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Investigating spatiotemporal 
changes of the land-surface 
processes in Xinjiang using high-
resolution CLM3.5 and CLDAS: Soil 
temperature
Xianyong Meng   1, Hao Wang1, Yiping Wu   2, Aihua Long1, Jianhua Wang1, Chunxiang Shi3 & 
Xiaonan Ji4

Soil temperature plays a key role in the land surface processes because this parameter affects a series 
of physical, chemical, and biological processes in the soil, such as water and heat fluxes. However, 
observation of soil temperature is quite limited, especially at the regional scale. Therefore, this study is 
to investigate the spatiotemporal features of soil temperature in Xinjiang, China, using the Community 
Land model 3.5 (CLM3.5) with the atmospheric near-surface forcing data of the China Meteorological 
Administration Land Data Assimilation System (CLDAS). We use the observed soil temperature data 
collected from 105 national automatic stations during 2009 through 2012 in the study area to verify 
the simulation capability. The comparison results indicate that the CLM3.5 with the CLDAS driving field 
could well simulate the spatiotemporal patterns of the soil temperature at hourly, daily, and monthly 
time scales and at three depths (5 cm, 20 cm, and 80 cm). We also produce a soil temperature database 
of the region that is continuous both in time and space with high resolution (about 6.25 km). Overall, 
this study could help understand the regional and vertical characteristics of the soil temperature and 
provide an important scientific basis for other land-surface processes.

Land surface accounts for one-third of Earth’s surface area. Extensive research has shown not only those 
land-surface conditions either directly or indirectly affect both climate and the atmosphere but also that anom-
alies in land-surface conditions constantly interact with both climate and the atmosphere1–10. It was Charney11 
who, for the very first time, advanced the notion that changes in land surface will result in an abnormal change 
in the albedo, which in turn may further affect the surface radiation balance and eventually result in climate 
anomalies. Soil temperature and moisture are particularly important in the land-surface processes because they 
are key parameters that characterize the thermal properties and soil water content and can affect climate through 
their impacts on both surface energy and water budget12. Soil temperature could also impact the climate and the 
weather, especially on short-term weather processes13. In addition, soil temperature is an important agrome-
teorological element that affects a series of physical, chemical and biochemical processes in the soil. The most 
recent studies have shown that soil temperature can affect the short-term precipitation using the Eta model and 
the Weather Research and Forecasting model14,15. Hu and Feng16 found that the end-of-spring soil temperature 
is related to summer precipitation in some degree. The anomalies in the temperatures of shallow soil layers will 
affect short-term weather processes because the thermal anomalies in the surface layer’s soil have already been 
released to the atmosphere before being transferred downward to the deep layers. The anomalies in the soil of 
the deep layers can affect the regional climate process by gradually releasing energy to the shallow layers. Zhang 
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et al.17 found a complex corresponding relationship between changes in the temperature of the atmosphere and 
that of the soil in Canada during the 20th century. Wang et al.18 analyzed long-term trends of Eastern China’s soil 
temperature and moisture and strengthened the understanding of the mechanism and important characteristics 
of the land-atmosphere interaction in East China. However, measurement of soil temperature is deficient, and 
even if there are observations, they are spatially non-continuous and discrete.

Simulating the land-surface processes is a useful approach to studying the changes in the land-surface pro-
cesses and their impacts, especially at the regional scale. Community Land Model (CLM3.5) is a good example, 
and many scientists pay much attention to the model verification and development, Bonan and Levis19 simulated 
the land surfaces of South America’s Amazon Plain and the eastern region of the US, respectively, using the 
CLM series dynamic vegetation model, the CLM3.0, coupled with the Community Atmospheric Model (CAM) 
(CLM3.0 and CAM3.0). They concluded that it was necessary to further improve the parameterization scheme of 
the CLM3.0 coupled with the CAM 3.0. CLM3.0 was updated to version 3.5 by modifying a series of land surface 
processes (e.g., C and N cycles, surface water, and snow accumulation and frozen soil), with a better performance 
especially in hydrological simulation20. Sakaguchi and Zeng21 proposed a flexible scheme about soil capacitance 
in CLM4.0, which was used to simulate the impacts of N cycle on the global carbon balance. CLM4.5 is the 
latest version of CLM, which has revised photosynthesis scheme, improved cold region hydrology and optional 
VIC-based hydrology, prognostic wetland distribution, a new snow cover fraction parameterization, a new lake 
model, new crop model features such as fertilization and grain fill, and multiple urban classes22, etc. However, we 
used CLM3.5 because applying CLDAS to drive CLM offline and its validation, while it is quite challenging to do 
so in CLM4.5, which deserves our future study.

Whitfield et al.23 have conducted a comparative study of simulation results for Florida using CLM and the 
Land Surface Process Model (LSPM), and found these two models were very good at simulating daily changes 
in soil temperature. Huang et al.24 stated that CLM3.0 could provide a very good simulation not only of various 
fluxes between the land and atmosphere but also of the characteristics of temporal and spatial distributions of 
soil temperature. Niu et al.25 conducted verification of three different types of land surface in East Asia (paddy 
field, sparse vegetation on plateaus and forest) using the CLM3.0. They found that surface temperatures in the 
sparse vegetation areas on the plateaus simulated using CLM3.0could fit the observed values relatively well and 
that CLM3.0could satisfactorily simulate the characteristics of the change in the soil temperature at different 
depth. Chen et al.26 investigated China’s soil temperature using CLM3.0driven by Princeton University’s global 
atmospheric forcing field data and found that the coupled model could provide a better simulation of the spatial 
distribution of soil.

From the above examples, we can see few scientists simulate the spatially continuous distribution of soil tem-
perature at the regional scale. Generally, soil temperatures at a study point are from data collected at a nearby 
meteorological station, and this could cause large uncertainty especially in an area with complicated terrain27.

The Xinjiang Uyguy Autonomous Region, spans several latitudes and longitudes and has a very complicated 
topography. There is a lack of studies that used a land-surface model driven by high-precision atmospheric field 
data to simulate the continuous temporal and spatial distributions of the soil temperature in an area with a sim-
ilar size. Therefore, the objective of this study is to 1) simulate soil temperature in the Xinjiang region using 
the CLM3.5 driven by the high-precision atmospheric driving field of the China Meteorological Administration 
Land Data Assimilation System (CLDAS), 2) evaluate the mode performance with observed data collected at 105 
national automatic soil-temperature stations in the study area, and 3) investigate the characteristics of the spatio-
temporal distributions of the soil temperatures at different depths.

Results
Monthly soil-temperature validation and features.  Figure 1 shows the simulated and observed 
monthly mean temperatures of the soil of three layers from 2009 to 2012. The results of the study show that the 
simulated temperatures of the soil are essentially consistent with the observed temperatures in terms of both the 
variation trend and the peak-to-valley value. The simulation results reflect the seasonal changes in the temper-
atures of the soil relatively well, indicating that the CLDAS-driven CLM3.5 can satisfactorily simulate the soil 
profile temperatures in Xinjiang. In addition, we find that the simulated soil temperatures in spring and autumn 
are the closest to their observations. From Fig. 1, the differences between the simulated and observed monthly 
mean temperatures of layer 1 soil in summer are the largest (approximately 8 K), followed by the differences 
between the simulated and observed monthly mean temperatures of layer 2 soil in summer (close to 5 K). The 
differences between the simulated and observed monthly mean temperatures of layer 3 soil in summer are the 
least. However, the simulated monthly mean temperatures of the soil of the two relatively shallow layers (layers 
1 and 2) in January and December are relatively poor. In other words, the differences between the simulated and 
observed monthly mean temperatures of layer1 and layer2 soil in January and December are relatively large. We 
herein analyze the possible reasons for these differences. During the summer, the air temperature in the Xinjiang 
region changes dramatically, particularly in July, when the air temperature reaches its maximum value, which 
can be referred to as the extreme value of the air temperature. The surface temperature changes rapidly, but that 
change does not affect the soil of the deep layers. Therefore, the differences between the simulated and observed 
monthly mean temperatures of the soil of the shallow layers are larger than the difference between the simulated 
and observed monthly mean temperature of the soil of the deep layer. In winter, the cold transfers from the shal-
low layer to the deep layer (layer 3), which may be why the simulated monthly mean temperatures of the soil of 
the deep layer in winter are relatively poor.

Figure 2(a) shows the seasonal changes in the MEs of the soil temperatures at different depths. We can see that 
most of the simulated monthly mean temperatures of the soil of the three layers in summer (May to September) 
exhibit a negative deviation, but the simulated monthly mean temperatures of the soil of the three layers at all 
other times exhibit a positive deviation. Among the simulated monthly mean temperatures of layer 3 soil in all 
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12 months, only the simulated monthly mean temperature in January exhibits a positive deviation. Some of the 
simulated monthly mean temperatures of the soil of the deeper layer in summer also exhibit a positive deviation. 
From Fig. 2(b) that most of the anomaly correlation coefficients of the simulated monthly mean temperatures at 
three layers in all seasons are greater than 0.85, except for early spring and winter, indicating that CLDAS-driven 
CLM3.5 has a relatively good grasp on the pattern of the seasonal change in the soil temperature. In addition, we 
find that the anomaly correlation coefficients of layers 1 and 2 are less than those of layer 3. The anomaly corre-
lation coefficients of layers 1 and 2 from May to September range from 0.85 to 0.9, whereas most of the anomaly 
correlation coefficients of layer 3 are 0.9. From the seasonal angle, the anomaly correlation coefficients of any of 
the three layers in early spring or late winter are relatively low (most of the anomaly correlation coefficients are 
below 0.7), which may be caused by the relatively low extreme value of the air temperature. Figure 2(c) and (d) 
show the seasonal changes in the MAEs and RMSEs, respectively, of the soil temperatures of different layers. We 
find that the spatial distribution pattern of the MAE is essentially similar to that of the RMSE. In addition, the 
simulation errors of layer 1 are greater than those of layer 2, and the errors of layer 3 are obviously the least. The 
errors of layers 1 and 2 in January, February, April, June, July and December are relatively large, whereas the errors 
of layer 3 are comparatively small.

Daily soil-temperature validation and features.  Figure 3 shows the time-series plots of the 105-sample 
average daily soil temperature of three layers simulated using CLDAS-driven CLM3.5. The comparison between 
the simulations and the observations at the 105 national automatic-observation stations shows that the largest 
difference between is less than 5 K. From Fig. 3(a and b), the differences between the simulated and observed 
105-sample average daily soil temperature of layer1 and layer2 in summer and autumn are the largest (around 
5 K). The differences between the simulated and observed daily temperatures of layer 3 in January and December 
are greater than 2 K, whereas the differences in all other time periods are quite small. These results are consistent 
with the results of the changes in the monthly temperatures discussed in Section 4.1.

Figure 4(a–c) show the seasonal changes in the mean deviations of the daily mean temperatures in different 
years. It can be seen that the CLM3.5-simulated soil temperatures at the three layers in summer exhibit a devia-
tion from the observed temperatures. The simulated summer temperatures of layer 1 and layer 2 exhibit a more 
significant deviation. The simulated temperatures of the surface layer from June to September of each year are 
approximately 2K–4K lower than the observed ones. The simulated soil temperatures of layer 2 from June to 
September of each year are approximately 1K–3K lower than the observed temperatures. In addition, the simu-
lated temperatures of layer 1 and layer 2 from January to May and from October to November of each year also 
has a slight deviation (1K–2K). The simulated temperatures of layer 3 in January, February and December exhibit 

Figure 1.  Simulation-observation curves of the monthly mean temperatures of the soil at 105 stations in 
Xinjiang at depths of (a) 5 cm, (b) 20 cm, and (c) 80 cm.
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a relatively large deviation (1K–3K lower than the observed temperatures). The seasonal changes in the mean 
deviations of the simulated temperatures of layer 3 from the observed temperatures at all other times of the year 
mostly range from −1K to 1 K, suggesting that the seasonal fluctuation of the change in the soil temperature of 
layer 3 is less than that of layers 1 and 2.

Hourly soil-temperature validation and features.  Figure 5(a1–a3) shows the hourly soil temperatures 
at the three layers observed at the 105 stations in the Xinjiang region (a1: layer 1, a2: 20 cm, a3: 80 cm). The 
abscissa axis of each plot represents the coordinated universal time (UTC) and shows both the mean temperature 
distribution and the mean value of the change in the daily temperature over 24 hours at the 105 soil-temperature 
stations. The ordinate axis of each plot shows the change in the soil-temperature data from 2009 to 2012. We find 
that the inter-annual change in the temperature of layer 1 is larger than the inter-annual change in the temper-
ature of layer 2 and the inter-annual change in the temperature of layer 3 on the daily scale. From February to 
November of each year, the temperature of layer 1 reaches its maximum value (above 30 °C) at 09UTC each day. 
In January and December of each year, the daily average temperature of layer 1 decreases to below 270 K. In addi-
tion, the largest difference between the daily maximum temperature and the daily minimum temperature of layer 
1 exceeds 30 K in all time periods except for January and December. The daily change in the temperature of layer 2 
is relatively slow and occurs at a later time. The daily maximum temperature of layer 2 soil (above 30 °C) occurs at 
15UTC, indicating that there is a delay in the transfer of the soil temperature from a shallow layer to a deep layer. 
Furthermore, the temperature of layer 2 was lower than zero only in early January 2009, at the end of December 
2010, in early January 2011, at the end of December 2011 and in January 2012.

Figure 5(a1–a3) also shows that there is essentially no change in the temperature of layer3 soil on the daily 
scale (i.e., over each 24 h day). The daily temperatures of layer 3 are between 290 K and 300 K from June to 
September. The highest daily temperatures of layer 3 are primarily concentrated in July (295K–300K), whereas 
the lowest daily temperatures of layer 3 are primarily concentrated in January. The early springs of 2011 and 2012 
were relatively cold, resulting in daily temperatures of layer 3 in January and February being between 270 K and 
275 K. The differences between the highest and lowest daily temperatures of layer 3 are between 15 K and 25 K, 
showing a gentler variation than layers 1 and 2. In addition, the energy between the land and atmosphere has a 
larger impact on the daily temperature of the surface layer than that on the deep layer.

In terms of the seasonal change in the soil temperature, the temperatures at all three layers of the soil reach 
their maximum values in summer and their minimum values in winter, suggesting clear seasonal changes.

Fig. 5(b1–b3) shows the distributions of the soil temperatures at the three layers ((b1), (b2) and (b3)) simu-
lated using the CLDAS-driven CLM3.5. The simulated temperatures are interpolated to the matching latitudes 
and longitudes and depths of the 105 national automatic stations for statistical analysis. It is found that both the 

Figure 2.  Statistical function graphs of the changes in the temperatures of the soil with season and depth. (a) 
ME, (b) Anomaly correlation, (c) MAE, and (d) RMSE.
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inter-annual change and the hourly change of each day in the soil temperature of each layer simulated using 
CLDAS-driven CLM3.5 fit the observed results very well, except for the simulated maximum temperature of 
layer 2 (15UTC). Overall, we could say the simulations of soil temperature at three soil depths by CLM3.5 in the 
Xinjiang region is acceptable.

Figure 5(c1–c3) shows a statistical analysis of the differences of the soil temperatures at the three layers 
between simulation and observation at the national automatic-soil temperature stations. Figure 5 tells that the 
simulation of soil temperatures is generally consistent with the observed ones. From the interpolation graph of 
the observed and simulated soil temperatures of layer1, we can see that the simulated temperatures of layer 1 
between 03UTC and 21UTC from January to April and from September to November of each year are higher 
than their respective observed temperatures (0K–2K), whereas the simulated temperatures of layer 1 soil between 
21UTC and 00UTC in the same time periods are lower than the observed temperatures (−1K–0K). In addition, 
the simulated temperatures of layer 1 throughout the day from May to August of each year are lower than the 
observed temperatures. The simulated maximum temperature of layer 1 occurs at 09UTC and is approximately 
4 K lower than the observed maximum temperature. The reason for the relatively poor simulated values may be 
because the change in temperature in the Xinjiang region is the largest between 03UTC and 14UTC, and extreme 
values also occur in this time period. It is found that the differences between the simulated and observed temper-
atures of layer-1 soil are between −1 K and 1 K in all other non-extreme value time periods. The simulation results 
of the temperatures in non-extreme value time periods are ideal. The differences between the simulated and 
observed temperatures of layer 2 from January to April and from September to November of each year are mostly 
between −1 K and 1 K. Simulated temperatures of layer 2 at 12UTC reaches the maximum value, which is consist-
ent with the information shown in Fig. 5(a2). We also find that the characteristics of the daily change in the soil 
temperature of layer 3 are not prominent. The simulated temperatures of layer 3 in late spring, summer and early 
autumn are 0–1 K higher than observations. The simulated temperatures of layer 3 in all other seasons are lower 
than the respective observed temperatures, and in winter the difference reach the largest (around 1–4 K) in winter.

Discussion
The simulation of soil temperature is the key component of a land-surface model. The accuracy of the calculation 
of soil temperature using a land-surface model directly affects the material and energy exchanges between the 
land and the atmosphere in the model, which in turn affects the accuracy of the numerical model. This study 
uses the CLDAS data developed by the National Meteorological Information Center of China to force CLM3.5 
to simulate the soil temperature in the Xinjiang region. This study describes both data integration and the core 
assimilation algorithm used in the preparation process of the CLDAS in details. This study validates and analyzes 

Figure 3.  Simulation-observation curves of the daily mean temperatures of the soil at the 105 stations in 
Xinjiang (a) 5 cm; (b) 20 cm; (c) 80 cm.
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the soil temperatures at 105 national automatic stations in the Xinjiang region. The validation of soil temper-
ature simulation using 105 national automatic stations indicated that CLM3.5 driven by CLDAS can simulate 
the changes of the soil temperatures at multiple layers in the Xinjiang region quite well, with the correlation 
coefficients being greater than 0.85. The deviations of the simulated values from the observed values are relatively 
small (no more than 2K–4K). The errors in the simulated soil temperatures of the shallow layers are relatively 
large, whereas they are relatively small for deep layers. Therefore, future studies should focus on further adjusting 
the parameters related to soil heat transfer and the parameterization schemes for other processes in the CLM to 
reduce the uncertainty of the model and obtain the optimal simulation results.

We admitted that there are still some drawbacks or limitations in our study. (1) From Fig. 2(a) and (b), we 
can see soil temperature in late winter and early spring was underestimated. Further, we also found some spikes 
(relatively high/low values) in the measurement data in this period, and this might be caused by the physical mal-
function of probes during the melting period. The model did not perform well either in capturing this phenome-
non. Actually, soil temperature variation involves water and energy fluxes and air temperature changes. The poor 
performance of soil temperature simulation from the late winter through the early spring due to the snow cover 

Figure 4.  Seasonal changes in the mean deviations of the simulated daily mean temperatures from the 
observations in different years.
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and air temperature were reported previously28–31. This complicated interaction complicated and abrupt change 
of soil temperature and poor model behavior deserves further investigation in future studies. (2) The soil tem-
perature for the 105 stations were measured at a series depth of 5 cm, 10 cm, 15 cm, 20 cm, 40 cm, 80 cm, 160 cm, 
and 320 cm. The simulated soil temperature were for 10 soil layers with depths of 0.007 m, 0.0279 m, 0.0623 m, 
0.1188 m, 0.212 m, 0.366 m, 0.619 m, 1.038 m, 1.727 m, 2.846 m. Our study was designed to take simulations from 
depths 0.0623 m, 0.366 m, and 1.038 m over the Xinjiang region for comparison with measurements from depths 
of 5 cm, 20 cm, and 80 cm. We understand this slight mismatch in depths could result in some biases including 
overestimation and underestimation, but it is unavoidable due to the model setting.

Figure 5.  Annual and hourly changes in the observed (a) and simulated (b) soil temperatures at three depths 
and their differences (c).
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Application of numerical models usually involves input parameters uncertainty and its effects on model out-
put, and this topic is quite attractive but challenging especially for large-scale studies. Many studies indicate that 
using an envelope of models could help assess the uncertainties and might reduce the systematic biases. Therefore, 
we are considering to investigate this issue in our future studies (1) using multiple models including CLM, Noah 
Land Surface Model, and/or the Common Land Model (CoLM) together with post statistical approaches such 
as Bayesian Model Averaging, and (2) using different climate and land-use scenarios to analyze the variabilities/
uncertainties of model output32.

In spite of the above limitations and there was a national assessment of soil temperature of China using 
CLM3.0 with coarse resolutions (1° and 3-hour)26. In contrast, our model simulations can be more informa-
tive and useful because it investigates the spatial-temporal patterns of soil profile (at three depths) tempera-
ture in Xinjiang using CLM3.5 with high spatial (1/16°) and temporal (hourly) resolutions. The high-resolution 
input and output can help evaluate the spatial-temporal features of the land surface processes especially in local 
environment.

Methods
Study area.  As shown in Fig. 6, Xinjiang Uyghur Autonomous Region is located in the hinterland of 
the Eurasian continent between 73°40′E and 96°18′E and between 34°25′N and 48°10′N. With a total area of 
1.6649 × 106 km2, Xinjiang accounts for nearly one-sixth of China’s total area and is the largest among the pro-
vincial-level administrative regions in China. With the closest coastline 2,648 km (straight-line distance) away, 
the Gurbantünggüt Desert in Xinjiang (46°16.8′N, 86°40.2′E) is the remotest point of land from any sea. There 
are alternating mountain ranges and basins across Xinjiang–basins surrounded by high mountains and high 
mountains surrounded by basins. The Altai Mountains are located in the north of Xinjiang, and the Kunlun 
Mountain system is located in the south of Xinjiang. The Tianshan Mountains span the center of Xinjiang and 
divide Xinjiang into southern and northern halves. The Tarim Basin is situated in the southern half, and the 
Dzungarian Basin is located in the northern half. Xinjiang’s unique landform-two basins sandwiched among 
three mountains, resulting in complicated underlying surface conditions and a huge spatial-temporal difference 
in climate distribution. Unfortunately, there are a deficient number of meteorological stations in the Xinjiang 
region, and literature review showed that most scientists just used reanalyzed data and/or some single-point data 
to study this region. Therefore, the existing studies on the land-surface processes in the Xinjiang region may be 
inaccurate or unsystematic.

Models.  The CLM developed by the US National Center for Atmospheric Research (NCAR) is used as the 
land-surface model in this study. This model was developed based on extensive, painstaking research on the 
numerical simulation of climate, vegetation ecology and watershed hydrology33. Possessing the advantages of 
existing land-surface models worldwide CLM is one of the most reliable land-surface process models in the 

Figure 6.  Location of the Xinjiang region and 105 automatic soil temperature observation stations. The map is 
generated with ArcMap Version 10.1 (http://www.esri.com/en/arcgis/arcgis-for-desktop/).

http://www.esri.com/en/arcgis/arcgis-for-desktop/
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world. CLM is the land-surface model component of the Community Earth System Model developed by the US 
NCAR28, and was primarily developed to couple with the earth-system model, the CLM can be operated offline 
(i.e., independently). When the CLM is operated offline, users need to provide the atmospheric forcing data, such 
as solar radiation, temperature, pressure, near-surface wind speed, specific humidity and precipitation rate. The 
CLM’s physical processes includes the heat and water exchange between the land and atmosphere, the dynamic 
growth processes of vegetation, the thermodynamic processes of soil and the hydrologic processes. These pro-
cesses are primarily expressed using parameterization schemes.

The CLM series adopted the sub-grid variability of each model—each grid contains multiple types of land 
unit, such as glacier, lake, wetland, city and plant. The plant unit can also be divided into multiple plant function 
types (PFTs, i.e., tiles) (Fig. 6), and energy and water conservation must be maintained on each tile, which has its 
own diagnostic variable. Each tile in a lattice point obtains meant-state atmospheric forcing from the lattice point 
of the atmosphere corresponding to that lattice point. The tiles in a lattice point contribute their water and heat 
fluxes to the lattice point based on the proportion of the area. There is no direct interaction among the tiles in each 
lattice point. The CLM is divided into one plant layer, 10 soil layers of different thicknesses and a maximum of 
five snow layers (the number of snow layers is determined by the thickness of the snow) in the vertical direction. 
This layered structure is beneficial to obtain relatively high-resolution daily and seasonal changes in each layer’s 
temperature.

CLM3.5 was released by the US NCAR in 2007, and its modifications to CLM3.0consist of an improved hydro-
logic process and the introduction of new surface datasets34–36. The introduction of new surface datasets simulta-
neously improves the description of the land surface and the simulation of the surface albedo, surface temperature 
and precipitation. Niu et al.35 introduced a new frozen soil scheme. Oleson et al.20 and Lawrence et al.34 provided 
a detailed description of the physical processes and performance of CLM3.5.

CLM3.5 calculates soil temperatures using soil heat transfer equations:
The first law of heat transfer can be expressed as follows:

λ= − ∆F T (1)

where F represents the total amount of heat that transfers through a unit cross section area per unit of time 
(Wm2); λ represents thermal conductivity ( − −Wm K1 1); and ∆T  represents the spatial gradient of temperature 
( −Km 1). The one-dimensional (1D) form of the first law of heat transfer is expressed as follows:

λ= −
∂
∂

F T
z (2)z

where z  represents the vertical direction (m) and is positive downward; and Fz is positive upward. To illustrate 
unstable or transient conditions, the principle of conservation of energy is called using the following continuity 
equation:

∂
∂
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∂
∂
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t

F
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z

where c represents the heat capacity of the snow/soil of the equivalent body ( − −Jm K3 1); and t represents time (s).
By simultaneously solving equations (2) and (3), the 1D form of the second law of heat transfer can be 

obtained:
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The soil and snow temperatures can be calculated by numerically solving the above equations.
Five additional snow cover layers are added on top of the 10 layers of soil columns. In addition, boundary 

condition h, as heat flux, enters from the above atmosphere layer to the snow/soil layer on the surface. The bottom 
layer of the soil volume has zero heat flux. Initially, there is no change in the period when calculating the temper-
ature profile, and then the adjustments are made during the process in which the period changes.

Experiments.  In this study, the areas of lakes and wetlands are from the perennial freshwater lake and marsh-
land data released by Cogley37. The soil colors are determined based on the results of the study by Zeng et al.38 
and Dickinson et al.39. We use the geosphere biosphere program (IGBP) data of soil sand and clay content with 
4931 image elements for each soil layer40 to generate a set of soil database that changes with the depth and soil 
texture41,42. PFTs and their contents along with the leaf area index are obtained based on the retrieval of the 1 km 
satellite data performed by Bonan et al.42. The glacier data are obtained from the IGBP data and the 1 km land 
surface cover database of the global information system (IGBP DISCover)43. The data of the stem area index and 
the heights of the upper and lower layers of each canopy are from Bonan et al.42.

Table 1 lists the land-surface data needed for each land-surface grid, including the proportions of glaciers, 
lakes and cities in each grid (the rest of the grid is occupied by plants). In addition, Fig. 7 lists the data of four PFTs 
with the highest contents, including the cover rates of each PFT, the leaf area index and stem area index of each 
PFT and the heights of the upper and lower layers of the canopy of each PFT. The percentage of each PFT is based 
on the plant block in the grid. The sum of the percentages of all of the PFTs is 100%. The proportions of lakes, 
wetlands, glaciers and cities refer to their proportions in the grid.
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Data Preparation.  In addition to the description of the physical processes of the land surface, the 
land-surface model is sensitive to the atmospheric driving field. Therefore, the quality of the atmospheric driv-
ing field is an important factor to the models simulations44. In other words, the spatial-temporal resolution of 
atmospheric driving field and observation data determines the performance of the land-surface model. The 
atmospheric driving field of the CLDAS integrates data from various sources such as ground observation, satel-
lite observation and numerical simulation products using integration and assimilation techniques. This product 
includes temperature, pressure, specific humidity, wind speed, precipitation and solar shortwave radiation. The 
atmospheric driving field of the CLDAS has a spatial resolution of 1/16° × 1/16° and a temporal resolution of 1 h, 
and this meets the study requirements for spatiotemporal precision of input data.

The integration of the temperature, pressure, humidity and wind speed data in the CLDAS is implemented 
using the LAPS/Space and Time Mesoscale Analysis System (STMAS). The LAPS is a comprehensive analysis sys-
tem for multi-source data, including five major function modules—wind analysis, ground analysis, temperature 

Surface data Resolution Ensemble method

Glaciers(percentage) 0.5° Area averaged values

Lakes(percentage) 1° Area averaged values

Wetlands(percentage) 1° Area averaged values

Mud and sand(percentage) Clay (percentage) 5 min Distribution of soil in the extension range of the largest area in the grid cell

Soil colors 2.8° Classification of soil colors in the extension range of the largest area in the grid

PFTs(percent of vegetated land) 0.5° Area averaged values (a maximum of four full PFTs can be selected)

Stem and leaf area indexes (monthly) 0.5° Area averaged values

Canopy heights (upper and lower layers) 0.5° Area averaged values

Table 1.  Surface data needed for the CLM.

Figure 7.  The sub grid distribution in CLM3.5 model.
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analysis, cloud analysis and water vapor analysis. The analyses must be carried out according to the order shown 
in Fig. 8, and the diagnostic analysis can be carried out on the analysis results of the five modules to obtain some 
diagnostic information about the weather. In addition, the numerical model can be accessed via balance analysis 
and thus, the model’s hot start can be realized.

The STMAS45 is a new-generation integration system that was developed within the framework of the LAPS. 
The variational method for the order of multiple grids is used as the algorithm of the STMAS, which is relatively 
different from the conventional LAPS. In terms of its function, the STMAS replaces the ground analysis of the 
LAPS with the ground analysis module and the wind analysis and temperature analysis of the LAPS with the 
STMAS3D module, respectively. The input, output, the cloud analysis, water vapor analysis and balance analysis 
of the STMAS continue to rely on the LAPS. The developers of the STMAS plan to gradually assimilate the diaba-
tic initialization technology in the LAPS to create an independent system.

The multi-grid method was initially used to solve differential equations. A relatively coarse grid can allow a 
relatively low-frequency oscillation mode to converge rapidly. The multi-grid method was later introduced to 
data assimilation. The use of the objective function of a coarse grid in analyzing an error longwave can result in 
the rapid correction of the longwave of the analysis field. Afterwards, the use of the objective function of a fine 
grid in analyzing an error shortwave can reduce the confusion among different scales and improve the analysis 
results. The wavelength determines the correlation scale between lattice points. Therefore, the multi-grid method 
contains a built-in correlation. An analytical wave does not need a definite covariance. Thus, we can control the 
correlation scale of variation by controlling the number of lattice points. We can adjust the range of influence of 
the observed information by altering the coarseness of the grid to adjust the error covariance matrix of the back-
ground field. Under circumstances in which the accurate covariance is unknown, matrix B can be simplified into 
a diagonal matrix. The diagonal elements are the error variances of the background. Thus, the demand for com-
putation resources is reduced. In the variational assimilation technique for the order of the multi-grid method, 
the objective function on each grid is expressed in the following form:

= + − − = …−J X X H X Y O H X Y n N1
2

1
2

( ) ( ) ( 1, 2, 3 , ) (5)
n T n n n n T n n n n(n) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( )

where = −Y Y HXobs b and = −X X Xa b, O represents the observation error covariance matrix, Xb represents the 
vector of the background field (forecast field), Xa represents the vector of the analysis field, Yobs represents the 
constant vector of observation, H represents the bilinear interpolation operator from the model grid to the obser-
vation point, X  represents the correction vector corresponding to the vector of the model field, which is calcu-
lated from the variational data assimilation system, Y  represents the interpolation of the observation field and the 
model field, n represents the nth grid, and N  represents the number of grids.
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The STMAS first analyzes the coarsest grid among the multiple grids. When =n 1, Y (1) represents the differ-
ence between the projection of the background field of observation on the observation location and the projec-
tion of the background field of the model on the observation location, and −X n( 1) represents the solution or 
approximate solution of −J n( 1).

Figure 8.  Flowchart of the Local Analysis and Prediction System (LAPS).
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After solving −J n( 1), −X n( 1) is interpolated to the finer grid in the nth layer. X n( ) can be solved through the 
minimization of J n( ).

By altering the coarseness of the grid and analyzing the observation data in order from the longwave to the 
shortwave, we realized the extraction of the observation information of various scales. In this continuous 
multi-scale analysis process, the observation error covariance matrix of all of the scales (O n( )) is the same as that 
of the complete observation data because O n( ) reflects the observation error covariance and is unrelated to the 
multiple grid layers.

The final analysis result is the superposition of the analysis results of each grid:

∑= + = +
=

X X X X X
(7)

a b
L

b

n

N
n

1

( )

Therefore, unlike the three-dimensional variational (3D-Var) method, the multi-grid method does not con-
fuse the longwave information with the shortwave information in the observation data. Using the 3D-Var method 
will bring about a relatively larger error in the analysis. This problem is more prominent when analyzing China’s 
Xinjiang region, which has extremely unevenly distributed observation data. In contrast, the application of the 
multi-grid method to the preparation of the CLDAS data effectively assures the accuracy of this study’s input data.

The main sources of the hourly CLDAS precipitation grid data include the integrated regional hourly precipi-
tation produced by the National Meteorological Information Center of China, the hourly precipitation retrieved 
from the Fengyun-2E geostationary satellite by the National Satellite Meteorological Center of China46 and the 
Climate Prediction Center Morphing Technique (CMORPH) integrated satellite precipitation produced by the 
Climate Prediction Center of the US National Oceanic and Atmospheric Administration. The ground-observed 
precipitation data used in this study is from the hourly precipitation observed at more than 30,000 automatic 
observation stations in China. Quality control (the climatological threshold value check, the regional threshold 
value check, the temporal consistency check and the spatial consistency check) is carried out on the precipitation 
data collected at more than 30,000 automatic observation stations (including both national and regional auto-
matic observation stations) that have been built in China47. The CMORPH integrates the precipitation products 
retrieved from the microwave sensors of multiple satellites and uses infrared cold-cloud data for time extrapola-
tion to obtain a global half-hourly precipitation product with a resolution of 8 km48. Shen et al.49 evaluated this 
global half-hourly precipitation product, finding that the advantages of ground observation and the retrieval of 
precipitation from satellite data are effectively integrated in the CMORPH precipitation product. This CMORPH 
precipitation product is more reasonable in terms of the amount of precipitation and spatial distribution.

The discrete ordinate method proposed by Stamnes et al.50 is used as the retrieval algorithm for the ground 
incident solar radiation of the CLDAS data for radiation transfer calculation. The discrete ordinate method can 
calculate the radiance in any arbitrary direction. Therefore, the discrete ordinate method considers the anisotropy 
of the solar radiation reflected by the top of the atmosphere. That is to say, the radiance of the solar radiation 
reflected by the top of the atmosphere in the satellite’s observation direction is first calculated and then converted 
to the bidirectional visible albedo that is observed by the visible channel of the satellite. During the transmis-
sion process of the solar radiation incident from the top of the atmosphere to passing through the atmosphere 
to reaching the ground, there is a series of physical processes, including interactions with the atmosphere and 
ground. The following factors are primarily considered in the retrieval model: (1) absorption by the ozone layer, 
(2) multiple molecular Rayleigh scattering, (3) multiple scattering and absorption by cloud droplets, (4) absorp-
tion by water vapor, (5) multiple scattering and absorption by aerosols and (6) multiple reflection by the ground 
and atmosphere32,51.

This study uses the high spatiotemporal resolution land-surface atmospheric driving data of the CLDAS pro-
duced by the National Meteorological Information Center of China Meteorological Administration (temporal 
resolution: 1 h; spatial resolution: 1/16° × 1/16° and approximately 6.25 km; time scale: 2009–2012; elements: 
atmospheric temperature, pressure, specific humidity, wind speed, precipitation and shortwave solar radiation) 
to drive the CLM3.5 to conduct a numerical simulation of the land surface. The process is repeated 10 times to 
spin up the CLM model. A basically stable initial field of the model is generated to obtain a high temporal-spatial 
resolution soil temperature dataset. In addition, the bilinear interpolation method is used to interpolate the soil 
temperature grid data of the CLDAS to the observation stations (Fig. 6) to verify and analyze the hourly data 
generated by the CLDAS model and the matched sample data generated by observation. In this way, we are able 

Names of the statistical indicators Equations

RMSE = ∑ = −RMSE i
n Voi Vpi

n
1( )2

MAE = ⋅ ∑ −=MAE ABS V V( )n i
n

oi pi
1

1

ME = ⋅ ∑ −=ME V V( )n i
n

oi pi
1

1

COR = =
σ σ

COR V Vcorr( , )oi pi
Voi Vpi

Voi Vpi
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Table 2.  Four statistical indicators for examining the simulation precision of the model. Voi: observed soil 
temperature value (K); Vpi: simulated soil temperature value (K); n: number of stations.
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to understand the distribution of soil temperature in the Xinjiang region and the changes in the soil temperature 
of each layer.

The CLM3.5 can simulate the temperatures of the soil of 10 layers. The depths of the node layers are 
0.007 m, 0.0279 m, 0.0623 m, 0.1188 m, 0.212 m, 0.366 m, 0.619 m, 1.038 m, 1.727 m and 2.846 m, respectively. 
Comprehensively considering the observation depths of the national soil temperature stations of China and the 
typical temperatures of the soil at various depths, this study selects three soil layers, namely, layer 1 (at a depth of 
5 cm), layer 2 (at a depth of 20 cm) and layer 3 (at a depth of 80 cm), which are observed at 105 soil temperature 
observation stations in Xinjiang (the stations’ locations are shown in Fig. 6), for soil-temperature verification 
experimentation.

Validation method for the simulation results.  The data are verified in this study to objectively ana-
lyze the accuracy of the spatial prediction method. First, the bilinear interpolation method is used to interpo-
late the planar raster data for the soil temperature simulated using the model to the 105 observation stations in 
Xinjiang to compare the model simulated temperatures with the observations. We select the root-mean-square 
error (RMSE), the mean absolute error (MAE), the mean error (ME) and the correlation coefficient (COR) for the 
aforementioned validation (Table 2).
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