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Quantitative microglia analyses 
reveal diverse morphologic 
responses in the rat cortex after 
diffuse brain injury
Helena Morrison   1, Kimberly Young1, Mahir Qureshi2, Rachel K. Rowe3,4 &  
Jonathan Lifshitz3,4

Determining regions of altered brain physiology after diffuse brain injury is challenging. Microglia, brain 
immune cells with ramified and dynamically moving processes, constantly surveil the parenchyma 
for dysfunction which, when present, results in a changed morphology. Our purpose was to define the 
spatiotemporal changes in microglia morphology over 28 days following rat midline fluid percussion 
injury (mFPI) as a first step in exploiting microglia morphology to reflect altered brain physiology. 
Microglia morphology was quantified from histological sections using Image J skeleton and fractal 
analysis procedures at three time points and in three regions post-mFPI: impact site, primary 
somatosensory cortex barrel field (S1BF), and a remote region. Microglia ramification (process length/
cell and endpoints/cell) decreased in the impact and S1BF but not the remote region (p < 0.05). 
Microglia complexity was decreased in the S1BF (p = 0.003) and increased in the remote region 
(p < 0.02). Rod-shaped microglia were present in the S1BF and had a 1.8:1.0 length:width ratio. An 
in-depth quantitative morphologic analysis revealed diverse and widespread changes to microglia 
morphology in the cortex post-mFPI. Due to their close link to neuronal function, changes in microglia 
morphology, summarized in this study, likely reflect altered physiology with diverse and widespread 
impact on neuronal and circuit function.

Traumatic brain injury (TBI) impacts the lives of over 2.2 million children and adults each year in the United 
States alone1,2. The milder end of the TBI severity spectrum has an unknown incidence, often falling into the 
lexicon of concussion, and accounts for 70–90% of all TBIs. Although most people survive mild TBI, patient 
morbidities are diverse and related symptoms depend on the individual, impact site, impact magnitude, and the 
level of acute care provided at the time of injury. The typical closed-skull impacts of mild TBI are diffuse injuries 
associated with acceleration and deceleration of the brain, leading to the widespread pathology and broad mor-
bidities that can be debilitating, life-long, and life changing2.

Pre-clinical research in rodent models has clarified mechanisms of brain injury after concussion. The mechan-
ical forces of the primary injury disrupt cell membranes3, stretch axons, deform tissue, disrupt ion movement4, 
release neurotransmitters, and deplete brain energy stores as cells compensate and respond to the insult(s)5,6. 
From there, secondary injury processes can exacerbate the primary injury to spur waves of neurovascular pathol-
ogy, including glial dysfunction, cell edema, and inflammatory responses from microglia and astrocytes6. In con-
trast to focal TBI, diffuse brain injury is devoid of gross histological changes, such as cavitation, contusion, and 
cell death, but rather shows cell atrophy and the accumulation of proteins in axonal swellings7,8. Consequently, 
the full extent of this diffuse and microscopic injury remains challenging to detect in both pre-clinical and clin-
ical research9. For this manuscript, the objective quantification of microglia morphology adds essential tools to 
detect and distinguish diverse morphologies, which may reflect persistent neuropathology across the cortex after 
diffuse TBI.
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Microglia, brain immune cells active in the inflammatory response, continuously surveil brain neurochem-
istry. In fact, microglia assess the brain every few hours through repeated morphological transformations that 
include dynamic and active process movements10. Neurons can direct microglia surveillance functions during 
homeostasis and in response to injury through soluble factors that mediate microglia receptor-neuronal ligand 
interactions11–15. In turn, microglia influence neuronal function and maintain neural networks by releasing 
cytokines (i.e. TNFα16,17 and IL-1β) and prostaglandins, as well as through complement mediated phagocytosis 
(relevant reviews, refs18–21). Bi-directional microglia and neuron communication is constant and coordinated, but 
yet to be fully articulated, especially in the context of injury. However, it is clear that changes in neuronal function 
or activity, including neuronal dysfunction, initiate immediate transformations in microglia morphology13–15. 
After severe TBI or stroke that leads to cell death and cavitation, microglial responses include morphologic 
changes, observed as pronounced de-ramification and amoeboid shaped cells, reminiscent of systemic/circulating 
macrophages22. In contrast, diffuse brain injury spares tissue and leaves neurons initially as dysfunctional, with 
evidence for cellular edema and/or atrophy. In parallel, microglial morphologic response can be mild to robust 
and regionally dependent, even across the cortex, whereas other regions appear unaffected. Because microglial 
activity serves as an endogenous sensor for brain disturbance, sensitive and quantitative methods to detect subtle 
microglia responses to injury can further define regions of unrecognized pathology.

We previously reported on a stark morphological change in microglia after experimental diffuse brain injury23. 
Rod microglia and rod microglia trains (multiple connected rod-microglia spanning > 100 µM) form predomi-
nantly in the primary somatosensory cortex barrel fields (S1BF) after experimental diffuse brain injury. Inferring 
function from form, rod microglia may serve as the splinting of neuronal dendrites, forming a barrier to segregate 
healthy and damaged neurons, or facilitating microglia migration24–26. Moreover, the robust inflammation in 
the S1BF region, highlighted by rod-shaped microglia morphologies, accumulation of TSPO receptor, cytokine 
expression27 and neuronal atrophy, correlates to sensory behavior deficits8,28. In experimental diffuse TBI, the 
S1BF shows stark neuropathology, however the possibility exists for other cortical regions to harbor less overt 
neuropathology. Microglia morphology is ramified in the healthy brain and varies among brain regions (i.e cor-
tex, hippocampus)29, which facilitates the maintenance of homeostasis through cellular surveillance. Microglial 
morphologic responses to pathophysiology are diverse, ranging from hyper-ramified to amoeboid shapes and 
are readily observed when proximal to severe injury. On the other hand, quantitative morphology analyses are 
necessary to distinguish the subtle microglia changes that more often accompany mild injury or at regions distant 
to severe injury30–32. Taking advantage of dynamic microglial responses to subtle disturbances in function, we 
hypothesized that microglia morphology would differ among cortical brain regions in the days following experi-
mental diffuse brain injury. We employed sensitive and multiple quantitative methods (skeleton and fractal anal-
ysis) to discriminate microglia morphologies in order to test our hypothesis. The data in the present manuscript 
reveal diverse changes in microglia morphologies within the cortex after diffuse brain injury, and are progress 
toward a more comprehensive understanding of the diverse spatiotemporal cell responses to diffuse TBI.

Methods
Animals.  Adult male Sprague-Dawley rats (350 to 375 g) were purchased (Envigo, Inc., Indianapolis, IN) and 
housed in a 12-h light cycle at a constant temperature (23 ± 2 °C) with food and water available ad libitum. All 
experiments were approved by and performed in accordance with the guidelines established by the University of 
Kentucky IACUC (Institutional Animal Care and Use Committee) and the NIH guidelines for the care and use of 
laboratory animals. Care was taken to minimize pain and discomfort. Data collection stopped at pre-determined 
final endpoints based on days post-injury for each animal. Pre-determined exclusion criteria included excluding 
animals if post-operative weight decreased by 15% of pre-surgical weight. No rats were excluded from this study. 
Randomization of animals was achieved by assigning animals to treatment groups before the initiation of the 
study to ensure equal distribution across groups. All analyses were conducted by investigators blinded to the 
treatment groups.

Experimental Diffuse Brain Injury: Midline Fluid Percussion Injury.  Rats were subjected to either 
sham operation or midline fluid percussion injury (mFPI) as previously described23,26,33 and reviewed briefly here. 
Rats were anesthetized with 5% isoflurane delivered in surgical grade air prior to the surgery and maintained 
at 2.5% isoflurane via nose cone. While anesthetized, body temperature was maintained using a Deltaphase® 
isothermal heating pad (Braintree Scientific Inc., Braintree, MA). In preparation for the mFPI procedure, anes-
thetized rats were placed in a stereotaxic frame and a 4.8-mm outer diameter circular craniotomy was performed, 
centered on the sagittal suture midway between bregma and lambda (approximately at −2.0 mm from bregma). 
During this process, great care was taken not to disrupt the underlying dura or superior sagittal sinus. A skull 
screw was then secured in a 1-mm hand-drilled hole. An injury hub was fabricated from the female portion of a 
Luer-Loc needle hub, which was cut, beveled, and scored to fit within the craniotomy. The injury hub was fixed 
over the craniotomy using cyanoacrylate gel and methyl-methacrylate (Hygenic Corp., Akron, OH). The inci-
sion was sutured at the anterior and posterior edges and topical Lidocaine ointment was applied. Animals were 
recovered in a warmed holding cage and monitored until ambulatory. Diffuse brain injury was induced in rats 
60 to 90 min after surgical preparation. For injury, rats were re-anesthetized with 5% isoflurane in 100% O2 and 
the dura was inspected through the injury-hub assembly. The hub assembly was filled with saline and attached 
to the male end of the fluid percussion device (Custom Design and Fabrication, Richmond, VA). Upon return of 
reflexive responses, the injury (1.9–2.0 atm) was administered by releasing the pendulum onto the fluid-filled cyl-
inder. Rats were monitored for the presence of a forearm fencing response (one forelimb flexed, other extended) 
and the return of the righting reflex (4-10 min) as indicators of injury severity30. For the sham procedure, rats 
were connected to the fluid percussion injury device, but the pendulum was not released; sham-injured animals 
recovered the righting reflex within 15 seconds. The injury hub assembly was removed, the integrity of the dura 
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was observed, and bleeding was controlled prior to the incision being stapled. Recovery was monitored postoper-
atively for up to three days, with no overt differences (e.g. weight, movement, grooming) observed between ani-
mals. A sham procedure was carried out for each time point (1, 7, and 28 days post-injury) and pooled to achieve 
a sham sample size of three for statistical comparisons.

Immunohistochemistry and imaging.  Immunostaining to identify microglia was carried out on tissue 
sections as previously described23. Animals were euthanized at designated time points (1, 7, or 28 days; n = 3 
for each time point) post-injury or sham operation (sham; n = 3); tissue was first perfused with saline followed 
by 4% paraformaldehyde/PBS. Brain tissue was removed and fixed in a 4% paraformaldehyde followed by 15% 
sucrose solution for 24hr prior to being transferred to fresh fixative solution and sent for histological processing 
by Neuroscience Associates Inc. (Knoxville, TN, USA). The brains were embedded into a gelatin matrix where 
they could be frozen and sectioned from one solid block (MultiBrain® Technology, NeuroScience Associates, 
Knoxville, TN). Sections of 40 μm thickness were taken in the coronal plane, wet-mounted on 2% gelatin-subbed 
slides, and stained for microglia using ionized calcium binding adaptor molecule (Iba1) primary antibody and 
3,3′-Diaminobenzidine (DAB) visualization (NeuroScience Associates, Knoxville, TN). Digital imagining was 
carried out on an Olympus AX-80 microscope and attached DP-70 digital camera (Olympus America Inc., Center 
Valley PA) using a 40x objective. Three coronal brain sections per animal (between bregma −0.45 and −1.85) 
were imaged twice, once in each right and left hemisphere, for each region of interest and at each time point 
(sham, 1, 7, or 28 days post-mFPI) to yield six digital photomicrographs per animal and region for analysis. The 
regions imaged were: near to the impact site (retrosplenial cortex region), primary somatosensory barrel field 
(S1BF) cortex, and a site remote to the impact (entorhinal cortex). The three regions of interest are depicted in 
Fig. 1a and b. Microglia were analyzed for changes in ramified morphology after experimental diffuse brain injury 
using computer-aided skeleton analysis methods34. Photomicrographs of microglia at 40X magnification in the 
impact (I), S1BF, and remote (R) regions over days post-injury (DPI) are shown Fig. 1c. All sections were uni-
formly stained and clear of background. Cropped photomicrographs are included below each raw image to better 
visualize microglia morphology detail; however, data were collected from uncropped images. All photomicro-
graphs used for analysis were obtained from a single focal plane, in which microglia and processes are randomly 
oriented. Random orientation approximates the nucleator method for estimating three dimensional data from 
two dimensional images, when populations of cells are analyzed35, however additional data could be obtained 
from image stack visualization in future studies.

Skeleton Analysis.  A ramified cell is one that has a complicated network of processes that originate from 
the cell soma. A change in microglia ramification indicates a microglial response to an altered physiologic status, 
in this case induced by mFPI. ImageJ software (National Institute of Health, https://imagej.nih.gov/ij/34) and 
appropriate plugins (i.e. FFT bandpass filter, unsharp mask and close) were consistently used prior to converting 
all photomicrographs to binary and skeletonized images. In addition to creating skeletonized images, cell somas 
were manually counted for each photomicrograph. The Analyze Skeleton Plugin (developed by and maintained 
here: http://imagej.net/AnalyzeSkeleton31) was then applied to the skeleton image which tags skeletal features 
relevant to microglia ramification: slab voxels (orange, process length) and endpoints (blue). Figure 2 illustrates 
the workflow process to convert an entire original photomicrograph to a plugin tagged image (original, binary 
and skeleton); cropped images and an overlay of skeleton to original image is provided for detail and to illustrate 
that skeletons are representative of the original image. We summarized the number of process endpoints and 
length from the Analyze Skeleton plugin data output and normalized all data by the number of microglia cell 
somas in each image to calculate the number of microglia endpoints/cell and microglia process length/cell. In 
Table 1, we summarize skeleton analysis measures (endpoints and process length/cell) in terms of measure, unit, 
range, scale, and interpretation.

Fractal Analysis using FracLac for ImageJ.  We extended our computer-aided morphologic analysis after 
diffuse brain injury to include fractal analysis (FracLac for ImageJ) which quantifies, among other things, cell 
complexity (fractal dimension, DB), density, and span ratio36,37. FracLac analysis is typically applied to single cells 
as opposed to the entire image field used for skeleton analysis. Four microglia were randomly chosen for fractal 
analysis (using a grid and random number generator) within each photomicrograph (6 photomicrographs per 
animal) for a total of 24 cells analyzed per animal in each region. Analysis included fractal dimension, span ratio, 
and density. Individual microglia were first made binary through a similar process as described for skeleton anal-
ysis. The additional structures that abut and surround each cell were excluded from analysis by manual deletion 
using a digitizing tablet and ImageJ. Binary images were then converted to outlines using ImageJ. We summarize 
all fractal analysis measures (fractal dimension, span ratio, and density) in terms of measure, unit, range, scale, 
and interpretation in Table 1.

Fractal dimension is a measure of microglia complexity, which quantifies each cell’s contour bounded by the 
endpoints and process lengths. FracLac for ImageJ calculates the microglia fractal dimension (DB) for each cell 
using a box plot protocol that determines the amount of pixel detail with increasing scale, where N = the number 
of pixels or “detail” at a particular scale (ɛ) (see Fig. 3a and Table 1). These calculations and relationships are best 
summarized in the reference guide provided for FracLac for ImageJ http://rsb.info.nih.gov/ij/plugins/fraclac/
FLHelp/Introduction.htm and additional associated references32–34. In summary, a microglia is more complex as 
the amount of detail grows quickly with increasing scale or, as DB approaches 2.

We also summarize additional measures of microglia morphology related to cell shape: span ratio and den-
sity34. Such measures use the FracLac generated “convex hull” which circumscribes each microglia outline with 
a polygon and a circle that bounds the convex hull. An example of the convex hull, eclipse and bounding circle is 
provided in Fig. 3b. Span ratio is the ratio of the convex hull ellipse’s longest length to longest width. Density is the 

https://imagej.nih.gov/ij/
http://imagej.net/AnalyzeSkeleton31
http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm
http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm
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Figure 1.  Iba1 stained microglia in cortex regions after midline experimental diffuse brain injury and days of 
recovery. (a) Schematic drawing depicting the midline fluid percussion injury (mFPI) delivered to animals and 
the brain regions (impact, somatosensory barrel field [S1BF], and remote) imaged within cortical layers I-III. 
The arrows illustrate the percussive force delivered by the mFPI model. (b) Approximate imaging regions per 
histological section. (c) Iba1 immunostaining of impact, S1BF, and remote brain regions in sham animals and 
1, 7, and 28 days post-injury (DPI). Cropped photomicrographs corresponding to the highlighted square are 
provided to show microglia morphology detail. All quantitative skeleton analysis was carried out on full sized 
photomicrographs while fractal analysis was carried out on single cells. (Scale bars = 10 µm unless otherwise 
noted).
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ratio of the number of pixels encompassed by the cell outline to the area (in pixels) of the convex hull. Span ratios 
are indicators of cell shape, whereas density is an indicator of cell size.

Statistical Analysis.  Data are shown as mean ± SEM and analyzed using GraphPad Prism 6 with statisti-
cal significance assigned when p < 0.05, unless otherwise indicated. Differences in cell counts/field, endpoints 
per cell, summed process length, fractal dimension, span ratio, density, and a spatial-temporal interaction 
between region and time post-injury were analyzed using a two-way analysis of variance (ANOVA) followed by a 
two-tailed Tukey’s multiple comparisons test.

Results
Microglia are de-ramified in the impact and S1BF regions after diffuse brain injury.  Figure 1b 
illustrates microglia photomicrographs in each region. We first quantified the number of microglia cells in each 
field in order to normalize skeleton analysis data. In this case, we report significant differences in cell counts/field 

Figure 2.  Skeleton analysis of microglia morphologies in Iba1 stained tissue. (a) The process to prepare 
photomicrographs for skeleton analysis. Original photomicrographs were subjected to a series of uniform 
ImageJ plugin protocols prior to conversion to binary images; binary images were then skeletonized. An overlay 
of a resulting skeletonized image (in green) and original photomicrograph shows the relationship between 
skeleton and photomicrograph. Cropped photomicrographs (below) show additional detail and all skeleton 
analysis was completed on full sized photomicrographs (Scale bar = 10 µm). (b) The skeletonized images are 
processed using the Analyze Skeleton plugin (maintained here: http://imagej.net/AnalyzeSkeleton) to identify 
and tag skeletonized processes as orange, endpoints as blue, and junctions as purple. The tagged data are then 
organized and data output summarized.

Measure Unit Range Scale Sampling Interpretation

Process length22 Summed µm/cell Continuous Photomicro-graph 6 photomicrographs/animal Cell ramification

Process endpoints22 Summed #/cell Continuous Photomicro-graph 6 photomicrographs/animal Cell ramification

Fractal Dimension36,37 




ε

regression slope In N
In

( )
( ) DB 1-2 Individual cell 24 cells/animal Cell complexity

Span Ratio38 convex hull eclipse longest length
convex hull eclipse longest width Ratio 0-1 Individual cell 24 cells/animal Cell shape

Density38 # of pixels within cell outline
area of convex hull

# of pixels
area

0-1 Individual cell 24 cells/animal Cell Size

Table 1.  Summary of microglia morphology measures.

http://imagej.net/AnalyzeSkeleton
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and a spatial-temporal interaction between region and time post-injury (2way ANOVA: region: F(2,24) = 9.07, 
p = 0.001; time: F(3,24) = 21.50, p < 0.0001; interaction: F(6,24) = 5.08, p = 0.002). Microglia cell count was increased 
in the impact (7 DPI) and S1BF regions (at 7 and 28 DPI; all post-hoc results are reported within Fig. 4a). We next 
measured changes in microglia ramified morphology in brain regions and in the days following mFPI by quan-
tifying the number of microglia endpoints and process length per cell. Microglia endpoints differed according 
to region and time (2way ANOVA: region: F(2,24) = 6.56, p = 0.005; time: F(3,24) = 33.67, p < 0.0001; interaction: 
F(6,24) = 3.17, p = 0.02). Post-hoc analyses reveal that there were fewer microglia process endpoints at all DPI 
when compared to sham in both impact and S1BF regions, but not in the remote region. All post-hoc results 
are reported in Fig. 4b. Similar to endpoints/cell, summed process length/cell differed according to region and 
time (2way ANOVA: region: F(2,24) = 9.99, p = 0.007; time: F(2,24) = 21.78, p < 0.0001; interaction: F(6,24) = 3.08, 
p = 0.02). Process length/cell was significantly less than sham in the impact and S1BF regions at all DPI but, again, 
not in the remote region. All post-hoc results are reported in Fig. 4c. In summary, skeleton analysis of microglia 
morphologies revealed that microglia become de-ramified (fewer and shorter processes per cell) in the impact 
and S1BF regions as early as 1 DPI, which persisted until 28 DPI—the end of the study. However, that microglia 
are not de-ramified in the region remote to the impact site suggests that microglia de-ramification is not universal 
throughout the diffuse-injured brain.

Microglia complexity and shape differs by region in the days following diffuse brain 
injury.  Examples of microglia (made binary and outlined) in each brain region are shown in Fig. 5a. 
Application of FracLac for ImageJ to microglia outlines resulted in fractal dimensions that ranged from 1.374 to 
1.457 (available range is 1-2) with the lowest value occurring in the S1BF region and the highest in the remote 
region. Two-way ANOVA analysis identified a spatiotemporal relationship in microglia fractal dimension 
post-injury (time: F(3,24) = 2.99, p = 0.05; region: F(2,24) = 84.07, p < 0.0001; interaction: F(6,24) = 6.53, p = 0.0003; 
all post-hoc results are summarized in Fig. 5b). Microglia complexity is unchanged from sham in the impact 
region whereas, in the S1BF region, cell complexity was low at 1 and 7 DPI and recovered to sham condition by 
28 DPI. In the remote region, cell complexity steadily increased from sham condition until 28 DPI, when the 
study ended. The wide range of fractal dimension scores suggests that complexity of microglia shapes is diverse 
throughout the diffuse-injured brain.

Using FracLac for ImageJ, we investigated additional measures of microglia morphology related to cell shape: 
span ratio and density. Span ratio is a measure of microglia elongation and therefore relevant to our previous 
detection of rod microglia in the S1BF region after mFPI. Span ratio was significantly increased post-injury, 
however, only in the S1BF region and peaking at 7 DPI (time: F(3,24) = 10.43, p = 0.0001; region: F(2,24) = 43.15, 
p < 0.0001; interaction: F(6,24) = 8.89, p < 0.0001; post-hoc results reported in Fig. 5c). Density is used to report 
on microglia size. We illustrate that the most robust changes to microglia size also occurred in the S1BF region at 
1 DPI and was recovered by 28 DPI post-injury (time: F(3,24) = 5.28, p = 0.006; region: F(2,24) = 46.54, p < 0.0001; 
interaction: F(6,24) = 6.11, p = 0.0005; post-hoc results are reported in Fig. 5d).

Combined Skeleton Analysis and Fractal Analysis reveal diverse microglia morphologic 
responses after diffuse brain injury.  Last, we present the relationship between skeleton and fractal analy-
sis data by plotting endpoints/cell, fractal dimension, and span ratio; data were averaged for each time and region. 
These three measures were chosen as single variables to represent cell ramification, complexity, and shape, respec-
tively. Including all variables would be redundant as process length and endpoints/cell were strongly correlated 
(r = 0.95, p < 0.0001) as were density and fractal dimension (r = 0.95, p < 0.0001); span ratio and circularity were 
inversely correlated (r = −0.99, p < 0.0001). Fractal dimension was inversely correlated to span ratio (r = −0.69, 
p = 0.03) but not to endpoints/cell (r = 0.55, p = 0.10); endpoints/cell was not significantly correlated to span 
ratio (r = 0.58, p = 0.08). Plotting these three parameters on a scatterplot identified groups of cells with particular 

Figure 3.  FracLac for ImageJ to quantify cell complexity and shape. (a) Illustration of FracLac box counting 
method to derive fractal dimension calculations of a microglia outline. Shape detail is quantified as scale 
increases, represented by pink boxes. Box counting equation is summarized in Table 1. (b) Schematic of the 
convex hull (blue), bounding circle (pink) and convex hull ellipse (orange) with accompanying longest length 
and width (dashed lines) necessary for calculating microglia span ratio and density (Table 1).
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morphologic responses in the days after diffuse brain injury and have categorized microglia morphologies as 
ramified, ramified & hyper-complex, de-ramified, and de-ramified & rod (Fig. 6).

Discussion
Microglia are in close communication with immediately surrounding cells and are endogenous reporters of 
altered or disrupted neuronal and glial function. It follows that microglia morphology, if quantified using sen-
sitive methods, could provide insight into neuropathology of discrete regions after diffuse brain injury. On this 

Figure 4.  Microglia ramification is different in brain regions following experimental diffuse brain injury. (a) 
Summary data (mean and SEM) and statistical analysis (two-way ANOVA) of microglia cell counts/field in 
brain regions following diffuse brain injury (image n = 6/group, animal n = 3/group). At 1, 7, and 28 days post-
injury (DPI), microglia counts are higher than sham within regions (F(2,24) = 9.07, p = 0.001) and with time 
(F(3,24) = 21.50, p < 0.0001) with significant interaction (F(6,24) = 5.08, p = 0.002). Post-hoc analyses are reported 
within the figure (#p = 0.003 vs impact and ^p < 0.003 vs. remote). (b) Summary data and statistical analysis of 
microglia endpoints/cell at 1, 7, and 28 DPI (n = 3/group). The number of microglia endpoints/cell is different 
than sham after mFPI (F(3,24) = 33.67, p < 0.0001). There are fewer endpoint/cell in the impact and S1BF regions 
at all DPI, but not at the remote region (post hoc are summarized in figure). The number of endpoints/cell 
was also different among brain regions at time points (F(2,24) = 6.56, p = 0.005) with post-hoc analysis reported 
in figure (1DPI ^p < 0.05 vs S1BF and Impact; 7DPI #p < 0.05 vs Impact and S1BF). There was a significant 
interaction effect (F(6,24) 3.17, p = 0.02) c). Summary data and statistical analysis of microglia process length/
cell in brain regions at 1, 7, and 28 DPI (n = 3/group). Summed process length is different than sham in the days 
following mFPI (F(3,24) 21.78, p < 0.0001). Process length is decreased at all DPI in the impact and S1BF regions, 
but not the remote region (post hoc analyses are summarized in the figure). Microglia process length/cell was 
also different among brain regions at time points (F(2,24) 9.99, p = 0.0007) with post hoc analysis reported in 
figure (1DPI ^p < 0.05 vs S1BF and Impact; 7DPI #p < 0.05 vs Impact and S1BF; 28DPI ^p = 0.04 vs Impact). 
There was a significant interaction effect (F(6,24) = 3.07, p = 0.02).
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Figure 5.  Microglia complexity, elongation, and size are different in brain regions following experimental 
diffuse brain injury. (a) Example photomicrographs and cell outlines of Iba1/DAB microglia in impact, S1BF, 
and remote regions; scale bar = 10 µm. (b) Summary data and statistical analysis of fractal dimension at 1, 7, 
and 28 DPI. Microglia fractal dimension was different than sham post-mFPI within brain regions (F(3,24) = 2.99, 
p = 0.05), decreased in the S1BF region after 1 DPI and 7 DPI, and increased in the remote region at 7 and 
28 DPI. Microglia fractal dimension was also different according to time (F(2,24) = 84.07, p < 0.0001). There 
was a significant interaction effect (F(6,24) = 5.53, p = 0.0001). All post-hoc analyses are reported in the figure 
(Sham: #p < 0.01; 1DPI: *p < 0.05 vs impact and S1BF; 7DPI: ^p < 0.05 vs Impact and S1BF; 28DPI: %p < 0.05 
vs Impact and S1BF). c) Summary data and statistical analysis of span ratio at 1, 7, and 28 DPI. Microglia span 
ratio was different than sham within brain regions in the days following mFPI (F(3,24) = 10.43, p < 0.0001), 
elongated in the S1BF region after 1, 7 and 28 DPI. Microglia span ratio was also different between brain 
regions (F(2,24) = 43.15, p < 0.0001). All post hoc analyses are reported in the figure (1DPI: #p < 0.05 vs S1BF; 
7DPI: *p < 0.0001 vs S1BF; 28 DPI: ^p = 0.05 vs S1BF). There was a significant interaction effect after mFPI 
(F(6,24) = 8.9, p < 0.0001). (d) Summary data and statistical analysis of density at 1, 7, and 28 DPI. Microglia 
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basis, our purpose was to define the spatiotemporal changes in microglia morphology throughout the 28 days 
following rat mFPI as a first step in exploiting the microglia’s potential to reflect altered brain physiology. Using 
multiple quantitative assessments of microglia morphology we report that microglia morphology was different 
from sham in all three imaged regions at 28 days post-injury. We have summarized these diverse morphologies 
as: ramified; ramified/hyper-complex, de-ramified, and de-ramified/rod morphologies. That microglia become 
de-ramified post-injury is commonly reported while cell hyper-ramification or increased complexity is observed 
less frequently. Our data illustrate that microglia responses post-mFPI includes a wide spectrum of morphologies 
and likely reflects an equally diverse neuronal response. At this time, however, we make no claim to the temporal 
relationship or transitions between microglia morphologies nor the direct relationship to neuronal function. 
However, in future research, it is possible that microglia morphologies will indicate neuronal and glial function 
or dysfunction after experimental diffuse brain injury.

Neuroinflammation is a secondary injury process that can extend the primary diffuse brain injury. If prop-
erly identified and understood, in terms of key components and timing, this secondary injury is a treatment 
target to attenuate pathophysiology that contributes to neurological symptoms (for a review please see39). As 
an added level of complexity, microglia mediated neuroinflammatory responses can be beneficial or detrimen-
tal, as demonstrated by the simultaneous pro-inflammatory and pro-repair mechanisms of inflammation (for a 
recent review please see40). In light of this duality, it becomes imperative to understand the diversity of microglia 
responses post-injury in order to provide precision of care both in therapeutics and timed delivery. Although 
neuronal dysfunction is not directly studied, our data illustrate that a broad diversity of microglia responses are 
present in the cortex over 28 days post-mFPI, which we interpret to correspond with changes in neuronal activity. 
When assessed qualitatively, microglia morphology appeared similar throughout the brain, with exception of the 
rod-like microglia present in the S1BF. While it was reasonable to postulate changes in microglia morphology 
would be present in regions nearest to the impact region, a finding of this study, no changes in microglia ramifica-
tion were expected in the remote region. Therefore our data highlight the need for an objective, quantitative anal-
ysis to detect and report with accuracy diverse morphologies in conditions where disease and injury may result 
in subtle pathophysiology. A next step is to link the defined microglia morphologic states to pro-inflammatory 
versus pro-repair and mechanisms of inflammation.

Much focus remains on microglia de-ramification as the primary indicator of a microglial response or “acti-
vation” following injury. However, in addition to de-ramification, our analysis revealed that microglia become 
progressively more complex and cell density increases over 28 days post-injury in the remote brain region. 
We have categorized these cells as ramified and hyper-complex. Others have identified regions that contain 
hyper-ramified morphologies in situ, which may be similar to our hyper-complex category. Hyper-ramified 
morphologies were previously identified in female mouse brain tissue41,42 or in mice with chronic stress43–45. In 
chronic stress, a hyper-ramified/hyper-complex morphology has not been correlated to neuropathological indi-
cators of injury, such as IL1-β, CD68, or caspase, but instead increased expression of β1-integrin44. In this case, 
hyper-ramified morphologies represent a stress-induced disruption of the extracellular matrix. In contrast, the 
hyper-ramified response has also been described as an indicator or early response to injury22,46. It remains unclear 
if the hyper-ramified/hyper-complex morphology should be considered as part of the injury response, a change 
in the extracellular milieu, or in response to intense neuronal activity. For example neurotransmitter agonists 
NMDA, AMPA, kainite, glutamate, GABA12,15 and adenosine (via A3 receptor)47 elicit an ATP-induced increased 
ramification. We propose that hyper-complex microglia in the remote region represent a combination of protec-
tion against a spreading wave of neuropathology or downstream second-order neuropathology from remodeled 
circuits which may result in increased neuronal excitatory signaling.

We employed fractal analysis of single cells in order to report on cell complexity, the level of detail in the 
microglia shapes, the span or elongation of microglia, and cell size. Microglia complexity (fractal dimension 
values) were in line with previous findings which suggest our use of FracLac was adequate32,33,40,48 and may be 
compared with other microglia quantification studies when studying similar brain regions26. As an added benefit, 
FracLac calculates additional representations of morphologic change for consideration, such as cell shape and 
cell size. Our data summary of microglia span ratio, a measure of cell shape/elongation, validates our previ-
ously reported findings and reiterates that de-ramified rod microglia are present only in the S1BF region, which 
peaked at 7 DPI23. Moreover, we confirm previous findings that rod microglia are elongated in roughly a 1.8:1 
length:width ratio22,23.

Alternate methods can quantify microglia morphologies and have been applied in focal TBI models49–51. 
In these studies, microglia were classified a priori into three categories based on morphology: ramified, hyper-
trophic, and bushy. In contrast, the analyses used in this study provide continuous data (rather than categorical) 
to describe the broad continuum of microglia morphologic changes. ImageJ methods (FracLac and/or Skeleton 
analysis) have been used to detect subtle injury and/or neuronal dysfunction as well as gross injury such as 
closed-head impact model of TBI48 and ischemic stroke22,30. As an added benefit, ImageJ based analysis (skeleton 
analysis and FracLac for ImageJ) is free, simple to use, rapid, and easily complements data collection using pro-
prietary software. The ImageJ skeleton analysis method is high throughput when compared to cell-by-cell analysis 

density was different than sham within brain regions after mFPI (F(3,24) = 5.28, p = 0.006). Microglia density was 
decreased when in the S1BF region at 1 DPI when compared to sham but increased at 28 DPI. Microglia density 
was also different between brain regions (F(2,24) = 46.54, p < 0.0001). There was a significant interaction effect 
after mFPI (F(6,24) = 6.11, p = 0.0005). All post hoc analysis reported in figure (Sham: #p < 0.01; 1DPI: *p < 0.05 
vs S1BF and Remote; 7DPI: ^p < 0.01 vs S1BF and Remote; 28DPI: %p < 0.05 vs S1BF and Remote). All data are 
mean ± SEM with two-way ANOVA analysis.
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and may be employed as a screening tool to identify and screen areas of neuronal dysfunction or prior to more 
in-depth analysis. It is our goal that with ease of use, the assessment of microglia morphology will be incorporated 
into additional studies, lead to a better detection and therefore understanding of neuronal dysfunction and death, 
and understanding of diverse microglial functions across a continuum of brain injury—mild to severe.

Novel to this study, we were able to stratify microglia morphologies by combining three quantitative outcome 
variables acquired via both skeleton and fractal analysis to reveal four categories of cell morphologies: ramified, 
ramified and hyper-complex, de-ramified, and de-ramified and rod. The variables used, endpoints, span ratio, and 
fractal dimension were chosen as non-redundant (not correlating) representations of three morphology param-
eters: ramification, shape, and complexity. The use of either the skeleton or fractal analysis method alone was 
insufficient to separate these distinct morphologic categories.

Currently, it is difficult to identify regions of neuropathology after diffuse TBI, because of non-obvious histo-
logical changes and the existence of multiple pathological axonal phenotypes8. For this study, clinically relevant 
diffuse TBI by midline fluid percussion injury occurs without cavitation, as seen with focal and mixed experimen-
tal models of TBI52,53. Quantifying microglia morphology is a relevant method and useful tool in the discovery 
of multi-focal and yet apparently uninjured regions of neuropathology after diffuse brain injury. As a continuous 
variable, the degree of cell ramification, complexity, shape, and size can be correlated to either microglia function 
or parenchymal responses, such as neuron or glial functions, once discovered. Such correlations are the important 
next step in the discovery of subtle neuronal dysfunction in the days following diffuse brain injury and the track-
ing of recovery. Our findings may be relevant to the investigation of progressive disease conditions, particularly 
those associated with aging. The highly available and simple to employ quantitative tools are likely to be suffi-
ciently sensitive to identify hyper-ramified or hyper-complex morphologies as early detection of injury and/or 
disease. Continued investigations will bring to light microglia morphologies with function in relation to neuronal 
or glial activity, which together can inform health, disease, or injury in clinical management.
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