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Full-Wave Electromagnetic 
Optimisation of Corrugated 
Metallic Reflectors Using a 
Multigrid Approach
Gökhan Karaova, Aşkın Altınoklu & Özgür Ergül

A multigrid optimisation strategy is introduced to design passive metallic reflectors with corrugated 
shapes. The strategy is based on using genetic algorithms at multiple grids and shaping the metal 
sheets, starting from coarse details to fine tunings. This corresponds to a systematic expansion of 
the related optimisation space, which is explored more efficiently in comparison to a brute-force 
optimisation without using grid. By employing the multilevel fast multipole algorithm to analyse 
the electromagnetic problems corresponding to optimisation trials, we obtain accurately designed 
reflectors that provide focussing abilities with very high performances at single and multiple locations. 
The designed reflectors are also resistant to fabrication errors with less complex corrugations and 
simplified reflection mechanisms compared to those found by no-grid optimisation trials.

Electromagnetic design procedures often require finding optimal shapes and topologies that provide the desired 
electromagnetic characteristics and responses. Unsurprisingly, optimisation tools have become major compo-
nents in the design of many electronic devices at radio, microwave, THz, and optical frequencies. In the liter-
ature, one can find a plethora of applications, including antennas1–6, reflecting surfaces7,8, frequency-selective 
surfaces9,10, metamaterials11,12, optical and photonic components13–16, where the structures are designed via 
optimisation to satisfy the desired absorption, radiation, reflection, scattering, and transmission properties. In 
some cases, it is possible to transform the original problem into a simplified form, such as a network of lumped 
elements, which can be easier to optimise at an analytical level17. In addition, topological optimisation involv-
ing relatively small perturbations can efficiently be handled by using gradient-based tools3,4,18, where the kernel 
solution methods are modified to incorporate the gradient operation on the electromagnetic interactions. On the 
other side, nature-inspired algorithms, such as particle swarm optimisation methods19,20 and genetic algorithms 
(GAs)21,22, provide a great freedom on the fitness functions, including those for multipurpose applications5,23,24. 
These heuristic algorithms can easily be combined externally with electromagnetic solvers, while, as a drawback, 
they need relatively large numbers of trials for satisfactory optimisation results.

Recently, we presented the optimisation of passive corrugated metallic sheets (reflectors) for desired electro-
magnetic reflection characteristics25. We showed that a GA implementation combined with an iterative fast solver 
based on the multilevel fast multipole algorithm (MLFMA)26–28 can provide effective designs, which have various 
focussing abilities when illuminated externally. The designed corrugated sheets can be used in diverse applica-
tions, including but not limited to optical sensing, communication, imaging, and energy harvesting. However, 
while we clearly showed their good enhancement properties, the designs were suffering from typical disadvan-
tages of an heuristic optimisation, i.e., slow convergence and attraction to poor local maxima. The issues related to 
the slow convergence can partially be solved by using MLFMA and its complete integration with the GA module 
(e.g., via dynamic accuracy control)6,25 such that the number of generations can be extended as much as possible. 
On the other hand, attraction to poor local maxima seems to be a major issue since the desired corrugation appli-
cations need great flexibility on the shape of the reflectors, leading to huge optimisation spaces that are very diffi-
cult to explore. As shown in25, despite relatively good enhancement and focusing performances can be obtained, 
the designed reflectors typically have wildly oscillating corrugations. Besides the difficulty in the realisation of 
these structures, they are also observed to be sensitive to fabrication errors.
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In this contribution, we introduce a multigrid optimisation strategy, which is well suited for the design of 
corrugated metallic sheets. We employ grids at different levels such that the reflectors are designed progressively 
from coarse details to fine details. From the optimisation point of view, this corresponds to expanding the opti-
misation space as the grid is refined. Hence, the final optimisation space involving extremely many possibilities 
representing all arbitrary movements of the discretisation nodes can effectively be explored. While, as in all heu-
ristic algorithms, the developed implementation does not guarantee a globally optimal solution, we show that it 
provides the designs of much better reflectors with improved focusing abilities, in comparison to those obtained 
without using grid. In addition to better performances, the designed reflectors are also more suitable for fabrica-
tion to be used in the applications aforementioned above.

Multigrid Optimisation
The proposed multigrid optimisation mechanism for metallic reflectors is depicted in Fig. 1. Our aim is to deform 
a metallic surface such that it behaves as an effective reflector that focusses the power at desired location(s) when 
illuminated by an external wave. We generally start with an initially flat surface located on the x − y plane (z = 0). 
Then, the deformations are allowed in a z ∈ [−l, l] range, leading to reflectors with maximum 2l profile thick-
nesses. We consider multigrid optimisation involving G grids, where g = 1, 2, 3, …, G are applied consecutively. 
The major steps of the mechanism for a grid g are as follows.

The grid nodes are given to the GA implementation, which has been developed for alternative optimisation 
purposes in diverse applications29. The chromosome length for each individual is bNg, where b is the number of 
bits to encode the position of a grid node and Ng is the number of grid nodes. The given profile range [−l,l] for the 
reflectors is divided into 2b − 1 equal intervals. We note that the optimisation space involves 2bNg candidate solu-
tions. Among these, a total of 2b flat surfaces also exist, e.g., [000…000] represents a flat surface at z = −l and 
[111…111] represents a flat surface at z = l.

The GA implementation works on a number of individuals, each representing a candidate solution. For each 
individual, the fitness value is calculated via an electromagnetic simulation using MLFMA. For accurate numer-
ical solutions, adaptive mesh refinement is applied on the deformed grids such that all discretisation triangles 
(specifically their edges) are smaller than a given threshold. The electromagnetic problems are formulated with 
the electric-field integral equation and discretized with the Rao-Wilton-Glisson functions on triangles30. A stand-
ard MLFMA is used to solve the electromagnetic scattering problems. Despite the number of unknowns can 
be relatively small (4000–15,000 for the examples in this paper), we prefer MLFMA since it allows for dynamic 
accuracy control (changing the solution accuracy as the optimisation steps progress31), leading to overall faster 
solutions in comparison to the direct method of moments (MOM) and matrix factorisation. We note that the 
MOM matrices for different individuals are mostly different from each other, making it difficult to reuse any 
matrix factorisation.

Once the expansion coefficients are found for the induced current density on a reflector represented by an 
individual, a post processing is applied to evaluate the value of the corresponding fitness function. For the appli-
cations in this paper, the fitness is the power density at the given optimisation location or its mean value if mul-
tiple locations are considered. The fitness value is used by the GA implementation to evaluate the success of the 
individual in comparison to others.
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Figure 1.  The designed multigrid optimisation mechanism. The dashed lines indicate optional paths based on 
the decision.
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Optimisation on a grid continues for a given number of generations, followed by the selection of a number of 
best individuals. If it is decided to continue the main optimisation (can be decided based on the convergence 
characteristics or using the criteria g < G if G is fixed), nodal representations of these successful individuals are 
generated for the fine grid (g + 1). In this transformation, the location of a new node in the fine grid is found by 
interpolating the positions of the related nodes in the coarse grid. To make the interpolations easier, we generally 
refine a grid by dividing each triangle into four subtriangles. Then, any new node in the fine grid is located on a 
line between two nodes of the coarse grid. Transformation into a fine grid leads to new chromosomes with 
bNg+1 > bNg bits, while the optimisation space is enlarged to >+2 2bN bNg g1  possible solutions. At the same time, 
since successful individuals are selected from the previous grid, the starting positions are much better than those 
obtained by randomly sampling the new optimisation space.

After the optimisation for the last grid (G) is completed, the most successful individuals (reflector geometries) 
are selected and further exposed to sensitivity analysis, such as the one shown in this paper. The best reflector is 
selected as the optimisation result.

In order to show the effectiveness of the multigrid approach, we compare the results with those obtained via 
no-grid optimisation trials, where the discretisation nodes are directly used to deform the surfaces25.

Results
As numerical examples, we consider metallic reflectors that are designed for focusing the electromagnetic power 
at single or multiple locations. Initially, a flat 4λ × 4λ metallic sheet (where λ is the wavelength) is located in free 
space on the x-y plane centred at the origin (x, y, z) = (0, 0, 0). The excitation is a 1 V/m plane wave propagating 
in the −z direction, i.e., with normal incidence on the original flat surface. To design reflectors, deformations are 
applied by shifting the grid nodes vertically in the [−0.2λ, 0.2λ] range, leading to a maximum profile thickness of 
0.4λ. In the optimisation trials, pools of 40 individuals are used for 250 generations. Each grid node is represented 
by 10 bits. The multigrid approach is employed by using 2 × 2, 4 × 4, 8 × 8, 16 × 16, and 32 × 32 grids (50 genera-
tions for each grid g, where 1 ≤ g ≤ 5). We note that these numbers (2, 4, 8, 16, 32) indicate the number of intervals 
at each edge of the sheet, i.e., the number of grid nodes per edge is 3, 5, 9, 17, and 33, respectively, considering 
the four vertices of the sheet. Hence, the total number of grid nodes are 32 = 9, 52 = 25, 92 = 81, 172 = 289, and 
332 = 1089, respectively. For MLFMA solutions, λ/10 threshold is used, i.e., for each reflector shape represented 
by an individual (using any grid), adaptive mesh refinement is applied until all discretisation triangles are smaller 
than λ/10. The multigrid approach is compared to no-grid optimisation trials (with the same pool size and 250 
generations), where a total of 4225 discretisation nodes are directly shifted. Mesh refinement is also applied, 
where necessary, for the MLFMA solutions of a no-grid optimisation.

We first consider the maximisation of the power density at (x, y, z) = (0, −0.5λ, 3.2λ). Figure 2 depicts the 
power density (in dBW/m2) in the vicinity of the best reflectors at the ends of the multigrid optimisation stages, 
as well as the final result of the corresponding no-grid optimisation. In the plots (and also in the plots of the 
following examples), the power density is shown at the y = −0.5λ plane in a 5λ × 5λ frame with respect to x 
(horizontal) and z (vertical) locations. The reflectors are at the bottom, as also shown in an empty plate contain-
ing the optimisation point. Hence, we observe the power density distribution mainly in the reflection region. We 
note that the incident power of the unit plane wave (1 V/m) in free space is 2.65 × 10−3 W/m2. For each result in 
Fig. 2, the geometry of the corresponding reflector with the discretisation nodes is also shown. We observe that 
the power density is significantly increased at the optimisation location even when using the 2 × 2 grid. Then, the 
focusing becomes stronger as the grid is refined. It is remarkable that the general shape of the reflector is already 
formed when using the 8 × 8 grid. Specifically, for maximising the power at a symmetrically located position with 
3.2λ distance from the reflector, the optimal geometry seems to be a concave shape. We note that this shape is 
reached by the GA implementation, without any external intervention. Using 16 × 16 and 32 × 32 grids (the last 
100 generations) brings some fine tunings, despite the continuing freedom of the shifts in the [−0.2λ, 0.2λ] range. 
For comparisons, the rightmost plots depict the best reflector obtained via a no-grid optimisation and the corre-
sponding reflector geometry. We observe that the design provided by the no-grid optimisation has a very complex 
shape, while its focusing ability is relatively poor in comparison to the result of the multigrid optimisation.

Figure 3 presents a more detailed comparison of the multigrid and no-grid optimisation results for the 
single-point optimisation trials in Fig. 2. In addition to the power density distributions, the electric field intensity 
(in dBV/m) and the magnetic field intensity (in dBA/m) are plotted. The superiority of the reflector found by the 
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Figure 2.  Optimisation results when the power density is maximised at (x, y, z) = (0, −0.5λ, 3.2λ) using 
4λ × 4λ reflectors. The best reflectors at the ends of the multigrid optimisation stages are compared to the one 
obtained by the no-grid optimisation.



www.nature.com/scientificreports/

4SCiEnTifiC REPOrTs | (2018) 8: 1267 | DOI:10.1038/s41598-017-18174-4

multigrid optimisation is also visible with larger peak values in the field plots. As more quantitive data, Fig. 3 also 
contains the optimisation histories, i.e., the fitness values (power density values at the optimisation location) with 
respect to the GA generations. We observe that the multigrid approach leads to a fitness value of 2.71 × 10−2 W/
m2 at the 50th generation using 2 × 2 grid. Then, the upgrade to the 4 × 4 grid boosts the value up to 3.75 × 10−2 
W/m2. While each refinement of the grid improves the fitness, we also observe slower progress, especially after 
the 100th generation. The fitness value reaches 4.00 × 10−2 W/m2 at the end of the multigrid optimisation (250th 
generation). This corresponds to more than 15 times enhancement (with respect to the incident power). Without 
using grid, however, the power density is increased from 4.26 × 10−3 W/m2 to 1.30 × 10−2 W/m, corresponding 
to less than 5 times enhancement (with respect to the incident power), in 250 generations (with the same com-
putational cost).

Next, we consider the maximisation of the power density at (x, y, z) = (−0.5λ,−0.5λ, 3.2λ). For this asym-
metric case, we expect some drop in the performances of the reflectors, in comparison to the symmetric case 
(location) considered in Figs 2 and 3. Figure 4 presents the power density in the vicinity of the reflectors (similar 
to Fig. 2). In addition, we compare the electric and magnetic field intensity distributions in Fig. 5, which also 
contains the optimisation histories. Using the multigrid approach, we again observe a very good kick off with the 
2 × 2 grid and significant improvements as the grid is refined to 4 × 4 and 8 × 8, followed by fine tunings with the 
16 × 16 and 32 × 32 grids. A close investigation of the reflector geometries in Fig. 5 reveals that an asymmetric 
concave shape is formed to maximise the power density at the desired location. The final value of the fitness at the 
250th generation is 3.70 × 10−2 W/m2, corresponding to approximately 14 times enhancement (with respect to 
the incident power). On the other hand, without using grid, the power density can be increased to 1.49 × 10−2 W/
m2, corresponding to less than 6 times enhancement (with respect to the incident power), while the geometry of 
the reflector is again more complex.

Figure 6 presents the movement of the maximum power location for the multigrid optimisation presented in 
Figs 4 and 5. The circular points in both the overall and zoomed plots represent the location at which the power 
density is maximum for different critical generations (generations when the fitness value changes). The corre-
sponding power density values are also listed. We note that the purpose of the optimisation is the maximise the 
power at the target location (shown with the cross sign), while there is no control over where the actual maximum 
occurs. We observe that the maximum power location is moving at around the optimisation point, while it finally 
reaches to a location at the bottom of the zoomed plot. The power density at this location is 3.86 × 10−2 W/m2, 
which is slightly larger than the power density at the optimisation location (3.70 × 10−2 W/m2).

Single-point optimisation trials can be considered to be relatively easy to achieve. In fact, the optimisation 
results converge into concave type reflectors, which are among the most fundamental geometries of optics. We 
note that, due to the relatively small sizes and profiles of the reflectors (4λ × 4λ × 0.4λ), many analytical models 
or approximations, such as ray optics, are still inapplicable for the design of these reflectors. On the other hand, a 
concave shape may be enforced in a parametric study, where the reflector is designed by trial and error, at the cost 
of the increased uncertainty in the optimality of the shapes. Therefore, to clearly demonstrate the effectiveness 
of the developed multigrid approach, we now focus on multipoint optimisation trials, where the power density 
is simultaneously maximised at multiple locations. It is remarkable that such an optimisation does not bring any 
complexity or extra computational cost when using the developed optimisation procedures. Only the fitness func-
tion is changed to the mean value of the power density at the desired locations. Once again, we clearly present the 
advantages of the multigrid strategy for efficient optimisation.

Figures 7 and 8 present the optimisation results when the power density is maximised simultaneously at  
(x, y, z) = (−1.25λ,−0.5λ, 1.5λ) and (x, y, z) = (1.25λ,−0.5λ, 1.5λ). Investigating the power density results 
in Fig. 7, we observe that the 2 × 2 grid does not provide good focusing characteristics, as opposed to the 
single-point optimisation trials. Specifically, the power density cannot be maximised at the given locations by 

Figure 3.  More detailed optimisation results when the power density is maximised at (x, y, z) = (0,−0.5λ, 3.2λ) 
using 4λ × 4λ reflectors. The best results obtained with multigrid and no-grid optimisation trials are depicted. 
The optimisation histories, i.e., the fitness values with respect to GA generations, are also shown. The fitness is 
defined as the power density values at the optimisation point.
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controlling only 3 × 3 = 9 grid nodes, as expected. A remarkable improvement occurs when the grid is refined to 
4 × 4 (25 grid nodes), while the power enhancement becomes increasingly better with more refinements. Effective 
usage of the finer grids is obvious also in the geometry plots. For example, using the 16 × 16 grid does not bring 
just fine tunings over the 8 × 8 grid; significantly large new corrugations are observed. As also shown in Fig. 8, the 
multigrid approach leads to a very successful power distribution focused at the desired locations. We note that the 
optimisation target is to increase the mean value of the power density, i.e., we do not suppress the power density 
at other locations. The fitness values with respect to the GA generations in Fig. 8 clearly show the step-by-step 
improvement as the grid is refined. At the 25th generation, the fitness value reaches 2.74 × 10−2 W/m2, which 
indicates more than 10 times average enhancement (with respect to the incident power). The corresponding value 
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Figure 4.  Optimisation results when the power density is maximised at (x, y, z) = (−0.5λ, −0.5λ, 3.2λ) using 
4λ × 4λ reflectors. The best reflectors at the ends of the multigrid optimisation stages are compared to the one 
obtained by the no-grid optimisation.

Figure 5.  More detailed optimisation results when the power density is maximised at (x, y, z) = (−0.5λ,−0.5λ, 
3.2λ) using 4λ × 4λ reflectors. The best results obtained with multigrid and no-grid optimisation trials are 
depicted. The optimisation histories, i.e., the fitness values with respect to GA generations, are also shown. The 
fitness is defined as the power density values at the optimisation point.
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obtain with a no-grid optimisation is only 1.23 × 10−2 W/m2 (less than 5 times enhancement with respect to the 
incident power).

Figures 9 and 10 present the results of the optimisation trials when the power density is maximised simulta-
neously at 12 points that are arranged as two symmetrically located inclined lines. As shown in Fig. 9, the power 
density is maximised at the desired locations when the grid is refined to 4 × 4 and 8 × 8. In this case, 16 × 16 
and 32 × 32 grids seem to provide only fine tunings on the reflector, while this could not be known before using 
them. Once again, the final reflector design provided by the multigrid approach performs much better than the 
one obtained from a no-grid optimisation. As shown in Fig. 10, the fitness value can be increased successfully to 
2.01 × 10−2 W/m2 (more than 7 times simultaneous enhancement) using the multigrid approach, while it reaches 
only 9.66 × 10−3 W/m2 (50% less) with the no-grid optimisation.

All simulations presented in this paper are performed in the MATLAB environment on cores of E5-2680v3 
processors. The solution time strongly depends on the reflector geometry (mainly due to different numbers of 
iterations). For the results described above, it takes 200–600 seconds to complete a single MLFMA solution (when 
using full MLFMA without introducing any approximation due to the dynamic accuracy control). These dura-
tions, more or less, correspond to the processing time per generation since we solve all individuals in a generation 
simultaneously via embarrassing parallelisation. Hence, without using dynamic accuracy control, lookup table, 
and similar acceleration techniques, an optimisation requires less than two days. Depending on the optimisation 
problem and using the listed acceleration techniques, this time can be reduced to less than 24 hours. Since the 
number of unknowns is relatively small (4000–15,000 for the examples in this paper), the required memory for 
the simulations is also small, i.e., the peak is usually at around 500 MB.

Finally, Table 1 provides more quantitative data on all simulations presented above. We list the fitness values, 
i.e., the power density values at the optimisation location or the mean of the power density values when multiple 
locations are involved. For the multigrid trials, the obtained values at the end of each grid (50th, 100th, 150th, and 
200th generations) are provided in addition to the final result (250th generation). The superiority of the multigrid 
approach in comparison to the no-grid approach (the last column) is clearly visible.

For future computational and experimental studies, all reflector geometries found by the multigrid approach 
and presented above are available as text data in Supplementary Files.
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Figure 7.  Optimisation results when the power density is maximised simultaneously at (x, y, z) = (−1.25λ,−0.5λ, 
1.5λ) and (x, y, z) = (1.25λ,−0.5λ, 1.5λ) using 4λ × 4λ reflectors. The best reflectors at the ends of the multigrid 
optimisation stages are compared to the one obtained by the no-grid optimisation.

Figure 8.  More detailed optimisation results when the power density is maximised simultaneously at  
(x, y, z) = (−1.25λ,−0.5λ, 1.5λ) and (x, y, z) = (1.25λ,−0.5λ, 1.5λ) using 4λ × 4λ reflectors. The best 
results obtained with multigrid and no-grid optimisation trials are depicted. The optimisation histories, 
i.e., the fitness values with respect to GA generations, are also shown. The fitness is defined as the mean of 
the power density values at the optimisation point.
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Discussion
As shown in the results, the proposed multigrid approach provides more successful optimisation of metallic 
reflectors, in comparison to the brute force approach using the discretisation nodes directly. All results involve 
4λ × 4λ metallic sheets, while we have also practiced the same level of performances for other similar sizes. We 
note that the reflectors are relatively small, e.g., they are approximately 6 × 6 μm at 200 THz (a common infrared 
frequency). The small sizes of the reflectors with respect to wavelength make it challenging to control the reflec-
tions to generate focus points. This increases the importance of the optimisation results, especially employing 
full-wave solutions without resorting to approximate methods.

The multigrid optimisation strategy not only provides better results but also leads to reflector geometries that are 
potentially easier to fabricate. We emphasise that the geometries found by no-grid optimisation trials are not merely 
noisy surfaces, i.e., they still provide remarkable enhancements at desired locations. On the other hand, they are 
difficult to realise in practice since they have complicated shapes and they are more sensitive to the fabrication errors 
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Figure 9.  Optimisation results when the power density is maximised simultaneously at 12 different locations 
using 4λ × 4λ reflectors. The best reflectors at the ends of the multigrid optimisation stages are compared to the 
one obtained by the no-grid optimisation.
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Figure 10.  More detailed optimisation results when the power density is maximised simultaneously at 12 
different locations using 4λ × 4λ reflectors. The best results obtained with multigrid and no-grid optimisation 
trials are depicted. The optimisation histories, i.e., the fitness values with respect to GA generations, are also 
shown. The fitness is defined as the mean of the power density values at the optimisation point.

Results

Multigrid Optimisation

No Grid50th Gen. 100th Gen. 150th Gen. 200th Gen. 250th Gen.

Figs 2 and 3 2.71 × 10−2 3.75 × 10−2 3.93 × 10−2 3.98 × 10−2 4.00 × 10−2 1.30 × 10−2

Figs 4, 5, and 6 2.74 × 10−2 3.43 × 10−2 3.67 × 10−2 3.69 × 10−2 3.70 × 10−2 1.49 × 10−2

Figs 7 and 8 1.00 × 10−2 2.06 × 10−2 2.35 × 10−2 2.57 × 10−2 2.74 × 10−2 1.23 × 10−2

Figs 9 and 10 1.05 × 10−2 1.69 × 10−2 1.91 × 10−2 1.97 × 10−2 2.01 × 10−2 0.966 × 10−2

Table 1.  Summary of the optimisation trials depicted in Figs 2–10. The fitness values (the power density values 
at the optimisation location or the mean of the power density values at the optimisation locations) are listed 
when the multigrid approach is used, in contrast to the no-grid case. For the multigrid approach, the obtained 
values at the end of each grid (50th, 100th, 150th, and 200th generations, in addition to the 250th generation) 
are also provided. The unit of the fitness value is W/m2. For comparisons, we recall that the incident power 
density is 0.265 × 10−2 W/m2.
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since their focusing characteristics are based on complex interactions between widely oscillating corrugations. Using 
the multigrid approach to design a reflector, the main reflection mechanism is constructed by large surfaces, which 
are progressively reshaped and improved as the grid is refined. If the finer grids provide limited improvement on the 
focusing characteristics, they can also be discarded to simplify the fabrication procedures.

The reflector geometries found by the multigrid optimisation strategy are typically resistant to fabrication 
errors. As an example, Fig. 11 presents the optimisation results when the power density is focused simultaneously 
at two separate points. After the optimal shape is found via the multigrid approach, the discretisation nodes are 
randomly moved vertically to simulate fabrication errors. In addition to the power density distributions and the 
corresponding shapes of the reflectors, histograms for the vertical positions of the discretisation nodes are also 
depicted. For the movements, Gaussian distributions with zero median and different standard deviations (STD) 
from 0.001 to 0.05 are applied. We observe that the reflector shape is significantly degenerated as STD increases. 
On the other hand, the performance of the reflector is very stable, maintaining the two focus points even for very 
noisy cases. A further investigation shows that, for these cases, the current density distributions on the reflector 
surfaces remain quite similar when the noises are introduced.

From the optimisation point of view, the multigrid approach can be seen as systematically expanding optimi-
sation spaces, where potentially good regions are estimated via coarser scans and they are investigated in detail via 
finer searches. We note that the solutions found by a multigrid optimisation are already in the optimisation space of a 
no-grid optimisation (omitting minor differences due to the transverse locations of the nodes). Specifically, an ideal 
optimisation without using a grid should reach the optimal geometries (or similarly performing ones) found by the 
corresponding multigrid optimisation. Unfortunately, the optimisation spaces in these applications are so large that 
it becomes extremely difficult to approach a global solution. From this perspective, a multigrid optimisation also 
does not guarantee convergence to globally best geometries. On the other hand, it provides more reliable geome-
tries that definitely perform better than those obtained via no-grid optimisation trials. Besides, concave geometries 
found for the single-point optimisation trials (despite that the optimisation trials are not guided externally to specific 
shapes or attributes like symmetry) demonstrate the reliability of the multigrid approach.

An important parameter in a multigrid optimisation is the number of grids. Basically, it is reasonable to start with 
a grid as coarse as possible. In the results of this paper, we use 2 × 2 grids (3 × 3 grid nodes), i.e., the coarsest possi-
ble grid to deform a sheet at all four edges. In some cases, such a grid already provides relatively successful results, 
while it performs poorly for others, especially involving multiple optimisation locations. In general, it is not known  
(or difficult to know) how many grid refinements should be applied in a multigrid optimisation. In the results of this 
paper, we use fixed G = 5 grids based on our experience with this type of reflectors. An automated approach can be 
based on investigating the convergence characteristics, while this may not be trivial. As also evident in the results, 
a convergence of the fitness using a grid does not indicate an overall convergence, i.e., an upgrade to a finer grid 
may boost the fitness. Then, the criteria can be the amount of the jump when a grid is refined. Among the results of 
this paper, only the two-point optimisation in Figs 7 and 8 demonstrates an improvement when the grid is refined 
to 32 × 32. This may suggest that a finer grid could also be tried for this case. For fair comparisons, however, we 
make all optimisation trials involve 50 generations per grid and maximum 250 generations, while an automated 
mechanism to determine the number of grids and the number of generations per grid is under investigation.

Methods
In the numerical solutions of the scattering problems, a conventional MLFMA based on the expansion of far-zone 
interactions via plane waves28 is used. For dynamic accuracy control in an optimisation31, approximate versions 
of MLFMA (AMLFMA) using reduced number of harmonics are used. In the full version, all electromagnetic 
interactions are computed with maximum 1% error. Iterative solutions are performed by using the generalised 
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Figure 11.  Sensitivity analysis on the result of a multigrid optimisation to maximise the power density 
simultaneously at two locations. Random vertical movements for the discretisation nodes are introduced.
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minimal residual (GMRES) method or its flexible version (FGMRES). Convergence threshold for the iterations is 
set to 0.001. Since the metallic reflectors are modelled as perfect electric conductors with zero thicknesses, EFIE 
is used as the formulation in the frequency domain. The RWG functions are used for the discretisation since the 
considered problems are not affected from a low-frequency breakdown. At the same time, preconditioning is 
applied, where necessary, via multilayer solutions32.

EFIE and MLFMA are very well-known in the literature; but, for the completeness of the paper, we briefly 
present the formulation. Electromagnetic problems are considered in the frequency domain using the ω−i texp( ) 
time convention. When discretized with the RWG functions, EFIE leads to matrix equations as

⋅ =Z a w , (1)EFIE EFIE

where a represents current coefficients (to be found), while the matrix elements and the elements of the 
right-hand-side vector are derived as

¯ ∫ ∫ ∫ ∫ωμ
ωε

= ⋅ ′ ′ ′ + ∇ ⋅ ′ ′ ∇′ ⋅ ′Z m n i drt r dr b r g r r
i

dr t r dr g r r b r[ , ] ( ) ( ) ( , ) 1 ( ) ( , ) ( )
(2)S

m
S

n
S

m
S

n
EFIE

0 0
0

0
m n m n

∫= − ⋅ .w m drt r E r[ ] ( ) ( )
(3)S

m
EFIE inc

m

In the above, Einc is the incident electric field intensity created by external sources (plane waves in this paper), 
ε0 and μ0 are the permittivity and permeability of the host medium (free space in this paper), η μ ε= ( / )0 0 0  is the 
intrinsic impedance, π λ ω μ ε= =k 2 /0 0 0 0  is the wavenumber, and π′ = | − ′| | − ′|g r r ik r r r r( , ) exp( )/(4 )0 0  is 
the three-dimensional Green’s function. In addition, bn and tm represent the basis and testing functions for n = 1, 
2, …, N and m = 1, 2, …, N, where N is the number of the RWG functions. When MLFMA is used, the Green’s 
function is expanded as26–28

∫π
α′ = ⋅ + τ

ˆ ˆ ˆg r r ik d k ik k d d k k D( , )
(4 )

exp( ( )) ( , , )
(4)0

0
2

2
0 1 2 0

∫π
α∇∇′ ′ = ⋅ + τ

ˆ ˆ ˆ ˆ ˆg r r ik d k k kk ik k d d k k D{ }( , )
(4 )

( ) exp ( ( )) ( , , ),
(5)0

0
2

2
0
2

0 1 2 0

where ατ represents truncated translation operators (τ: truncation number) and r − r′ = D + d = D + d1 + d2 with 
the condition |D| > |d|. To perform far-zone interactions on-the-fly, multilevel tree structures are constructed 
by using cubic boxes. One-box-buffer scheme is used along with the excess bandwidth formula to decide the 
far-zone rules (translations, number of harmonics, angular sampling, etc). Standard Lagrange interpolation and 
anterpolation is used between levels.

Once current coefficients are found via the iterative solution of a matrix equation, the total electric and mag-
netic fields can be obtained at any observation point r in the near-zone as

∫ ∫∑ ∑η
η

= + ′ ′ ′ − ′∇′ ⋅ ′ ∇′ ′
= =

E r E r ik a dr b r g r r i
k

a dr b r g r r( ) ( ) ( ) ( , ) ( ) ( , )
(6)n

N

n n
n

N

n n
inc

0 0
1

0
0

0 1
0

∫∑= + ′ ′ × ∇′ ′
=

H r H r a dr b r g r r( ) ( ) ( ) ( , ),
(7)n

N

n n
inc

1
0

where Hinc is the incident magnetic field intensity. Then the power density (the major quantity considered in the 
optimisation trials of this paper) is computed as

= | × |⁎S r E r H r( ) ( ) ( ) , (8)

where * is the complex conjugate operation.
The GA implementation used in this paper has been developed for various optimisation studies in different 

applications29. As described in33, we use one-to-one crossover, family elitism, and success-based mutations for 
improved optimisation convergence. For a reflector optimisation considered in this study, similar individuals are 
rarely considered other than those due to elitism. Therefore, the number of MLFMA simulations is proportional 
to the number of generations times the pool size. For the presented examples, this corresponds to as large as 
250 × 40 = 10,000 simulations per optimisation. Due to relatively small sizes of the problems, MLFMA itself is not 
parallelized. However, we use an embarrassing parallelisation during an optimisation, i.e., multiple individuals are 
evaluated simultaneously on multiple CPU cores.
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