure 6.  Spatio-temporal fluctuations of the order parameter. Top panels show representative plots of the 
trajectory of the system on the phase space defined by Re[Zmod], Im[Zmod] respectively for D = 1, σ = 5.0 (a) 
D = 2, σ = 3.5 (b) and D = 3, σ = 3.0 (c). The corresponding time series of Rmod(t) is shown respectively in panels 
(d–f), with the time t in seconds. Finally, the bottom panels (g–i) show the spectral decomposition S(f) of the 
previous time series, with the frequency f in units of 103[t]−1, respectively for D = 1, 2, 3. The CNMs in this 
figure have size N = 800.
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Coarse graining of the frustrated synchronization dynamics.  In brain research brain activity is typ-
ically measured by coarse graining the neural population dynamics at the level of macroscopic brain regions. 
The main starting point of such research is usually the extraction of a correlation matrix between the activity of 
different brain regions. Here, we investigate the role of coarse graining the frustrated synchronization dynamics 
on CNMs by using the local order parameter Rmod,n, which describes the internal synchronization of each module 
of the CNM. We run twice the Gen-Louvain algorithm in order to obtain a fine partition into modules of the 
CNM (with D = 2), whereas retaining high modularity. We then measure the Pearson correlation between every 
pair of different modules (see Fig. 8(a)) to obtain a correlation matrix. Subsequently, we coarse grain further these 
modules (reducing the modules to about one half) by considering the aggregation generated by running a single 
linkage clustering to the correlation matrix (see Fig. 8(b)). We observe that the modularity of the coarse grained 
partition remains high, thus revealing once more the coupling between the synchronization dynamics and the 
network topology. Moreover, we find that the coarse grained dynamics remains non-trivial, as revealed by a 
complex correlation matrix, indicating a sort of invariance under network hierarchical coarse graining. A similar 
behavior of the dynamics under coarse graining is observed in the frustrated synchronization phase of CNMs of 
other dimensions D.

Conclusions and Discusion
In conclusion, this study shows the rich interplay between network geometry and synchronization dynamics 
by investigating the Kuramoto model running on top of Complex Network Manifolds. These networks define 
discrete manifolds in dimension D with the small-world property and highly modular structure, and provide 
an ideal theoretical setting to explore the interplay between network geometry and brain dynamics. When the 

Figure 7.  Localization of the eigenmodes. The distribution P(YQ) of the community participation ratio YQ of 
a single realization of N = 6400 nodes of a CNM is shown for D = 1 (panel a), D = 2 (panel b) and D = 3 (panel 
c). The total number of communities in these networks are: 30 (panel a), 18 (panel b) and 12 panel (c). Observe 
that Y can be larger in lower dimensions; this is because the modularity is smaller in lower dimensions and the 
community-detection algorithm divides the network in more communities.

Figure 8.  Correlations between modules and coarse graining of the frustrated synchronization dynamics. The 
matrix of Pearson correlations among the dynamical state of each pair of communities is reported for a fine 
grained partition (panel (a)) and a coarse grained one (panel (b)) of a CNM of N = 1000 nodes and dimension 
D = 2. The dynamical state of each community n is measured using Rmod,n. The fine partition formed by 79 
communities is generated by running twice the GenLouvain algorithm, yielding a modularity Q = 0.66. The 
coarse grained partition has been extracted by running a single linkage clustering on the correlation matrix 
and cutting the resulting dendrogram in order to get 30 communities. The resulting modularity of the coarse 
grained partition is Q = 0.60.
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synchronization of CNMs of dimensions D = 3 and D = 2 is compared, it is observed that both network structures 
sustain a regime of frustrated synchronization where spatio-temporal fluctuations of the order parameter are 
observed. In this regime, network modules are characterized by different synchronization frequencies. However, 
finite CNMs in D = 3 are much more favourable to sustain synchronized states than CNMs in D = 2. These results 
help shedding light on the experimental finding that 3D scaffolds favor neuronal network dynamics, as recorded 
in calcium activity experiments, with respect to 2D geometries for neuronal cultures, and that relevant features 
of brain dynamics are a consequence of its 3D topology, as experimentally observed in ref.17. Moreover, our 
study shows evidence that CNMs that can be embedded in dimension D = 3 may have spectral dimension dS = 4, 
i.e. the critical spectral dimension for the onset of a global synchronous phase, allowing us to observe both a 
fully synchronized regime and a frustrated synchronization regime on a finite network. Also, our work reveals 
that non-trivial synchronization states can emerge even in small-world networks, with an infinite topological 
dimension.

On a wider perspective this work reveals the important role of the spectral dimension and the localization of 
eigenvalues in promoting the frustrated synchronization phase and opens new research lines to relate network 
geometry and brain dynamics.

Methods
Computational analyses are performed in MATLAB software. Integration of system dynamics are carried out 
using the ode45 function, which uses a non-stiff 4-th order integration algorithm with adaptive steps. Modularity 
analyses are performed via the Generalized Louvain algorithm44,45. The codes for generating the Complex 
Network Manifolds, which are equivalent to the Network Geometry with Flavor s = −119, can be found in this 
public repository46.
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