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Vitamin D levels correlate with 
lymphocyte subsets in elderly 
patients with age-related diseases
Xudong Mao1, Bin Hu2, Zhiwen Zhou3, Xubin Xing4, Yan Wu5, Jing Gao6, Yue He3, Ying Hu1, 
Qihong Cheng1 & Qing Gong1

Hypovitaminosis D is associated with age-related illnesses, including hypertension, cardiovascular 
disease (CRVD), cerebrovascular disease (CAD) and type 2 diabetes mellitus (T2DM). In our retrospective 
observational study, blood samples of elderly healthy controls (n = 461) and patients with age-related 
diseases (n = 8,621) were subjected to flow-cytometry in order to determine correlations between 
age-related diseases and cluster of differentiation 4 (CD4), CD8, CD3, and CD19 lymphocyte markers, 
as well as serum levels of 25-hydroxyvitamin D2 (25(OH)D2) and 25-hydroxyvitamin D3 (25(OH)D3). 
More than 70% of the patients in each disease group had total vitamin D < 20 ng/mL (P < 0.001). In 
CRVD patients, CD3 and CD19 correlated (P < 0.05) with 25(OH)D3. In CAD patients, CD8, CD4, CD19 
and CD4/CD8 correlated (P < 0.05) with 25(OH)D2, and CD8 correlated (P < 0.05) with 25(OH)D3. In 
T2DM and hypertension patients, CD8, CD3, CD19 and CD4/CD8 correlated with 25(OH)D3. Progressive 
trends (P < 0.05) towards increased CD8 and CD4/CD8 were observed in vitamin-D-deficient T2DM and 
hypertension patients. Significant differences (P < 0.05) in CD8 were observed in vitamin-D-deficient 
CAD patients, whereas significant differences (P < 0.05) in CD8 and CD19 were observed in CRVD 
patients. Higher CD8 and CD4/CD8 in 25(OH)D-deficient T2DM and hypertension patients suggested 
a Th1 lymphocyte profile induction. Increases in CD8-positive lymphocytes suggested a similar, less 
pronounced effect in vitamin-D-deficient CRVD and CAD patients.

Vitamin D refers to a group of lipid-soluble compounds that act as precursors for the production of the biolog-
ically active secosteroid, 1,25-dihydroxyvitamin D, which is primarily produced in the kidney1. Vitamin D is 
known to function in a wide range of homeostatic processes including calcium absorption and bone remodeling2. 
The major vitamin D metabolites in serum are 25-hydroxyvitamin D2 (25(OH)D2) and 25-hydroxyvitamin D3 
(25(OH)D3), with the serum level of 25(OH)D3 most often much higher than the level of 25(OH)D2

3,4. The der-
mal 25(OH)D3 conversion after exposure to solar radiation serves as the major source of vitamin D5, whereas 
25(OH)D2 is present in relatively few foods including egg yolk, fish and mushrooms and is used to fortify mainly 
milk, orange juice and cereals. Recent research has revealed alternative vitamin 3 pathways leading to various 
(OH)D3 products other than 25(OH)D3 in skin, placenta and porcine adrenal gland6–8.

Vitamin D deficiency is a global pandemic3,9 and observational studies based on 25(OH)D concentrations 
revealed beneficial effects for patients with a variety of illnesses10,11 including metabolic syndrome (MetS)12,13, 
obesity9,14, certain cancers15,16, a number of autoimmune disorders15,17, hypertension18,19, cardiovascular disease 
(CVD)20, and T2DM21,22. However, whether vitamin D deficiency contributes to the pathology of these diseases 
remains largely unclear.

Investigations worldwide have shown that vitamin D levels wane in the elderly23,24, with women often exhib-
iting vitamin D deficiency at younger ages than men25. Serum markers of both innate and adaptive immunity are 
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associated with the vitamin D status26,27. It has been demonstrated that 1,25(OH)2D3, the most biological active 
metabolite of vitamin D, acts on T and B lymphocytes to modulate both the cytotoxic and antibody-producing 
functions of lymphocytes28,29. Previous studies have shown that 1,25(OH)2D3 synthesis could activate innate 
immune responses, while suppressing adaptive immune responses30,31. A decreased CD4+/CD8+ ratio, resulting 
from reduced CD4+, was reported in patients with acquired immune deficiency syndrome (AIDS), suggesting 
CD4+/CD8+ reversion was an important indicator of immunodeficiency diseases and viral infection32. Similarly, 
T cell variations have been correlated with cancer outcomes33,34 and T2DM35.

Vitamin D deficient elderly persons frequently exhibit a progressive increase in serum levels of acute-phase 
reaction proteins and proinflammatory cytokines36–39, a set of conditions associated with chronic diseases that are 
highly prevalent in the elderly, including CVD, neurodegenerative diseases and glucose metabolism disorders40,41. 
Animal model and cell culture studies have demonstrated beneficial immunomodulatory effects of vitamin D, 
which is thought to induce an immunological transition from a Th1/Th17 response to a Th2/Treg response based 
on the cytokine profiles of immune cell types measured following vitamin D treatment36,42.

Observational studies of elderly people in Italy and Ireland found that the serum level of IL-6 was inversely 
associated with the vitamin D status36,37. Blockade of the IL-6 receptor with tocilizumab has been shown to sup-
press Th1 and Th17 signaling and stimulate beneficial Th2 responses in patients with early-stage rheumatoid 
arthritis43, and suppression of Th17 signaling with the vitamin D receptor agonist, elocalcitol, was shown to 
reduce autoimmunity in non-obese diabetic mice44. Studies of immune cells have also shown that treatment 
with 1,25(OH)2D3 reduced the expression of IL-6 and various other proinflammatory factors45. Given the high 
prevalence of elevated serum IL-6 in vitamin D deficient elderly persons, we retrospectively analyzed the records 
of a large population of elderly Chinese people to investigate whether the immune marker profiles of lymphocyte 
subsets correlated with vitamin D levels in patients with illnesses more common diagnosed in the elderly such as 
T2DM, cerebrovascular disease (CRVD), coronary artery disease (CAD), hypertension and cancer46.

Subjects and Methods
Patients.  We analyzed the records of patients’ ≥40 years of age who were treated for various conditions at 
the Hospital of Shanghai Zhongshan-Xuhui between May 2012 and August 2016. Patients with hepatic failure, 
serum creatinine >120 µmol/L, hyperthyroidism, hypothyroidism, immune disorders or infection were excluded 
from our study. Patients receiving hormone medication were also excluded from our analysis. A total of 461 
healthy volunteers (control subjects) were also enrolled in our study. Informed written consent was obtained from 
all of the patients and control subjects prior to their participation in our study. The study was approved by the 
Institutional Review Board of ZhongShan-Xuhui Hospital, and was carried out in accordance with the principles 
of the Declaration of Helsinki for ethical research involving human subjects.

Measurement of vitamin D metabolites.  Serum samples collected from patients and healthy volunteers 
were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) using deuterated 25(OH)D2 
(6,19,19-d3) and deuterated 25(OH)D3 (26,26,26,27,27,27-d6) (Sigma-Aldrich, St. Louis, MO, USA) as internal 
standards for 25(OH)D2 and 25(OH)D3, respectively. The analysis was performed using an API 4000 LC-MS/MS 
system (AB Sciex Pte, Framingham, MA, USA) equipped with a Shimadzu liquid chromatograph (Kyoto, Japan). 
The accuracy of low, medium, and high concentration controls was 85–115%, and the precision (CV) was <15%. 
The inter- and intra-assay coefficients of variation were <10%. Analyst 1.5 software (Applied Biosystems, Foster 
City, CA, USA) was used for data collection and quantitative analysis.

Measurement of immunity-related indexes.  CD3 represents the total T cell number (thymus depend-
ent lymphocyte) and CD19 is a cell surface receptor complex component that regulates B lymphocyte responses47. 
Cells from whole blood samples were subjected to flow cytometry analysis to determine the proportions of lym-
phocyte subsets in peripheral venous blood within 2 h of collection, based on binding of the following monoclo-
nal antibodies (mAbs): Anti-CD4, anti-CD8, anti-CD3, anti-CD56 and anti-CD19 (BD Biosciences, San Jose, CA, 
USA), The stained cells were sorted using a FACS Aria flow cytometer (BD Biosciences) using appropriate isotype 
controls for gating, and the data were analyzed using FlowJo software (Tree Star, Ashland, OR, USA).

Statistical analysis.  All statistical analyses were performed using SPSS, version 18.0 (IBM, Armonk, NY, 
USA). Continuous variables are presented as the median ± interquartile range (IQR). Differences between 
patients with different diseases were compared using variance analysis. Categorical variables were summarized as 
a percentage of the whole and a chi-squared test was used to detect differences. Pearson correlation analysis was 
used to evaluate the correlations between indicators in two different groups, with P < 0.05 indicating a statistically 
significant difference between the two groups.

Results
Patient characteristics.  Demographic and clinical data for the patients and control subjects are presented 
in Table 1. The healthy control subjects included 256 men and 205 women with a mean age of 76 ± 15 years. A 
total of 8,621 patients (4,215 men and 4,406 women) with a mean age of 80 ± 13 years (range: 40–106 years) were 
included in our analysis. The most common diagnoses for these patients included the following categories in 
descending order of prevalence: CRVD (32.2%, n = 2,775); CAD (25.2%, n = 2,174); T2DM (17.5%, n = 1,512); 
and hypertension (15.0%, n = 1,292). Other diagnoses accounted for 10.1% of the study population, and included 
digestive disease (n = 143), kidney disease (n = 141), malignancy (n = 111), fracture (n = 87), osteoporosis 
(n = 40), MetS (n = 36), liver disease (n = 23), gout (n = 12), anemia (n = 7), and other diseases (n = 268).

Only the MetS and osteoporosis groups had a total serum level of vitamin D within the reference range  
(20–30 ng/mL), the latter of which was likely due to the regular use of vitamin D dietary supplements. Total serum 
vitamin D in the healthy control group was slightly below the reference range lower limit48, which is consistent 
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with the findings of previous studies of the prevalence of vitamin D deficiency in the elderly49,50. The 25(OH)D3 
and 25(OH)D2 serum concentrations of healthy control subjects differed significantly compared to some patients 
(Table 1).

Correlations between vitamin D levels and lymphocyte subsets.  We investigated the relationships 
between lymphocyte immune markers and the serum levels of 25(OH)D2 and 25(OH)D3 in the various disease 
groups using correlation analysis, and the results of the analysis are presented in Table 2. In CRVD patients, 
we observed a negative correlation between CD3 and 25(OH)D3 and positive correlations between CD19 and 
25(OH)D3 and CD56 and 25(OH)D2. Given that 25(OH)D3 is the greater contributor to vitamin D status, these 
results suggest that vitamin D deficiency might correlate with a shift from humoral immunity to cell mediated 
immunity in CRVD patients. However, the lack of significant correlations for CD4, CD8, and CD4/CD8 in CRVD 
patients as well as the missing significance of total 25(OH)D clearly limit such an interpretation.

In patients with CAD, we observed a significant positive correlation between CD8 and 25(OH)D2 and signif-
icant negative correlations between CD8 and 25(OH)D3, CD4 and 25(OH)D2, CD19 and 25(OH)D2 and CD4/
CD8 and 25(OH)D2. However, reduced 25(OH)D2 significantly correlating with increased CD4, CD19, and CD4/
CD8 as well as missing significance of total 25(OH)D, limits the interpretation of these results in CRVD patients.

In T2DM patients, the level of 25(OH)D3 negatively correlated with CD8 and CD3, and positively correlated 
with CD19 and CD4/CD8, which also was visible for total 25(OH)D. These results suggest that vitamin D defi-
ciency correlates with the induction of Th1 immunity in T2DM patients, and that patients with T2DM might 
benefit from 25(OH)D3 dietary supplements.

In patients with hypertension, 25(OH)D3 and total 25(OH)D negatively correlated with CD8 and CD3 and 
positively correlated with CD19 and CD4/CD8, a finding which suggests that patients with hypertension might 
also benefit from 25(OH)D3 dietary supplementation.

Though there were some correlations between 25(OH)D2 and 25(OH)D3 with lymphocyte subsets, the results 
for kidney disease, digestive disease and fracture/osteoporosis groups were insufficient to draw any reliable infer-
ence of the effects of serum levels of vitamin D metabolites on these diseases.

Stratified analysis of vitamin D levels in elderly patients with age-related illnesses.  Based on 
our findings regarding correlations between the levels of vitamin D metabolites and lymphocyte subsets, we per-
formed a stratified analysis of the relationship between immune cell markers and vitamin D in patients with the 
most prevalent age-related diseases represented in our study. To this end, we first performed a stratified analysis 
of 25(OH)D2 and 25(OH)D3 levels in the CRVD, CAD, T2DM and hypertension groups, the results of which are 
presented in Table 3. Patients were divided into 4 categories based on their serum 25(OH)D3 levels (<10, 10–19, 
20–30 and >30 ng/mL), and into 3 categories based on the serum level of 25(OH)D2 (<1, 1–2, and >2 ng/mL).  
Significant differences were observed in the number of patients in the various 25(OH)D3 and 25(OH)D2 

Patient group Men (n[%])
Women 
(n[%])

Mean age 
± SD (y)

Total 
25(OH)D 
(ng/mL)

25(OH)D3 
(ng/mL)

25(OH)D2 
(ng/mL) CD4 (%) CD8 (%) CD4/ CD8 CD3 (%)

CD19 
(%)

CD56 
(%)

Healthy Control 256 (55.5) 205 (44.5) 76 ± 15 18 ± 9 18 ± 9 1.5 ± 2.5 45 ± 5.0 27 ± 6.0 2.0 ± 0.40 69 ± 8.0 13 ± 5.0 17 ± 6.0

CRVD (N = 2,775) 1,469 (52.9) 1,306 (47.1) 75 ± 20 15 ± 9 13 ± 8 0.6 ± 1.6 45 ± 12 23 ± 11 2.0 ± 1.3 71 ± 12 10 ± 7.0 16 ± 11

CAD (N = 2,174) 1,109 (51.0) 1,065 (49.0) 87 ± 8 16 ± 10 13 ± 9 1.0 ± 2.3 43 ± 15 24 ± 13 1.8 ± 1.4 71 ± 14 9.0 ± 8.0 17 ± 13

T2DM (N = 1,512) 709 (46.9) 803 (53.1) 74 ± 18 16 ± 11 15 ± 10 0.5 ± 1.4 45 ± 13 22 ± 11 2.0 ± 1.4 71 ± 12 11 ± 6.5 16 ± 11

Hypertension 
(N = 1,292) 542 (42.0) 750 (58.0) 81 ± 18 17 ± 10 15 ± 10 0.7 ± 1.7 45 ± 13 22 ± 11 2.0 ± 1.5 70 ± 12 11 ± 8.0 16 ± 12

Digestive disease 
(N = 143) 66 (46.2) 77 (53.8) 73 ± 24 16 ± 12 14 ± 11 1.0 ± 1.6 45 ± 15 22 ± 12 1.9 ± 1.5 71 ± 14 12 ± 7.0 16 ± 16

Kidney disease 
(N = 141) 77 (54.6) 64 (45.4) 77 ± 16 12 ± 9 9.2 ± 7 1.3 ± 2.4 42 ± 17 24 ± 13 2.0 ± 1.4 71 ± 15 7.0 ± 7.0 18 ± 13

Malignant tumor 
(N = 111) 67 (60.4) 44 (39.6) 81 ± 21 12 ± 11 11 ± 10 0.8 ± 2.4 38 ± 16 27 ± 17 1.6 ± 1.3 71 ± 18 7.0 ± 9.0 17 ± 17

Fracture (N = 87) 32 (36.8) 55 (63.2) 65 ± 21 18 ± 12 16 ± 10 0.6 ± 1.7 45 ± 12 24 ± 12 1.8 ± 1.1 72 ± 13 12 ± 6.0 12 ± 13

Osteoporosis 
(N = 40) 5 (12.5) 35 (87.5) 72 ± 21 20 ± 12 20 ± 14 1.2 ± 2.1 46 ± 11 23 ± 13 2.1 ± 1.8 68 ± 10 10 ± 7.5 15 ± 15

MetS (N = 36) 15 (41.7) 21 (58.3) 68 ± 15 24 ± 10 23 ± 9 0.04 ± 1.5 45 ± 8.0 22 ± 8.5 2.1 ± 1.1 70 ± 9.5 13 ± 6.0 15 ± 10

Liver disease 
(N = 23) 18 (78.3) 5 (21.7) 82 ± 33 11 ± 7 11 ± 7 0.03 ± 1.1 36 ± 6.0 20 ± 19 1.8 ± 1.3 61 ± 24 11 ± 16 22 ± 16

Other disease 
(N = 268) 94 (35.1) 174 (64.9) 66 ± 23 16 ± 10 15 ± 9 0.6 ± 1.8 44 ± 13 23 ± 10 1.8 ± 1.4 72 ± 12 12 ± 8.0 14 ± 9.5

Gout (N = 12) 9 (75.0) 3 (25.0) 84 ± 13 14 ± 9 11 ± 8 1.2 ± 1.6 39 ± 13 27 ± 15 1.4 ± 1.2 67 ± 6.0 9.0 ± 9.0 20 ± 14

Anemia (N = 7) 3 (42.9) 4 (57.1) 83 ± 15 12 ± 8 12 ± 9 0.5 ± 1.6 45 ± 15 16 ± 11 2.5 ± 2.9 70 ± 19 15 ± 14 16 ± 10

Table 1.  Comparison of Vitamin D and immunity-related indexes between healthy volunteers (N = 461) and 
patients with various diseases (N = 8,621). Data are presented as the number of patients and percentage of the 
patient group [n(%)] or median ± inter quartile range. *Sum of 25(OH)D3 and 25(OH)D2 levels. SD, standard 
deviation; CRVD, cerebrovascular disease; CAD, coronary artery disease; T2DM, type-2 diabetes; MetS, 
metabolic syndrome; 25(OH)D2, 25-hydroxy vitamin D2; 25(OH)D3, 25-hydroxy vitamin D3.
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categories for all of the disease groups (Table 3). More than 70% of the patients in each disease group were vitamin 
D deficient (total vitamin D < 20 ng/mL), with most of the patients (>50%) in the 10–20 ng/mL 25(OH)D3 and 
<1 ng/mL 25(OH)D2 categories for all of the CRVD, CAD, T2DM and hypertension groups. Overall, these results 
are consistent with the findings of previous studies regarding the high prevalence of vitamin D deficiency in 
elderly persons49,50. These results suggest that either vitamin D deficiency contributes to the pathology of CRVD, 
CAD, T2DM and hypertension or alternatively that these diseases modify the maintenance of serum vitamin D 
levels in a similar manner.

Stratified analysis of correlations between vitamin D levels and lymphocyte subsets.  To com-
plete our study, we performed an analysis of immune cell markers and serum vitamin D levels in CRVD, CAD, 
T2DM and hypertension patients, that were stratified according to the categories of 25(OH)D2 and 25(OH)D3 
concentrations established in the previous section.

Patient group
Immune 
marker

25(OH)D3 25(OH)D2 Total 25(OH)D

r P r P r P

CRVD (N = 2,775) CD8 −0.04 0.03 −0.00 0.98 −0.04 0.04

CD19 0.04 0.04 −0.04 0.05 0.02 0.25

CAD (N = 2,174) CD8 −0.05 0.03 0.13 <0.001 0.03 0.14

CD4 0.02 0.25 −0.07 0.001 −0.02 0.42

CD19 0.00 0.97 −0.09 <0.001 −0.05 0.03

CD4/CD8 0.03 0.16 −0.04 0.045 0.003 0.87

T2DM (N = 1,512) CD8 −0.13 <0.001 −0.02 0.52 −0.13 <0.001

CD3 −0.09 0.001 −0.002 0.95 −0.09 0.001

CD19 0.08 0.002 −0.01 0.75 0.08 0.003

CD4/CD8 0.06 0.01 0.01 0.66 0.07 0.01

Hypertension 
(N = 1,292) CD8 −0.07 0.01 0.02 0.47 −0.06 0.03

CD3 −0.08 0.01 0.01 0.61 −0.07 0.01

CD19 0.12 <0.001 −0.04 0.17 0.11 0.001

CD4/CD8 0.06 0.02 −0.00 0.95 0.06 0.03

Kidney disease 
(N = 141) CD3 — — 0.17 0.049 0.12 0.20

CD4/CD8 0.18 0.03 — — 0.15 0.08

Digestive disease 
(N = 143) CD4 — — −0.29 0.001 −0.13 0.11

CD8 — — 0.27 0.001 0.16 0.06

Osteoporosis/
fracture (N = 127) CD8 −0.19 0.03 — — −0.18 0.043

Table 2.  Analysis of correlations between 25(OH)D2 and 25(OH)D3 levels and lymphocyte subsets in 
elderly patients with age-related illness. Note: CD 56 was not included in the table due to missing significant 
correlations with 25(OH)D2 or 25(OH)D3 or total 25 (OH)D; CAD, coronary disease; CRVD, cerebrovascular 
disease; T2DM, type 2 diabetes mellitus; 25(OH)D2, 25-hydroxyvitamin D2; 25(OH)D3, 25-hydroxyvitamin.

Patients

25(OH)D3 (ng/mL)

P*

25(OH)D2 (ng/mL)

P*
<10 10–19 20–30 >30 <1 1–2 >2

Patients [n(%)] Patients [n(%)]

CRVD 
(N = 2,775) 795 (28.6)a 1,500 (54.0)b 402 (14.5)c 78 (2.8)d <0.001 1,601 (57.7)a 603 (21.7)b 571 (20.6)b <0.001

CAD 
(N = 2,174) 617 (28.4)a 1,112 (51.2)b 364 (16.7)c 81 (3.7)d <0.001 1,601 (57.7)a 603 (21.7)b 571 (20.6)b <0.001

T2DM 
(N = 1,512) 365 (24.1)a 760 (50.3)b 307 (20.3)a 80 (5.3)c <0.001 918 (60.7)a 326 (21.6)b 268 (17.7)c <0.001

Hypertension 
(N = 1,292) 229 (17.7)a 700 (54.2)b 281 (21.7)c 82 (6.4)d <0.001 714 (55.3)a 303 (23.4)b 275 (21.3)b <0.001

Table 3.  Stratified comparison of 25(OH) D2 and 25(OH) D3 in elderly patients with age-related illnesses. 
*P < 0.0001 for overall comparison of vitamin D categories within the CRVD, CAD, T2DM, and hypertension 
groups. a, b, c, d: Use of the same superscripted letter within a disease group indicates no significant difference 
(P ≥ 0.05) between the number of patients in those vitamin D categories, whereas different letters indicate a 
significant difference (P < 0.05) between vitamin D categories. CRVD, cerebrovascular disease; CAD, coronary 
artery disease; T2DM, type 2 diabetes mellitus.
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As shown in Table 4, the distributions of the percentage of CD8-positive cells, CD19-positive cells, and 
CD56-positive cells in CRVD patients were significantly different across the various categories of serum 25(OH)
D3 concentrations, whereas only the distribution of CD4-positive cells was significantly different across the various 
categories of serum 25(OH)D2 levels. The higher proportion of CD8-positive cells in 25(OH)D-deficient CRVD 
patients and the higher proportion of CD19-positive cells in CRVD patients with 25(OH)D3 levels >20 ng/mL  
suggests that low serum vitamin D promotes a Th1 immune marker profile in CRVD patients.

In CAD patients, CD19 was the only immune marker for which a significant progressive trend was observed 
with regard to serum vitamin D concentration ranges, with a greater proportion of C19-positive cells identified 
in patients with lower serum 25(OH)D2 levels (Table 4). In T2DM patients, the distribution of the percentages of 
CD8-positive cells, CD3-positive cells, CD56-positive cells, and the CD4/CD8 ratio differed significantly across 
the various serum 25(OH)D3 concentration ranges (Table 4), with the clear progressive trends in CD8 and CD4/
CD8 suggesting the induction of a Th1 immune marker profile in 25(OH)D-deficient patients. Thus, T2DM 
patients might benefit from treatment with 25(OH)D3 dietary supplements.

In patients with hypertension, the percentage of cells with CD4, CD8, CD3 and CD19 as well as the CD4/
CD8 ratio differed significantly across the various categories of serum 25(OH)D3 concentrations (Table 4). 
The clear trends in the CD4, CD8 and CD4/CD8 data suggested the induction of a Th1 immune marker pro-
file in hypertension patients, with a greater proportion of CD8-positive cells observed in 25(OH)D3-deficient 
patients (<20 ng/mL), and a greater proportion of CD4-positive cells observed in patients with serum 25(OH)D3  
>20 ng/mL. This finding is supported by the trends in CD3 and CD19, which suggest a transition from 
B-cell-mediated immunity to T-cell-mediated immunity, with progressively lower serum levels of 25(OH)D3. 
The percentage of CD3-positive and CD56-positive cells also differed significantly across the 25(OH)D2 concen-
tration categories, but the lack of clear trends in CD3 and CD56 with regard to serum 25(OH)D2 concentration 
confounded our estimation of the effects of serum 25(OH)D2 levels on lymphocyte immune markers in patients 
with hypertension. Overall, these data suggested that patients with hypertension might benefit from dietary 
supplementation with 25(OH)D3.

Discussion
Hypovitaminosis D is a global pandemic and is highly prevalent in older persons49, especially elderly women51,52. 
Previous studies have shown that a vitamin D deficiency is a risk factor for a number of immunity-related 
pathologies including autoimmune diseases17,27,53 and graft rejection54,55. Cell culture studies have shown 
that 1,25(OH)2D3 suppressed T cell proliferation, causing a shift in the T cell phenotype from Th1 to Th256. 
Immunological studies in mice with experimentally-induced colitis showed that treatment with 1,25(OH)2D3 
suppressed Th1 and Th17 cells and induced the differentiation of Th2 and Treg cells57,58. Studies on experimental 

Patient group

25(OH)D3 (ng/mL)

p

25(OH)D2 (ng/mL)

P<10 10–19 20–30 >30 <1 1–2 >2

Cerebrovascular disease (N = 2,775)

CD4 (%) 44 ± 10 45 ± 10 44 ± 10 46 ± 8 0.44 45 ± 9 46 ± 9 44 ± 10 0.04

CD8 (%) 24 ± 9 24 ± 9 23 ± 9 21 ± 6 0.01 24 ± 9 24 ± 9 24 ± 9 0.67

CD4/CD8 2 ± 1 2 ± 1 2 ± 1 2 ± 1 0.43 2 ± 1 2 ± 1 2 ± 1 0.93

CD3 (%) 70 ± 10 71 ± 10 69 ± 10 69 ± 8 0.06 70 ± 9 71 ± 10 70 ± 10 0.19

CD19 (%) 11 ± 6 11 ± 6 12 ± 8 11 ± 6 0.01 11 ± 6 11 ± 6 11 ± 6 0.82

Coronary artery disease (N = 2,174)

CD4 (%) 42 ± 10 43 ± 18 43 ± 9 43 ± 9 0.36 44 ± 18 43 ± 9 43 ± 11 0.70

CD8 (%) 26 ± 11 25 ± 11 25 ± 10 26 ± 9 0.04 25 ± 10 25 ± 10 26 ± 12 0.85

CD4/CD8 2 ± 1 2 ± 1 2 ± 1 2 ± 1 0.13 2 ± 1 2 ± 1 2 ± 1 0.10

CD3 (%) 70 ± 11 70 ± 11 70 ± 10 71 ± 11 0.67 70 ± 11 70 ± 10 70 ± 11 0.90

CD19 (%) 9 ± 7 10 ± 7 10 ± 6 9 ± 7 0.75 10 ± 7 10 ± 6 9 ± 7 0.046

Type 2 diabetes (N = 1,512)

CD4 (%) 44 ± 10 45 ± 10 46 ± 25 45 ± 10 0.69 45 ± 17 44 ± 9 45 ± 10 0.79

CD8 (%) 25 ± 9 24 ± 9 22 ± 8 20 ± 8 <0.001 24 ± 9 24 ± 8 23 ± 8 0.21

CD4/CD8 2 ± 1 2 ± 2 2 ± 1 3 ± 2 0.02 2 ± 1 2 ± 2 2 ± 2 0.36

CD3 (%) 70 ± 10 70 ± 10 68 ± 9 68 ± 10 0.01 70 ± 10 70 ± 9 69 ± 9 0.82

CD19 (%) 11 ± 6 12 ± 6 12 ± 6 12 ± 6 0.16 11 ± 6 12 ± 6 11 ± 6 0.78

Hypertension (N = 1,292)

CD4 (%) 44 ± 9 45 ± 9 45 ± 9 47 ± 11 0.001 44 ± 9 45 ± 9 44 ± 9 0.35

CD8 (%) 24 ± 9 23 ± 8 22 ± 9 22 ± 8 0.02 23 ± 8 24 ± 9 23 ± 9 0.17

CD4/CD8 2 ± 1 2 ± 1 2 ± 1 2 ± 1 0.03 2 ± 1 2 ± 1 2 ± 1 0.72

CD3 (%) 70 ± 10 69 ± 9 69 ± 10 64 ± 13 <0.001 69 ± 10 70 ± 10 69 ± 10 0.02

CD19 (%) 10 ± 6 12 ± 6 12 ± 6 15 ± 14 <0.001 12 ± 6 12 ± 7 12 ± 9 0.99

Table 4.  Stratified analysis of correlations between 25(OH)D2 and 25(OH)D3 levels and lymphocyte subsets in 
elderly patients with age-related illness Note: Data are presented as the median ± interquartile range.
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autoimmune encephalomyelitis in mice showed that 1,25(OH)2D3 induced Treg cells57,59–61 and modulated the 
induction of Th17 T-cells by inhibiting the actions of IL-1760,61.

Hypovitaminosis D is also associated with a number of unrelated diseases including osteoporosis53, end-stage 
liver disease62, T2DM63, cancer53, obesity9 and CVD64,65, all of which are more prevalent in the elderly. However, 
whether vitamin D deficiency contributes to the pathology or progression of these diseases remains largely 
unclear11. Treatment with 1,25(OH)2D3 preferentially inhibits Th1 lymphocytes and induces Th2 cells66–68, as well 
as Treg lymphocytes in the presence of IL-231,69. Studies of pathogen-induced immunity suggest that the immune 
status of leukocytes in vivo is primarily driven by the local activation of vitamin D70. Therefore, the findings of in 
vitro studies using 1,25(OH)2D3 may not provide a completely accurate representation of the role of vitamin D in 
T-cell activation in vivo.

Among human leukocytes, CD8-positive lymphocytes have a relatively high density of vitamin D recep-
tors70,71, and the primary effect of vitamin D treatment involves changes in gene expression29,70. Age has been 
shown to negatively impact T-cell clonal expansion and the repertoire diversity that can impair T-cell-mediated 
immune responses72,73. Studies of soluble proinflammatory factors and serum markers of oxidative stress have 
implicated low-level inflammation in the pathology of MetS, CVD74, T2DM75, obesity76, and hypertension77. 
Like hypovitaminosis D, these diseases are highly prevalent in the elderly46. Two recent studies of elderly persons 
in Europe with37 and without hypertension36,78 found that vitamin D deficiency was associated with an elevated 
serum level of the proinflammatory cytokine IL-6. However, the link between age-related changes in T-cell phys-
iology and coinciding changes in the serum cytokine profiles of elderly people is unclear, and comprehensive 
studies of lymphocyte immune markers in patients with age-related diseases are scarce.

We investigated the relationship between serum vitamin D metabolites and lymphocyte immune markers 
in elderly patients in order to gain insights into the relationship between hypovitaminosis D and age-related 
diseases. Although the percentages of cells with CD4, CD8, CD3, CD19 and CD56 were within the normal refer-
ence range for Chinese patients79,80, serum levels of 25(OH)D3 and 25(OH)D2 were significantly correlated with 
three or more immune markers in CRVD, CAD, T2DM and hypertension patients (Table 2). Stratified analyses 
of the data showed that significant differences existed in the number of CRVD, CAD, T2DM and hyperten-
sion patients based on vitamin D metabolite levels, with the majority of such patients having serum levels of 
25(OH)D3 and 25(OH)D2 that were ≤20 ng/mL and ≤2 ng/mL, respectively (Table 3). Clear, significant trends in 
immune marker percentages also existed with regard to serum vitamin D metabolite levels (Table 4). These trends 
suggested that vitamin D deficiency coincides with lymphocyte immune marker profiles representative of a shift 
from a Th2 to a Th1 immune response, with the strongest evidence observed in T2DM and hypertension patients.

Figure 1.  Summary graph of influence of Vitamin D deficiency on lymphocyte subsets in elderly patients with 
age-related diseases ↑, increase; ↓, decrease; -, no correlation.
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Our findings regarding an increased percentage of CD8-positive cells in hypertension patients are consistent 
with the observation that the adoptive transfer of T-cells restored blood pressure regulation in a mouse model of 
hypertension, whereas the transfer of B-cells did not81. Studies of mouse models of obesity suggest that increased 
numbers of CD8-positive cells coincide with the recruitment and activation of macrophages in adipose tissue and 
the secretion of soluble proinflammatory factors associated with insulin resistance82,83, which is also consistent 
with our observation that the percentage of CD8-positive lymphocytes was increased in T2DM patients. The 
frequency of hypovitaminosis D observed in our elderly CRVD, CAD, T2DM and hypertension patients was sim-
ilar to that reported by a study of the prevalence vitamin D deficiency among middle-aged and elderly people in 
Northwestern China49. Although the results of our stratified analysis based on serum vitamin D metabolite levels 
were not as convincing for CRVD and CAD as they were for T2DM and hypertension, our overall results suggest 
that CRVD, CAD, T2DM and hypertension patients might benefit from vitamin D dietary supplementation.

There are, however, certain limitations to our findings that should be considered in the interpretation of our 
results. Although the sample sizes of the CRVD, CAD, T2DM and hypertension groups were relatively large, our 
healthy control group was substantially smaller, and our observational analysis was limited to outpatient data 
recorded at a single hospital. In addition, we did not examine serum cytokine profiles in our patients, which could 
have provided further information regarding the Th2 to Th1 transition represented by the trends in CD8-positive 
cells and the CD4/CD8 ratio. Furthermore, we did not exclude patients receiving vitamin D dietary supplements 
or those whose lifestyle or dietary practices might have influenced their vitamin D status, all of which might 
have partially masked trends in the number of vitamin D-deficient patients in each group and the percentages of 
lymphocyte immune markers in the stratified analyses. In addition seasonal 25(OH)D3 changes have not been 
evaluated. Furthermore, we cannot exclude that different biologically active forms of Vitamin D, which have been 
discovered recently84, may have played a role since we only analyzed 25(OH)D3 and 25(OH)D2.

Conclusion
In summary, we found a number of correlations between lymphocyte immune markers and vitamin D deficiency 
in middle-aged and elderly CRVD, CAD, T2DM and hypertension patients (Fig. 1), but future large-scale studies 
are warranted to confirm our findings.
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