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Quantifying the propagation of 
distress and mental disorders in 
social networks
Marialisa Scatà1, Alessandro Di Stefano1, Aurelio La Corte1 & Pietro Liò2

Heterogeneity of human beings leads to think and react differently to social phenomena. Awareness 
and homophily drive people to weigh interactions in social multiplex networks, influencing a potential 
contagion effect. To quantify the impact of heterogeneity on spreading dynamics, we propose a model 
of coevolution of social contagion and awareness, through the introduction of statistical estimators, in 
a weighted multiplex network. Multiplexity of networked individuals may trigger propagation enough 
to produce effects among vulnerable subjects experiencing distress, mental disorder, which represent 
some of the strongest predictors of suicidal behaviours. The exposure to suicide is emotionally harmful, 
since talking about it may give support or inadvertently promote it. To disclose the complex effect of 
the overlapping awareness on suicidal ideation spreading among disordered people, we also introduce 
a data-driven approach by integrating different types of data. Our modelling approach unveils the 
relationship between distress and mental disorders propagation and suicidal ideation spreading, 
shedding light on the role of awareness in a social network for suicide prevention. The proposed 
model is able to quantify the impact of overlapping awareness on suicidal ideation spreading and our 
findings demonstrate that it plays a dual role on contagion, either reinforcing or delaying the contagion 
outbreak.

In recent decades, a large body of literature has attempted to better understand the social contagion, suggesting 
that a phenomenon spreading in a social network depends on the nature of social ties1,2. Behaviours, indirect 
reciprocity, misinformation or rumors3, infectious diseases and emotions4 have been found to spread interper-
sonally1,2,5. For this reason, social contagion, modeled as an infectious disease spreading, has been emerging as 
a growing research field2,4–7. These models have been obtained starting from the classical epidemiological mod-
els8–10, involving several research fields in network science11–18. Furthermore, various processes have been used 
to model social contagion as diffusion models19 and threshold models2,5–7,20. The interplay between infectious 
diseases and awareness dynamics has allowed to underline the role of awareness in the spreading process of a 
disease21–24. The more the networked individuals are aware of the likely disease spreading, the more they may be 
able to adopt strategies targeted at self-protecting25. Most of these studies have explored the spreading and compe-
tition of both phenomena using different layers of propagation22,26–30. Multiplex networks, that consider the same 
set of nodes in all the layers, constitute the most suitable network structure for studying such dynamical processes 
and their complex coevolution31,32. Although having considered multiplexity, all the previous models have sepa-
rated and constrained each of the processes to only one of the layers. By contrast, in25 it has been investigated and 
quantified the impact of the coevolution of the two processes in all the layers of a multiplex network. Coherently 
with the real nature of multiplex networks33–35, it has been taken into account heterogeneity and its impact along 
with awareness on the epidemic spreading25,36. Aiming at capturing the complexity of the coevolution, we con-
sider a weighted multiplex network, as social ties between nodes may have different weights reflecting their inten-
sity37. We provide a new definition of weight, strongly linked with coevolution of social contagion and awareness 
spreading, which includes the difference of awareness and homophily between nodes. Starting from25, our work 
is targeted at proposing a model of social contagion coevolving with awareness spreading, by introducing heter-
ogeneity, both in terms of susceptibility and awareness, on each node and layer of a weighted multiplex network.

1University of Catania, Dipartimento di Ingegneria Elettrica, Elettronica e Informatica, Catania, CNIT 95125, Italy. 
2University of Cambridge, Computer Laboratory, Cambridge, CB3 0FD, UK. Marialisa Scatà, Alessandro Di Stefano, 
Aurelio La Corte and Pietro Liò contributed equally to this work. Correspondence and requests for materials should 
be addressed to M.S. (email: lisa.scata@dieei.unict.it)

Received: 25 October 2017

Accepted: 7 March 2018

Published: xx xx xxxx

OPEN

mailto:lisa.scata@dieei.unict.it


www.nature.com/scientificreports/

2Scientific RePortS |  (2018) 8:5005  | DOI:10.1038/s41598-018-23260-2

We define and introduce the novel concept of “overlapping awareness”, that is the co-occurrence of at least 
two types of awareness, one focused on the primary contagion phenomenon, and the other(s) centered on issues 
correlated to a certain extent with the main one. Overlapping awareness is a sort of comorbidity, as defined 
in38. We analyse this coevolution dynamics in terms of social contagion and overlapping awareness spreading 
on weighted multiplex networks, exploring how the phase transitions and contagion thresholds change accord-
ing to the network structure, which in turns depends on the nodes’ heterogeneity, homophily and overlapping 
awareness. To validate our analytical model, we adopt a data-driven approach, including real data extracted from 
multiple sources. We compare our analytical model with simulation results from data referred to suicide conta-
gion39–41, in order to demonstrate the coherence with our model. Since social ties and the environment are closely 
related to people’s health1, we investigate the role of social networks in detecting, protecting and understanding 
influences on mental health, which has been subject to many debates. The connectedness of social networks has 
been shown to have an impact on depression42–44, happiness and mood6,45, loneliness46, and can represent a tuning 
parameter of different health outcomes, ranging from obesity to alcohol consumption1,47,48. Depression is defined 
as a common mental disorder, linked with several symptoms49. It represents a global health concern, and sui-
cide associated with depression (as estimated by WHO) is the second leading cause of death among young peo-
ple. This mental ill-health problem continues to be under-diagnosed and many cases still remain undetected50, 
since a person in mental distress could exhibit some symptoms such as anxiety and depression, without being 
ill. Depression and anxiety have bidirectional interactions with social environment, present a number of bio-
logical, psychological and social interacting components, and influence the onset of the illness and its evolu-
tion51. These disorders have a high level of comorbidity and impact the quality of the social relationships42,51,52. 
Many studies and analysis suggest how depression may shape the vulnerable individual’s social network as well 
as it may be shaped by its connectedness42,53. Social interactions can affect wellbeing and mental health in many 
ways, impacting on depression symptoms, even though the connectedness of people can lead to less loneliness, 
greater self-esteem, life satisfaction, greater feeling of belonging. The idea that social and behavioural influences 
impact on mood symptoms, in particular in the context of suicide, is an old hypothesis54. The sociologist Emile 
Durkheim has highlighted that, although depression and suicide were seen individualistic illness conditions, they 
could be driven and influenced by social environment and social relationships54. In42 the authors have explored 
the possibility of person-to-person spreading of depressive symptoms, demonstrating that they can travel into 
social networks. To the extent that suicide is a product of voluntary behaviours of vulnerable people, the con-
nectivity among them, according to the type and content of interactions, may increase the exposure to suicide 
and the risk of being infected by suicidal ideation as a part of suicidal behaviour (suicide ideation, plans and 
attempt)55,56 and a consequence of depression39,57,58. In our work we consider the propagation of distress and 
mental disorders in social multiplex networks and we focus on the suicidal ideation spreading as case study. 
Since an early detection of suicidal risk factors acts on how we can limit the diffusion of some dangerous condi-
tions, it becomes crucial in terms of prevention59. Most of the research on suicide contagion presages the rise of 
social networks and media40 and, consequently, it is crucial to understand how suicide is likely to become more 
contagious. The spreading process can be influenced by the difference of awareness, the heterogeneity, in terms 
of susceptibility to the social contagion phenomena, and the homophily. To quantify this process, in this work 
we consider a weighted multiplex network of vulnerable people, experiencing distress and mental disorders, in 
which the suicidal ideation can spread as a social contagion phenomenon in conjunction with the spreading of 
overlapping awareness. To this aim, we introduce weights based on awareness and homophily, as statistical esti-
mators allowing us to quantify their impact on the spreading process. In our data-driven analysis, we deal with 
estimators and markers about different facets of suicidal ideation spreading, ranging from machine classification 
datasets for suicide-related communications41, Google Trends of suicide keywords and suicide rates from differ-
ent world countries in two temporal windows, related to the period around a specific suicide event, and suicide 
rates in the subsequent year. Our interest towards suicidal ideation spreading as social contagion phenomenon is 
to unveil to what extent the coevolution of contagion and overlapping awareness in a weighted multiplex network 
can impact on the spreading dynamics, delaying the possible outbreak. On one hand, this allows reducing the 
vulnerability to suicidal ideation while, on the other hand, it provides a temporal window where interventions in 
terms of support, information, helpline and prevention can be scheduled. Moreover, we discuss the findings and 
results of analytical model and data-driven analysis, and future applications in the context of Information and 
Communication Technology (ICT) for society that highlight the need of the digitalisation of networked people to 
produce human-related structured data for the future Internet-of-People (IoP)60.

Model
In this work, we start from the model presented in25, generalizing and extending it. First, as well as in25, we con-
sider a SIR-like model, ShIR, thought as a “composed” SIR, namely an extension of the classic 
“Susceptible-Infected-Recovered” (SIR) model8,13,61, where Sh represents the heterogeneous susceptibility of each 
node in the layers of multiplex structure (see eq. 1). The second spreading process, coexisting and coevolving with 
the first one, is an extension of the “Unaware-Aware-Faded” (UAF)25, denoted by UAF(Aπ), where Aπ is the “over-
lapping awareness”, which derives from a non-zero probability ε of having an additional awareness correlated to 
the primary contagion phenomenon (see eq. 2). This represents an alternative state to F, as shown in the Dynamic 
Microscopic Markov Chain Approach (MMCA) (see details in Methods). This means that a node which is in the 
awareness state A may decide to acquire an awareness on another issue related to the primary contagion process, 
thus adding an extra awareness, rather than having a transition to the fading state F, where instead a node have a 
tendency to fade its attention over time until it completely vanishes. Differently from25, for the first time we con-
sider a dual heterogeneity of nodes’ susceptibility and awareness in the layers of the weighted multiplex network. 
This results in a variation of the infection rate β α

i  and the rate of awareness iλ α for the generic node i at layer α, 
with α ∈{1, ..., M}. In this work, we decide to consider weighted multiplex networks as network structure, and the 
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heterogeneous factors, included in the analytic definition of the infection rate and the rate of awareness, are 
obtained from properties of the weighted multiplex networks37 (see details in Model). Heterogeneity and overlap-
ping awareness are introduced in this model in order to describe a realistic spreading scenario and disentangle the 
complex coevolution of two interdependent processes, the social contagion and the awareness spreading on the 
contagious phenomenon, without neglecting the crucial influence of other aspects related to the contagion. Let us 
consider a weighted multiplex network of M layers α = {1, ..., M} and N nodes i = {1, ..., N}, which is a set of M 
weighted networks Gα = (V, Eα) (see Fig. 1). The set of nodes V is the same for each layer, whereas the set of links 
E changes according to the layer37,62. Each network Gα is described by the adjacency matrix, denoted by aα with 
elements αaij , where = >α αa w 0ij ij , if there is a link between i and j, with a weight wij, otherwise a 0ij =α . The het-
erogeneity of weights’ distribution in the multiplex network can be evaluated by means of the two following local 
properties37,62: the strength of nodes, αsi , that is the sum of the weights of the links incident upon node i in layer α, 
and the inverse participation ratio, Yi

α, which indicates how the weights are distributed in the layer α37,62.
In our model, we consider the coevolution of two spreading processes on a weighted multiplex network (see 

Fig. 2). The first is the process of social contagion spreading, ShIR, which is a SIR-like model8,9, where Sh indi-
cates heterogeneous susceptible state25, which means that each node has a different infection rate βi (see eq. 5). 
As second spreading process, we consider the UAF(Aπ) model, SIR-like, that is the “Unaware - Aware – Faded/

Figure 1.  Schematic example of a Weighted Multiplex Network. Colors identify the set of nodes i = 1, .., N, 
which is the same for each layer, while the edges’ thick identify the different weights wij.

Figure 2.  Coevolution of social contagion and awareness spreading ShIR − UAF(Aπ) - States and transitions. Sh 
heterogeneous susceptibility state; I infected state; R recovered state; U unaware state; A aware state; F faded 
state; Aπ overlapping aware state; β α

i  infection rate; μ recovery rate; λ α
i  rate of awareness; δ fading rate; ε rate of 

overlapping awareness; s spontaneous contagion.
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Overlapping Aware”, which is an extension of the UAF model25, where U indicates the condition of unawareness, 
A is the aware state where nodes begin to have an interest in the social contagion phenomenon, increasing their 
attention, while in the F state, nodes tend to decrease their attention over time up to the point that it completely 
vanishes. When a node reaches this state, it maintains the same awareness, but it has no interest in increasing 
its acquired awareness on the phenomenon. The more susceptible are nodes that reach the faded state, the more 
vulnerable they become due to their low resilience against the phenomenon. Alternatively, if they have a transi-
tion from A to Aπ, an alternative state to F, they have the opportunity to increase their awareness also about other 
issues correlated with the primary contagion phenomenon.
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We introduce a new definition of weight in the multiplex network, as follows: w h aw aw 1ij ij i j= ⋅ − +α α . 
Weights are function of hij, which is the homophily between nodes, that is the tendency to associate and interact 
more with similar people34,35, and the absolute difference of awareness, |awi − awj|, between nodes i and j. Thus, 
when this difference of awareness is equal to zero, nodes will have a weight w 1ij =α , only if there is a link between 
i and j. Homophily is defined as follows:

h 1
1 (3)
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ijδ
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where δ α
ij  is the measure of the homophily difference between nodes i and j. To bind this type of weighted network 

structure with the coevolving spreading processes, showed in eq. 1 and 2, we define the rate of awareness, iλ α, and 
the infection rate, β α

i , for each node i at each layer α of the multiplex, as follows:

λ γ λ=α α
(4)i i

β ψ β= +α α s (5)i i

The rate of awareness and the infection rate are interdependent since β α
i  depends on iλ α (see eq. 7)25. Both 

rates are characterised by the heterogeneous factors, iγ α and ψ α
i , defined as follows:
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In eq. 5 we indicate with s the spontaneous contagion, which evaluates the realistic condition to contract the 
contagion spontaneously regardless the interactions on the whole multiplex network4. We define the awareness 
matrix Λ, where each element is calculated based on eq. 4, as follows:
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and, the matrix B, whose elements are the infection rate for each node in each layer (see eq. 5).
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In the second process spreading process, UAF(Aπ), we introduce an alternative state Aπ, where if π = 1 the 
awareness is only referred to the primary contagion phenomenon. In the presence of variously correlated issues 
with the main contagion process, we define the overlapping awareness as follows:
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with φ= ⋅π
πaw awi i1, , where φ1,π is the φ-correlation between the primary contagion phenomenon and the other 

issues on a space of issues T. Based on the previous definition of overlapping awareness, the αwij  becomes:

w h aw aw 1 (11)ij ij i j

difference of awareness� ����� �����
= ⋅ − +α α

considering also the awareness on T. In order to capture the potential heterogeneity of the network structure in 
terms of weights, we introduce a measure of centrality of both nodes and layers, Xi and zα as defined in63, to obtain 
the simultaneous ranking of nodes and layers.

These measures are coupled to get a simultaneous ranking of nodes Xi and layers zα, an overall measure of 
centrality for nodes and layers. In our model, it is dependent on the weights of the multiplex network, therefore 
including awareness and homophily (see Supplementary Figure S1). We exploit this kind of measures because we 
apply a rewiring process64, in which we choose the fraction of the links to be rewired considering the less central 
nodes in the less central layer, based on the previously defined ranking (see Simulation Results).

Results
Simulation Results.  Simulations have been carried out considering a multiplex network with M = 3 layers, 
where each layer is modeled as a scale-free network65 with N = 1000 nodes. In Fig. 3, each curve corresponds to 
a different value of the φ-correlation of the primary contagion phenomenon with the other issue, in both cases of 
anti-correlation and positive correlation. The plots show how the density of infected nodes depends on to what 
extent the specific issue is correlated with the social contagion of the primary phenomenon. In (a), where nodes 
maintain a high attention to the contagion (see details in Model), we can observe how the density of infected 
nodes for an anti-correlated issue is lower than the case of a positively correlated issue. This extremely interesting 
result is due to the fact that exceeding in information on issues positively correlated to the contagion phenome-
non may produce a negative influence on it, in fact encouraging the contagion rather than curbing it. In (b) nodes’ 
attention to contagion fades quickly over time, so this vanishes the effect of correlation and the density of infected 
nodes in the two cases of anti-correlation and positive correlation results approximately the same. Finally, in 
(c), the two dynamics are close and the high probability of getting into the faded state causes a scarce interest in 
the main contagion. It produces an overall decrease in the density of infected and in some points the anti-corre-
lated curve is better than the positive correlated one because the dynamics after contagion is faster. In Fig. 4, we 
show how the double heterogeneity, in terms of both infection rates and rates of awareness, allows delaying the 
contagion outbreak compared to the homogeneous case, where nodes have a uniform susceptibility and rate of 
awareness. Comparing the phase diagrams before and after applying the rewiring, we can observe that the conta-
gion threshold is more delayed in the post-rewiring cases, as we expected. Overall, the gap among the contagion 
thresholds between homogeneous and heterogeneous cases is wider in the anti-correlated case. In other words, 

Figure 3.  Density of infected nodes over time. We show the temporal evolution of the density of infected nodes 
ρi in function of φ (see eq. 10), with the following parameters of the initial rates: (a) μ,δ = 0.3; ε = 0.7; φ = −0.8 
(red); φ = 0.8 (blue); (b) μ = 0.3; δ = 0.7; ε = 0.3; φ = −0.8 (red); φ = 0.8 (blue); (c) μ,δ = 0.7; ε = 0.3; φ = 
−0.8 (red); φ = 0.8 (blue).
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the figure highlights the effect due to the presence of overlapping awareness, depending on the type of correlation 
with the primary contagion phenomenon. Although the impact is overall positive delaying the threshold, it is 
more evident in the anti-correlated case. In Fig. 5, we show the results of the data-driven approach with regards 
to a population of nodes (see details in Methods), according to the data on suicidal ideation spreading, taking 
into account the two temporal windows before (pre-event) and after a specific suicide event (post-event). In (a), 
where the overlapping awareness is referred to a positive correlated keyword, the more vulnerable nodes (small-
sized nodes) show a high infection rate, and this is more evident in the post-event case, as highlighted by blue 
circle, as the rate of awareness increases. The red circle emphasises the area with more vulnerable people in the 
pre-event case, while the yellow circles show the effect of the overlapping awareness’ increasing. In (b), in the case 
of anti-correlated keyword, the overall infection rate is lower than the previous case, and as the rate of awareness 
increases, the distribution of the more vulnerable nodes remains confined in a region of low infection rates. This 
means that, differently from the previous case, the rate of awareness does not boost the contagion, but bounds 
the more vulnerable people within a range of low infection rates, thanks to the spread of positive contents, such 
as prevention, related to suicide. By using the red circle and the blue circle we highlight the high density area 
of vulnerable people in the pre-event case and post-event case, respectively. Yellow circles underline the effect 
of the overlapping awareness. We shed light on how the overlapping awareness apparently could act on the less 
vulnerable people (high-sized nodes), but influences the overall network, through social contagion dynamics. 
This demonstrates the dual role of overlapping awareness in the case of a social contagion phenomenon, such as 
suicidal ideation (see Discussion).

Methods
Dynamic Microscopic Markov Chain.  To explore the dynamics of the coevolution of social contagion and 
awareness spreading on the weighted multiplex network, we take into account the Dynamic Microscopic Markov 
Chain Approach (MMCA). Initially, we assign to each node a state probability to be in one of the initial states. At 
the beginning, each node in the weighted multiplex network can occupy only one of the following states: suscep-
tible and unaware (SU), infected and aware (AI), and susceptible and aware (SA). Some states are not reachable or 

Figure 4.  Phase diagrams of social contagion and overlapping awareness on weighted multiplex network. The 
plots show the density of infected nodes ρI (see color on z-axis, from red to blue, as in color bar in the middle) 
according to the rate of awareness λi (x-axis) and the infection rate βi (y-axis). We compare the contagion 
threshold obtained in the homogeneous susceptibility case (‘green’) and that one derived from our model 
(‘orange’). In (a) there is the phase diagram with φ = −0.8, (anti-correlation case, before rewiring). In (b) we 
show the phase diagram with a positive correlation φ = 0.8 (positive correlation case, before rewiring). In (c) we 
show the phase diagrams after the rewiring of the links of the nodes, in the anti-correlated case (anti-correlation 
case, post rewiring) and in (d) the positive correlation case (positive correlation case, post rewiring).
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do not exist, such as IU (Infected Unaware), IF (Infected Faded), SAπ (Susceptible - Overlapping Aware) and FAπ 
(Faded - Overlapping aware) (see Fig. 6). At time step t each node i can occupy one of the initial three states, with 
probabilities p t( )i

SU , p t( )i
SA  and p t( )i

IA  respectively. Moreover, we define: qi(t), probability of node i not being 
infected at time step t and ri(t), probability of unaware node i staying unaware at time step t, as follows:

Figure 5.  Data-driven analysis in the plane λi (RAW - Rate of Awareness), βi (IR - Infection Rate), awi (OA - 
Overlapping Awareness) for the two keywords ‘suicide’ (a) and ‘suicide prevention’ (b). We illustrate how the 
rate of awareness λi (x-axis) and the infection rate βi (y-axis) change according to the measure of overlapping 
awareness derived from data awi (z-axis). The size is the awareness measure according to the associated class 
(see details in Methods), where small nodes are the most vulnerable. In both plots, data are derived from the 
searches on terms ‘suicide’ (a) and ‘suicide prevention’ (b) (for the sake of clarity the plot has been zoomed-in in 
order to visualize areas covered by dots). We show the temporal evolution of the rates in the time window 
referred to two months before an event suicide (‘red’ dots) and that one referred to the two months subsequent 
to an event suicide (‘blue’ dots). Red circle and blue circle highlight the area with a high density of more 
vulnerable people, in the pre-event case and in the post-event case, respectively. Yellow circles highlight the 
effect of overlapping awareness.

Figure 6.  Probability tree. We illustrate the MMCA method using a probability tree, representing all the 
possible states and their transitions in our model at each time step. Roots in the transition tree represent the 
initial states (time step t), SA, SU and IA, leaves are all the possible states at the subsequent time step. Arrows are 
labeled with the corresponding transition probabilities.
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where aij are the elements of the adjacency matrix of each layer of the weighted multiplex network. βi and iλ  are the 
“elected infection rate” and the “elected rate of awareness” of the node i, respectively. Once calculated the centrality 
measures of nodes and layers Xi and zα, from this heterogeneous ranking we extract the “elected” layer, that is the 
most central layer and in both matrices B and Λ, we select the corresponding column. We consider the most central 
layer because it is the most influential in the evaluation of the transition dynamics. The following MMCA equations 
represent the probability of each node of being in one of the states at time step t + 1, as showed in Fig. 6:
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To obtain the contagion threshold, we explore the steady state solution of the system constituted by the pre-
vious equations. When time t → +∞, there exists a contagion threshold βC for the two coevolving processes, so 
that the contagion can outbreak only if β ≥ βC. Following the same conditions of25, the contagion threshold is 
given by the order parameter ρi and it is defined as follows:
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Thus, starting from equation p t( 1)i
IA +  (see eq. (14)), at steady state we have:
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Since around the contagion threshold βC, the infected probability is close to zero (
η=p 1i

IA
i ), the proba-

bilities of being infected can be approximated as follows:
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(17)

i i j
j

ij j i i

where:

a
(18)

i j
j

ij j∑ω β η=

Furthermore, close to the contagion onset we have that the fading rate is approximately close to zero (δ  0). 
Considering this approximation into eq. 16 and omitting higher order items, equation 16 is reduced to the follow-
ing form:

p a(1 )
(19)

i i
SA

i j
j

ij j ∑μη ε β β η−

The contagion threshold is obtained starting from the following condition:

p a t(1 ) 0
(20)j

i i
SA

ij
j

ji j∑ ε β
μ
β

η− − =

where tji are the elements of the Identity matrix. By defining the matrix H whose elements are given by: 
h p a[(1 ) ]ij i i

SA
ijε β= − , the contagion threshold βc is the one that satisfies that Λmax(H), the largest eigenvalue of 

the matrix H is given by H( ) / jmax μ βΛ = , and finally we get: βc = μ/Λmax(H).

Data-driven analysis.  In our model, we consider a data-driven approach for evaluating the overlapping 
awareness, which is the result of the different types of awareness on suicidal ideation spreading as a social conta-
gion phenomenon66,67. First, we consider data derived from a machine classification dataset for suicide-related 
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communications, where classes represent the types of suicidal communication with relative percentage propor-
tion in dataset41,68. We decide to construct our population of N = 400 nodes based on these classes41,68 which 
represents the best representation of how people generally communicate on the topic of suicide. We associate 
an awareness score to each node which depends on three measures. The first measure is related to a distinct 
probability to post a text according to the associated class, that is an initial measure of awareness ranging from a 
low level to a high level. The second measure is associated with the Google search popularity of terms related to 
the classes of two geographical countries (see Supplementary Table S1, Figures S2, S3). Homophily corresponds 
to the geographical proximity of nodes, so that two individuals of the same country will have a high homophily. 
The third measure relates to the searches on Google Trends on issues either positively or anti-correlated with the 
primary contagion. Google Trends allows evaluating the time evolution of awareness and setting up a measure 
related to the interest in specific aspects of suicide contagion. In particular, we keep track of the total Google 
Trends search-volume of some of the most significant suicide keywords, such as ‘suicide’ and ‘suicide prevention’, 
in two temporal windows related to the period around a specific suicide event. We aim at shedding light on how 
these searches pre-event suicide and post-event suicide contribute to the contagion dynamics. The temporal win-
dow is that one around the Robin Williams’ suicide, occurred on August 11, 2014, so the two temporal windows 
before and after the event suicide are respectively from June 10, 2014 to August 10, 2014, and from August 12, 
2014 to October 10, 2014. The target is to analyse the temporal evolution of the overlapping awareness, consisting 
of an aggregated measure of these sources. Furthermore, in order to extend our understanding on the importance 
of the Google Trends on the awareness about the suicide contagion, we choose three keywords, comparing the 
Google search popularity in different countries across the world of these terms in the subsequent year of the sui-
cide event with the suicide rates of the same countries (see Supplementary Figure S3).

Discussion
Connectedness among people is deeply involved in the spreading phenomena in real-world networks. Influences, 
awareness, ideas travel through the same multiple interaction channel, impacting each other. To capture and 
quantify the complexity of such dynamics, we propose the coevolution of social contagion and overlapping aware-
ness spreading in weighted multiplex networks. We quantify the propagation of distress and mental disorders 
that may lead to suicidal ideation spreading, which is one of the most challenging and less understood aspects of 
suicide69–71. To discover whether or not the awareness changes the exposure to suicide, we consider the spreading 
of suicidal ideation as a case study. Human thinking about the presence of an idea spreading through a realistic 
social network is bound to subjective awareness, interaction with similar people and the occurrence of a simi-
lar awareness among who often share some sort of proximity. In this work, this concept of awareness has been 
expressed as an overlapping awareness. Our work has proposed a novel model to analyse and quantify the coev-
olution of social contagion and overlapping awareness spreading on a weighted multiplex network, introducing 
a double heterogeneity, both in terms of infection rate and rate of awareness, quantified starting from structural 
measures of the weighted multiplex network. The weights of the interaction between nodes derive from homo-
phily, a measure of their similarity, and the difference of awareness on contagion phenomenon in the multiplex 
network. We assume not to study the spread of information that gives benefits to society reaching people in a 
few minutes, but rather how vulnerable people come to harm when a contagion phenomenon spreads a negative 
ideation, such as misinformation or rumors, suicidal ideation, cyberbullying1–5,72. In our model, heterogeneity 
and weighted multiplexity, increase the resilience of the social network against this kind of phenomena, delaying 
the contagion outbreak. By applying the rewiring of the connectivity in the weighted multiplex network, this 
results even more clear, reinforcing heterogeneity in the overall network. In other words, we introduce a realistic 
perturbation on connectivity which changes the complex dynamics of the coevolution of the two spreading pro-
cesses. Our findings demonstrate how the overlapping awareness, if anti-correlated with the main phenomenon, 
plays a key role in delaying the social contagion. Adding a data-driven approach we aimed at exploring how in a 
real contagion phenomenon influenced by social media and networks39–41,57,58,73,74, that of suicidal ideation, the 
overlapping awareness impacts on its dynamics. In this work, we shed light on the dual nature of the awareness 
spreading coevolving with the suicide contagion. In fact, an overlapping awareness, such as reporting of suicide, 
suicide details, amplifying the ideas of suicide, reinforces the contagion effect rather than slowing it. Instead, a 
different overlapping awareness, such as suicide prevention, social campaigning and helplines, may reduce the 
suicidal ideation contagion, avoiding possible tragic suicide triggers. The role of awareness may become crucial in 
heading off vulnerable people before having been triggered by suicidal ideation. Therefore, our model represents 
a key step forward to better understand the complex dynamics of the coevolution of suicide contagion and aware-
ness spreading in a realistic scenario thanks to the weighted multiplexity. In Fig. 7, we illustrate the scenarios and 
the key factors, awareness, heterogeneity and multiplexity, included in our work applied to suicide contagion. 
For the sake of clarity, we have joined the distinct aspects of our model and the main results. Our findings show 
how a certain kind of awareness could contrast the social contagion of suicidal ideation, improving the suicide 
prevention strategies. The delay in the contagion outbreak may allow providing real-time support through social 
networks and media to help deter vulnerable people, who already have suicidal tendencies, from acting on sui-
cidal ideation in response to an excessive increase of information about suicide. The role of social networks is 
even more important after disaster events (mass shooting, etc.), creating disorder-specific patterns and long-term 
distress75,76. This has been further proved by the results obtained through the data-driven approach. Starting 
from our results, a future challenge may be the early detection of undiagnosed cases and people unaware of their 
mental health status. By taking into account that if people are connected also their health is connected in multiple 
contexts and layers, the target will be to write innovative future policies and design future research based on a new 
framework (Fig. 8) by using human-related structured data, to deepen understanding of different issues of our 
society. The technological challenges represent a key factor in achieving reliability and sustainability of the infor-
mation and communication systems for society. The new target is to put people in the center of these systems for 
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giving the right accessibility to everybody. Today, we can collect, store and analyse big data of a multitude of peo-
ple, and this allows us to design people-oriented networks. For this reason, Internet-of-People (IoP) refers to the 
digitalisation of interpersonal relationships and interactions with the aim of storing and analysing personal data60. 
The collective awareness, the social contagion phenomena and spreading processes, other than the sharing mech-
anisms between digital people, will lead to a novel and interesting target to support and design new treatments 
and services outside the classical perimeter of actions. In this paper, we propose an Internet-of-People framework 
(Fig. 8) as a smart and digital corpus of innovative solutions. It includes connectedness, collective awareness, 
multiplexity, sharing and social environment to obtain changes in behaviours through a people-oriented network 
giving a personalised, participative and preventive service thanks to structured human-related data.

Figure 7.  Awareness and Suicide Contagion. The figure depicts the scenarios we deal with in this work. The 
axis in blue highlights how we can pave the way to obtain collective awareness and heterogeneity. The axis in 
red show how to obtain suicide prevention strategies and data integration on suicide. The figure summarises 
each aspect we focused on in our model and data-driven analysis, in order to understand the coevolution of 
overlapping awareness and suicide contagion. Awareness, heterogeneity and multiplexity are the key factors to 
shed light on how to face with a contagion phenomenon. In green boxes, we highlighted the main findings.

Figure 8.  Internet-of-People Framework: a smart and digital corpus of solutions that takes into account 
connectedness, sharing and social environment to obtain a people-oriented network giving personalised, 
participative and preventive services through human-related structured data.
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