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Exosomes from high glucose-
treated glomerular endothelial cells 
trigger the epithelial-mesenchymal 
transition and dysfunction of 
podocytes
Xiaoming Wu1, Yanbin Gao1, Liping Xu1, Wanyu Dang2, Huimin Yan2, Dawei Zou1, Zhiyao 
Zhu1, Liangtao Luo1, Nianxiu Tian1, Xiaolei Wang1, Yu Tong1 & Zheji Han1

New data indicate that abnormal glomerular endothelial cell (GEC)-podocyte crosstalk plays a critical 
role in diabetic nephropathy (DN). The aim of our study is to investigate the role of exosomes from 
high glucose (HG)-treated GECs in the epithelial-mesenchymal transition (EMT) and dysfunction of 
podocytes. In this study, exosomes were extracted from GEC culture supernatants and podocytes were 
incubated with the GEC-derived exosomes. Here, we demonstrate that HG induces the endothelial-
mesenchymal transition (EndoMT) of GECs and HG-treated cells undergoing the EndoMT secrete 
more exosomes than normal glucose (NG)-treated GECs. We show that GEC-derived exosomes can be 
internalized by podocytes and exosomes from HG-treated cells undergoing an EndoMT-like process 
can trigger the podocyte EMT and barrier dysfunction. Our study reveals that TGF-β1 mRNA is enriched 
in exosomes from HG-treated GECs and probably mediates the EMT and dysfunction of podocytes. In 
addition, our experimental results illustrate that canonical Wnt/β-catenin signaling is involved in the 
exosome-induced podocyte EMT. Our findings suggest the importance of paracrine communication 
via exosomes between cells undergoing the EndoMT and podocytes for renal fibrosis in DN. Thus, 
protecting GECs from the EndoMT and inhibiting TGF-β1-containing exosomes release from GECs is 
necessary to manage renal fibrosis in DN.

Diabetic nephropathy (DN), a severe microvascular complication of diabetes, is the leading cause of end-stage 
renal disease (ESRD) worldwide1. DN is clinically characterized by proteinuria, which is the manifestation of 
damage to the glomerular filtration barrier2. The glomerular filtration barrier consists of three layers: the fenes-
trated endothelial layer, the glomerular basement membrane (GBM), and the layer of visceral epithelial cells 
called podocytes, which reside in the GBM outside the glomerular capillaries and possess foot processes con-
nected by the slit diaphragm3. Podocytes act as the final barrier to macromolecular flow into the urinary filtrate 
and are integral to the maintenance of the glomerular filtration barrier. However, as a terminally differentiated 
cell, podocytes have minimal capacity to self-replicate and are extremely vulnerable to cellular injury4. Podocytes 
dysfunction and depletion play a fundamental role in the onset and progression of proteinuria and glomerulo-
sclerosis in DN5. Emerging evidence indicates that the epithelial-mesenchymal transition (EMT) of podocytes 
after injury is a mechanism underlying podocyte dysfunction and podocytopenia in DN6. In response to injurious 
stimuli, podocytes can undergo a phenotypic switch characterized by the loss of expression of highly specialized 
podocyte markers such as nephrin, P-cadherin, zonula occludens-1 (ZO-1) and Wilms’ tumor 1 (WT 1), while 
acquiring the expression of new mesenchymal markers such as fibroblast-specific protein-1 (FSP-1), desmin, 
α-Smooth Muscle Actin (α-SMA), matrix metalloproteinase-9 (MMP-9), type I collagen (Col-I), type IV colla-
gen (Col-IV) and fibronectin (FN)7–9. Transforming growth factor-β1 (TGF-β1), a potent profibrotic cytokine, is 
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significantly up-regulated in the kidneys of DN patients and is a potent trigger of the podocyte EMT10. Canonical 
Wnt/β-catenin signaling mediates TGF-β1-triggered podocyte injury and proteinuria11.

A wealth of data indicates that intercellular communication occurs between resident cells within the glo-
merulus12, 13. Structurally, podocytes line the urinary space and are separated from glomerular endothelial cells 
(GECs) by the GBM. GEC-podocyte crosstalk has recently been recognized to play a critical role in maintaining 
the integrity of the glomerular filtration barrier, and alternative GEC-derived secreted factors may profoundly 
influence the function of podocytes under pathological conditions14. For example, an endothelial nitric oxide syn-
thase (eNOS) deficiency contributes to podocytes injury, leading to leakage of albumin into the urine of diabetic 
patients15. Soluble mediators secreted from GECs under chronic laminar shear stress impair podocyte barrier 
resistance16. Endothelin-1 released by podocytes leads to oxidative stress in endothelial mitochondrial, which 
in turn increases podocyte apoptosis in progressive glomerulosclerosis17. In summary, accumulated evidence 
demonstrates that GEC dysfunction, one of the earliest events in diabetes, may cause podocyte damage by releas-
ing paracrine mediators, and the identification of novel mediators of GEC-podocyte communication may lead to 
the development of more effective strategies to treat DN12, 14.

The release of exosomes, membrane-bound vesicles 30–100 nm in size that are secreted into the extracellular 
space by various cell types, has emerged as a novel and significant mechanism of intercellular communication in 
recent years18. Exosome-mediated deliveries of mRNA, microRNA, proteins and signaling molecules play impor-
tant roles in cell-to-cell communication19. Recent sudies indicate that endothelial cells can communicate with tar-
get cells or the surrounding environment through the release of exosomes. For example, exosomes derived from 
hypoxic endothelial cells can increase collagen crosslinking activity via up-regulation of lysyl oxidase-like 220. 
Endothelial exosomes can inhibit breast cancer cell proliferation and invasion via the transfer of microRNA-503 
in response to chemotherapy treatment21. Exosomes derived from cardiac endothelial cells can induce B cells to 
release TGF-β, which suppresses the effector T cell proliferation22. Existing studies show that some cell-derived 
exosomes have the capacity to induce differentiation or transdifferentiation of target cells through the delivery 
of TGF-β under pathological conditions. For example, exosomes released from gastric cancer cells can trigger 
the differentiation of umbilical cord-derived mesenchymal stem cells into carcinoma-associated fibroblasts via 
the transfer of TGF-β23. Lung cancer cell-derived exosomes can regulate the tumor cells migration by transfer-
ring TGF-β24. In cancer, the exosomal delivery of TGF-β is capable of driving fibroblast-to-myofibroblast dif-
ferentiation25. In our previous studies, we revealed that exosomes containing TGF-β1 secreted by high glucose 
(HG)-treated GECs could activate mesangial cells to promote renal fibrosis26. However, in diabetes, whether 
GEC-derived exosomes can fuse with podocytes and trigger the EMT of podocytes is not clear.

Collectively, an abnormal interaction between GECs and podocytes is believed to play a critical role in the 
pathogenesis of DN. In this study, we examined whether exosomes released by HG-treated GECs could transmit 
information to podocytes and induce the EMT and dysfunction of podocytes.

Results
HG induces an EndoMT-like process in cultured GECs.  Previous studies have demonstrated that the 
endothelial-to-mesenchymal transition (EndoMT) contributes to the early development of diabetic renal inter-
stitial fibrosis and glomerulosclerosis27, 28. During the EndoMT, endothelial cells lose their endothelial markers, 
such as CD31 and VE-cadherin, while acquiring mesenchymal markers, such as α-SMA and FSP-1. In our in 
vitro experiment, GECs were cultured in normal glucose (NG; 5.6 mmol/L glucose +24.5 mmol/L mannitol) 
or HG conditions (30 mmol/L glucose) for 24 h to examine whether HG induces an EndoMT-like process in 
GECs. As demonstrated in Fig. 1A, HG markedly reduced the expression of the endothelial markers CD31 and 
VE-cadherin and significantly increased the expression of the fibroblast-like markers α-SMA and FSP-1 in GECs. 
GECs cultured in the HG environment changed dramatically from cells with a typical cobblestone morphology to 
elongated spindle-shaped cells (Fig. 1B). In addition, as shown in Fig. 1C, HG obviously increased the migration 
capacity of GECs (24 h). These results confirm that HG can induce an EndoMT-like process in GECs.

HG-treated cells undergoing the EndoMT secrete more exosomes than NG-treated 
GECs.  Exosomes were isolated from the cell-culture supernatants of the same number of NG-treated GECs 
and HG-treated GECs and then observed by transmission electron microscopy (TEM) and detected by Western 
blotting. TEM analysis showed that GEC-derived exosomes were round, membrane-bound vesicles with a diame-
ter of 30–100 nm (Fig. 2A). Western blotting analysis revealed that these GEC-derived exosomes were highly pos-
itive for the exosomal marker proteins, such as CD63 and CD9, and were negative for calnexin, which is a marker 
of the endoplasmic reticulum and often associated with cellular debris, suggesting that our exosome preparations 
were not contaminated with cells (Fig. 2B). In addition, the expression of exosomal marker proteins was higher 
in exosome preparations from HG-treated cells undergoing the EndoMT than in NG-treated GECs, indicating 
that cells undergoing the EndoMT might release more exosomes (Fig. 2B). To further confirm whether cells 
undergoing the EndoMT secrete more exosomes, we quantified exosome secretion using a EXOCET Exosomes 
Quantitation Kit and a FluoroCet Exosome Quantitation Kit (System Biosciences, USA). The data show that cells 
undergoing the EndoMT produced an increased number of exosomes compared to normal GECs.

Taken together, these results indicate that GEC-derived exosomes can be successfully purified and HG-treated 
cells undergoing the EndoMT release more exosomes than NG-treated cells.

GEC-derived exosomes are internalized by podocytes.  Exosomes were labeled with the green lipo-
philic fluorescent dye PKH67 and co-cultured with podocytes for 24 h to investigate whether GEC-derived 
exosomes could be internalized by podocytes. Then, the podocytes were stained with fluorescent phalloidin for 
the intracellular staining of the F-actin cytoskeleton. Confocal laser microscopy showed that PKH67-labeled 
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exosomes were localized to the perinuclear region of podocytes (Fig. 3), indicating that GEC-derived exosomes 
can be internalized by podocytes.

Exosomes from HG-treated cells undergoing an EndoMT-like process trigger the podocyte EMT 
and barrier dysfunction.  The loss of epithelial markers (nephrin, ZO-1, WT 1) and gain of mesenchymal 
markers (α-SMA, desmin, FSP-1) are key hallmarks of the podocyte EMT10. To investigate the effect of exosomes 
on podocyte phenotype, the expression levels of nephrin, ZO-1, WT 1, α-SMA, desmin, and FSP-1 protein were 
examined by Western blotting and immunofluorescence. The results revealed that nephrin, ZO-1, WT 1 expres-
sion were remarkably decreased and that α-SMA, desmin, and FSP-1 expression was significantly increased in 
podocytes treated with exosomes from HG-treated cells undergoing an EndoMT-like process but not in untreated 
podocytes or podocytes co-cultured with exosomes from NG-treated GECs (Fig. 4A).

Dedifferentiated podocytes exhibit significant cytoskeletal disorganization, which leads to podocyte 
foot-process effacement29. F-actin in podocytes was labeled with phalloidin to determine the effect of exosomes 

Figure 1.  HG induces an EndoMT-like process in cultured GECs. (A) Compared to expression in the NG 
group, HG markedly downregulated the expression of endothelial markers CD31 and VE- cadherin and up-
regulated the expression of the mesenchymal markers α-SMA and FSP-1 in cultured GECs. The results are 
presented as the mean ± SD. *p < 0.05 versus NG group (Student’s t-test; n = 6). (B) HG induced a significant 
change in cell morphology, from cobblestone like cells to long spindle shaped cells, which is characteristic 
of cells undergoing the EndoMT. (n = 3 for each group) (C) Compared to migration in the NG group, HG 
significantly enhanced the migration capacity of GECs (24 h). (n = 3 for each group). NG group, normal glucose 
group; HG group, high glucose group.
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on podocyte morphology and the cytoskeleton. Confocal images show that F-actin was highly organized and 
the specialized foot process architecture was clear in untreated podocytes and podocytes co-cultured with 
exosomes from NG-treated GECs, whereas the podocytes incubated with exosomes from cells that underwent an 
EndoMT-like process displayed significant F-actin disorganization and foot process effacement (Fig. 4B).

Nephrin and ZO-1 are important components of the slit diaphragm. Therefore, defects in their expression 
would certainly damage the integrity of the slit diaphragm and impair the filtration barrier function of the podo-
cyte monolayer, leading to proteinuria and glomerulosclerosis30. An albumin influx assay was used to measure 
bovine serum albumin (BSA) diffusion across the podocyte monolayer to examine the effect of exosomes on the 
filtration barrier function of podocytes8, 31. As depicted in Fig. 4C, differentiated podocytes were co-cultured with 
exosomes from NG- or HG- treated GECs for 24 h and then subjected to the albumin influx assay. The diffusion 
of BSA across membrane filters onto which podocytes were incubated with exosomes from NG-treated GECs 
was not different from that across membrane filters onto which untreated podocytes were cultured. In contrast, 
BSA diffusion was markedly higher across membrane filters that contained podocytes co-cultured with exosomes 
from HG-treated GECs.

Exosomes from cells undergoing the EndoMT increase TGF-β1 expression and activate 
Wnt/β-catenin signaling in podocytes.  TGF-β1 is a strong inducer of the EMT of podocytes, and the 
canonical Wnt/β-catenin signaling pathway mediates TGF-β1-triggered EMT and dysfunction in podocytes7, 11. 
To determine whether TGF-β1 and the Wnt/β-catenin signaling pathway are involved in the exosome-induced 
podocyte EMT, we examined the expression of TGF-β1, Wnt1, β-catenin, and Snail, one of the target genes of 
Wnt/β-catenin, in podocytes by RT-PCR, Western blotting and immunofluorescence staining. Figure 5A shows 
that administration of exosomes from cells undergoing an EndoMT-like process markedly increased TGF-β1 

Figure 2.  HG-treated cells undergoing the EndoMT secrete more exosomes than NG-treated GECs. (A) 
Exosomes extracted from GECs were observed by TEM. Magnification: ×150,000. (n = 4) (B) Protein blots 
of exosomes derived from the same number of NG- and HG-treated GECs using antibodies for calnexin, 
CD63 and CD9. In addition, the expression of calnexin in GECs was also examined by Western blotting. 
(n = 3 for each index) (C) Quantification of exosomes isolated from NG- and HG-treated GECs normalized 
by cell number. Compared to the NG-GEC-Exo group, HG-treated cells undergoing the EndoMT released a 
higher number of exosomes. The results are presented as the mean ± SD. *p < 0.05 versus NG-GEC-Exo group 
(Student’s t-test; n = 6). NG-GEC-Exo group, exosomes derived from NG-treated GECs; HG-GEC-Exo group, 
exosomes derived from HG-treated GECs.
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mRNA and protein levels in podocytes compared to the effect of exosomes from NG-treated GECs. RT-PCR 
results show a significant induction of Wnt1 mRNA expression in podocytes by exosomes from cells undergoing 
the EndoMT compared to the effect of exosomes from NG-treated GECs (Fig. 5B). Western blotting analysis 
indicated that, compared to exosomes from NG-treated GECs, total β-catenin, active β-catenin and Snail levels 
were markedly increased in podocytes after treatment with exosomes from cells undergoing an EndoMT-like 
process (Fig. 5C). In addition, immunofluorescence staining show that, compared to treatment with exosomes 
from NG-treated GECs, treatment with exosomes derived from cells undergoing the EndoMT up-regulated the 
expression of β-catenin and clearly caused β-catenin to undergo nuclear translocation, indicating the activation 
of canonical Wnt/β-catenin signaling (Fig. 5D).

Inhibition of exosomal TGF-β1 preserves podocyte phenotypes.  Exosomes play critical roles 
in intercellular communication through the horizontal transfer of proteins, RNAs and lipids to target cells. 
Therefore, we hypothesized that exosomal TGF-β1 might be responsible for the increased expression of TGF-β1 in 
exosome-treated podocytes. We examined TGF-β1 mRNA expression in GECs and related exosomes. As shown 
in Fig. 6A, compared to expression in NG-treated GECs, TGF-β1 mRNA expression was higher in HG-treated 
cells undergoing an EndoMT-like process, and TGF-β1 levels were higher in exosomes derived from these cells, 
suggesting that exosomal TGF-β1 mRNA may contribute to the podocyte EMT.

To investigate whether the exosomal TGF-β1 mRNA is functionally important for the podocyte EMT, TGF-β1 
small interfering RNA (siRNA) was used to silence TGF-β1 mRNA in HG-treated GECs. Then we assessed the 
expression of TGF-β1 mRNA in HG-treated GECs and related exosomes. RT-PCR results show that transient 
transfection with TGF-β1 siRNA significantly decreased the TGF-β1 mRNA levels in HG-treated GECs and 
related exosomes (Fig. 6B).

To validate the role of exosomal TGF-β1 mRNA in mediating the exosome-induced podocyte EMT, we incu-
bated podocytes with exosomes silenced for TGF-β1 mRNA and examined the expression of TGF-β1, β-catenin, 
active β-catenin, Snail, nephrin, ZO-1, WT1, α-SMA, FSP-1, and desmin by Western blotting and immunoflu-
orescence. The results show that when podocytes were co-cultured with exosomes silenced for TGF-β1 mRNA, 
there was no significant change in the expression of TGF-β1, β-catenin, active β-catenin, Snail, nephrin, ZO-1, 
WT1, α-SMA, FSP-1, or desmin, indicating that exosomal TGF-β1 mRNA probably mediated elevated TGF-β1 
expression levels in podocytes and induced the podocyte EMT (Fig. 6C).

Discussion
Many studies on diabetes have found that soluble factors that mediate abnormal GEC-podocyte crosstalk 
may destroy filtration-barrier integrity and eventually lead to albumin leakage. Recently, an increasing body 
of evidence suggests that exosomes can transfer functional molecules to target cells and serve as mediators of 
cell-to-cell crosstalk under physiological and pathological conditions. However, in diabetes, whether exosomes 
can mediate the interaction between GECs and podocytes and participate in the pathogenesis of DN remains 

Figure 3.  GEC-derived exosomes are internalized by podocytes. Exosomes extracted from GEC culture 
supernatants were labeled with lipophilic fluorescent dye PKH67 and co-cultured with podocytes for 
24 h. Subsequently, the podocytes were stained with phalloidin-iFluor 594 conjugate to display the F-actin 
distribution. Blank group, podocytes without exosome co-incubation; GEC-Exo group, podocytes incubated 
with GEC-derived exosomes. Independent experiments were repeated 3 times.
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Figure 4.  Exosomes from HG-treated cells that underwent an EndoMT-like process trigger the podocyte 
EMT and barrier dysfunction. (A) Western blotting and immunofluorescence staining show that exosomes 
from HG-treated cells undergoing the EndoMT significantly suppressed nephrin, ZO-1, and WT 1 expression 
and induced α-SMA, FSP-1, and desmin expression in podocytes. The results are presented as the mean ± SD. 
*p < 0.05 (ANOVA; n = 4; significantly different from the Untreated group and NG-GEC-Exo group). (B) 
Exosomes from HG-treated cells undergoing the EndoMT induced cytoskeletal disorganization and foot 
process effacement in cultured podocytes. Independent experiments were repeated 3 times. (C) Podocytes 
cultured in the upper chamber were incubated with or without exosomes for 24 h, and the BSA permeability 
of podocyte monolayers was then examined. The results show that the filtration barrier function of podocytes 
was severely damaged after the EMT triggered by exosomes from HG-treated cells undergoing the EndoMT. 
*p < 0.05 (ANOVA; n = 3; significantly different from the Untreated group and NG-GEC-Exo group). Blank 
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unclear. Our research reveals that in HG environments, GECs undergo the EndoMT and produce a notably 
higher number of exosomes that can trigger the EMT and barrier dysfunction in podocytes. The experimen-
tal results illustrate a dramatic induction of TGF-β1 expression and activation of Wnt/β-catenin signaling in 
the podocytes after treatment with exosomes derived from cells undergoing an EndoMT-like process. We also 
demonstrate that TGF-β1 mRNA is up-regulated in exosomes from cells undergoing an EndoMT-like process 
and that exosomes silenced for TGF-β1 mRNA may preserve podocyte phenotypes. In summary, our data indi-
cate that exosomes from HG-treated GECs mediate the EMT and dysfunction of podocytes partly through the 
transfer of TGF-β1 mRNA.

In many fibrotic diseases, endothelial cells are capable of undergoing the EndoMT to generate myofibro-
blasts, which lose the endothelial markers CD31 and VE-cadherin, and express high levels of the mesenchymal 
markers α-SMA and FSP-1. Endothelial cells undergoing the EndoMT can synthesize and secrete fibrogenic/
inflammatory cytokines and produce excess ECM in fibrotic lesions, contributing to the development and pro-
gression of fibrosis in the lungs, liver, heart, dermis, cornea and kidneys32. Previous reports mention that some 
harmful stimulating factors, such as TGF-β133, CTGF34, SiO2

35, serum response factor36, hypoxia37, can induce an 
EndoMT-like phenotype. In addition, recent research shows that under pathological conditions, cells undergo-
ing the EndoMT can activate the transdifferentiation of neighboring cells via secretion of profibrotic cytokines 
in a paracrine-dependent manner38. Our experiments revealed that HG can induce the EndoMT in cultured 
GECs and that the cells undergoing the EndoMT indirectly contribute to renal fibrosis in DN by secreting 
TGF-β1-containing exosomes that have the capacity to stimulate the EMT and dysfunction of podocytes. These 
results show the importance of crosstalk between cells undergoing the EndoMT and podocytes for renal fibrosis 
in DN, suggesting that inhibiting the EndoMT of GECs and reducing the release of TGF-β1-containing exosomes 
is necessary to halt the progression of renal fibrosis in patients with DN.

In this study, we demonstrated the EMT and dysfunction of podocytes after exposure to the exosomes 
from cells undergoing the EndoMT for 24 h. Many previous studies have clearly established an intimate link-
age of hyperactive TGF-β1 to the podocyte EMT11. Therefore, we hypothesized that TGF-β1 would be involved 
in the exosome-mediated podocyte EMT. As expected, TGF-β1 mRNA and protein expression was markedly 
up-regulated, and the canonical Wnt/β-catenin signaling was also activated in cultured podocytes after incu-
bation with exosomes from cells undergoing the EndoMT. Because many previous reports have indicated that 
exosomes can mediate intercellular communication by mRNA transfer, we hypothesized that exosomal TGF-β1 
mRNA may be responsible for the EMT and dysfunction of podocytes. Interestingly, TGF-β1 mRNA expres-
sion in HG-treated cells undergoing the EndoMT and levels in related exosomes were much higher than those 
in NG-treated GECs and related exosomes, suggesting that HG can result in the packaging of TGF-β1 mRNA 
into exosomes, which may then be transferred to podocytes to cause the EMT. However, we cannot rule out the 
existence of other HG-induced proteins and genetic material in the exosomes secreted by cells undergoing an 
EndoMT-like process that may potentially play a role in GEC-to-podocyte communication.

In addition to our in vitro studies, we have also performed in vivo studies by injecting GEC-derived exosomes 
into C57BL/6 mice via the tail vein 5 times per week for 3 weeks. However, we unexpectedly found that the 
transport of exosomes secreted from cells undergoing the EndoMT led only to mesangial cells proliferation 
and the deposition of ECM in the renal mesangial region of mice26, but did not cause a significant reduction 
of nephrin protein levels in podocytes. The reason for this phenomenon may be related to the ultrastructure 
of the GBM, which is the main filtration barrier against plasma macromolecules based on their size, shape and 
charge. A normal GBM is a three-dimensional meshwork structure consisting of fine fibrils, which form numer-
ous nearly uniform-sized round pores with diameters of 2.5 ~ 2.8nm39. The diameter of the pores is smaller than 
that of exosomes, preventing GEC-derived exosomes with diameters of 30 ~ 100 nm from reaching the podocytes. 
However, in diabetes, the meshwork structure of the GBM becomes loosened, and cavities and tunnels with diam-
eters of 10~80 nm or even larger, which do not exist in a normal GBM, are observed in this thickened GBM40. 
Therefore, in diabetes, these enlarged structures allow GEC-derived exosomes to penetrate the GBM to reach 
podocytes, inducing the EMT and dysfunction.

In summary, our data indicate that HG can induce GEC EndoMT and that cells undergoing the EndoMT can 
stimulate the EMT and dysfunction of podocytes by releasing exosomes containing TGF-β1. Our findings show 
the importance of paracrine communication via exosomes between cells undergoing the EndoMT and podoctyes 
for renal fibrosis in DN. Thus, protecting GECs from the EndoMT and inhibiting the release of exosomes contain-
ing TGF-β1 from GECs is necessary to manage renal fibrosis in DN.

Methods
Cell culture and in vitro studies.  The conditionally immortalized mouse podocyte cell line 
(3111C0001CCC000230) was purchased from National Infrastructure of Cell Line Resource. To propagate cells, 
podocytes were maintained at 33 °C in low glucose DMEM supplemented with 10% fetal bovine serum (FBS) 
and interferon-γ. Podocytes were cultured at 37 °C for more than 6 days in the absence of interferon-γ to induce 
cell differentiation. Mouse primary kidney GECs (C57–6014G, Cell Biologics) were grown in endothelial cell 
medium supplemented with 5% FBS.

GECs were divided into three groups: normal glucose group (NG; 5.6 mmol/L glucose + 24.5 mmol/L manni-
tol), high glucose group (HG; 30 mmol/L glucose) and high glucose plus TGF-β1 siRNA group (HG + siRNA) to 

group, permeable supports in the upper chamber without cultured podocytes; Untreated group, podocytes 
without exosome treatment; NG-GEC-Exo group, podocytes incubated with exosomes isolated from NG-
treated GECs; HG-GEC-Exo group, podocytes incubated with exosomes isolated from HG-treated GECs.
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explore the effect of HG on endothelial phenotype and exosome release from GECs. For the HG + siRNA group, 
GECs were transiently transfected with TGF-β1 siRNA (Ribobio, China) using riboFECT™ CP Reagent (Ribobio, 
China) according to the instruction. Exosomes extracted from GEC culture supernatants were also correspond-
ingly divided into three groups: NG-treated GEC-derived exosomes (NG-GEC-Exo), HG-treated GEC-derived 
exosomes (HG-GEC-Exo) and HG plus TGF-β1 siRNA-treated GEC-derived exosomes (HG + siRNA-GEC-Exo). 
Podocytes were divided into four groups: podocytes without exosome treatment (Untreated group), podocytes 
incubated with NG-treated GEC-derived exosomes (NG-GEC-Exo group), podocytes incubated with HG-treated 
GEC-derived exosomes (HG-GEC-Exo group) and podocytes incubated with HG-treated GEC-derived 
exosomes silenced for TGF-β1 mRNA (HG + siRNA-GEC-Exo group) to determine the effect of GEC-secreted 
exosomes on the EMT and dysfunction of podocytes. Previous studies have reported that the ratio of GECs to 
podocytes is approximately 3:1 in the glomerulus, so this ratio was also in our in vitro experiments.

Exosomes extraction.  Differential centrifugation was used to extract exosomes from the serum-free GEC 
culture supernatants as previously described41. In brief, GEC culture supernatants were collected and sequentially 
centrifugated at 300 × g for 10 min, 2,000 × g for 15 min, and 10,000 × g for 30 min to remove lifted cells, cellular 
debris and large vesicles. These cleared samples were then subjected to ultracentrifugation at 100,000 × g for 
70 min twice at 4 °C to pellet the exosomes. The resulting exosomes were resuspended in a small amount of PBS 
for direct use in subsequent studies.

Transmission electron microscopy.  We used transmission electron microscopy (TEM) to observe the 
morphology of GEC-derived exosomes by negative staining. Exosome suspensions (2 µl) were distributed drop-
wise onto a dry slide, and formvar/carbon-coated copper mesh grids were put onto the liquid beads of exosome 
suspensions to obtain the exosomes for 1 ~ 2 min. Then, the excess suspension on the copper mesh grids was 
blotted with filter paper. Subsequently, the copper mesh grids were fixed with 2.0% phosphotungstic acid in 
aqueous suspension for 1 ~ 2 min. Exosome samples were visualized using a Hitachi 7100 transmission electron 
microscope.

Figure 5.  Exosomes from cells undergoing the EndoMT increase TGF-β1 expression and activate Wnt/β-
catenin signaling in podocytes. (A) RT-PCR and Western blot analysis indicated that exosomes from HG-
treated GECs increased TGF-β1 expression in cultured podocytes. The results are presented as the mean ± SD. 
*p < 0.05 (ANOVA; n = 3; significantly different from the Untreated group and NG-GEC-Exo group). (B) 
RT-PCR demonstrated an increased expression of Wnt1 mRNA in cultured podocytes after treatment with 
exosomes from HG-treated GECs. *p < 0.05 (ANOVA; n = 4; significantly different from the Untreated 
group and NG-GEC-Exo group). (C, D) Western blot analysis and immunofluorescence staining showed that 
exosomes from HG-treated GECs increased total β-catenin, active β-catenin and Snail protein expression and 
promoted β-catenin nuclear translocation in podocytes. The results are presented as the mean ± SD. *p < 0.05 
(ANOVA; n = 3; significantly different from the Untreated group and NG-GEC-Exo group).
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Figure 6.  Inhibition of exosomal TGF-β1 preserves podocyte phenotypes. (A) HG increased TGF-β1 mRNA 
expression in both GECs and related exosomes. The results are presented as the mean ± SD. *p < 0.05 (Student’s 
t-test; n = 3; significantly different from the NG group and NG-GEC-Exo group). (B) A remarkable decrease 
in TGF-β1 mRNA expression was observed in HG-treated GECs incubated with TGF-β1 siRNA and related 
exosomes. The results are expressed as the mean ± SD. *p < 0.05 (ANOVA; n = 3; significantly different from 
the NG group and NG-GEC-Exo group). **p < 0.05 (ANOVA; n = 3; significantly different from the HG group 
and HG-GEC-Exo group). (C) Compared to expression in the HG-GEC-Exo group, TGF-β1, β-catenin, active 
β-catenin, Snail, α-SMA, FSP-1, and desmin expression decreased and nephrin, ZO-1, and WT1 expression 
increased markedly in the podocytes incubated with exosomes silenced for TGF-β1. The results are presented 
as the mean ± SD. *p < 0.05 (ANOVA; n = 3; significantly different from the Untreated group). **p < 0.05 
(ANOVA; n = 3; significantly different from the HG-GEC-Exo group).
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Western blot analysis.  The total protein content from cells or exosomes was extracted, separated by 
SDS-PAGE and transferred onto polyvinylidene difluoride (PVDF) membranes. The PVDF membranes were 
blocked with 5% non-fat dry milk in PBS + 0.05% Tween-20 for 1 h and then incubated with indicated primary 
antibodies overnight at 4 °C, followed by incubation with horseradish peroxidase (HRP)-conjugated secondary 
antibodies for 2 h at room temperature. The bands were visualized using a gel imaging analysis system (Bio-Rad, 
USA). The following primary antibodies were used: mouse monoclonal calnexin antibody (1:200; Abcam), mouse 
monoclonal CD63 antibody (1:1,000; Abcam), mouse monoclonal CD9 antibody (1:500; Abcam), rabbit poly-
clonal nephrin antibody (1:200; Abcam), mouse monoclonal TGF-β1 antibody (1:1,000; Abcam), rabbit mono-
clonal (Active) β-catenin antibody (1:1,000; CST), rabbit monoclonal β-catenin antibody (1:1,000; CST), mouse 
monoclonal Snail antibody (1:1000; CST).

Quantification of exosome particles.  An EXOCET Exosomes Quantitation Kit and FluoroCet Exosome 
Quantitation Kit (System Biosciences, USA) were used to quantify exosomes according to the manufacturer’s 
instructions as previously described26.

PKH67 labeling of exosomes and phalloidin staining of podocytes.  Firstly, the GEC-derived 
exosomes were labeled with the green lipophilic fluorescent dye PKH67 (Sigma-Aldrich, St. Louis, MO) accord-
ing to the instructions. The suspension, containing 2 × 109 exosomes (25 µl), was transferred to a conical-bottom 
polypropylene tube. A 2× exosome suspension was prepared by adding 1 ml of Diluent C to the exosome suspen-
sion, and a 2× dye solution was prepared by adding 4 μl of the PKH67 ethanolic dye solution to 1 ml of Diluent 
C. Then, 1 ml of 2× exosome suspension was quickly added to 1 ml of 2× dye solution, and the exosomes/dye 
suspension was incubated for 1 ~ 5 min. Then, 2 ml of 1% BSA was added to bind excess dye.

Podocytes were incubated with PKH67-labeled exosomes for 24 h. The podocytes were fixed with 4% para-
formaldehyde for 10 min and then blocked with 1% BSA for 1.5 h at room temperature. Subsequently, podocytes 
were stained with a 50 μg/ml fluorescent phalloidin conjugate solution (AAT Bioquest, USA) in PBS for 40 min at 
room temperature. Samples were washed several times in PBS to remove unbound phalloidin conjugate and were 
observed using a laser scanning confocal microscope (Leica, Germany).

Immunofluorescence.  Podocytes were cultured on the glass slides in 24-well plates and co-cultured with 
exosomes for 24 h. Then, podocytes were extensively washed 3 times with PBS, fixed in precooling 4% para-
formaldehyde for 10 min, permeabilized with 0.1% Triton X-100 for 15 min, and blocked with 10% normal 
goat serum for 1 h at room temperature. Subsequently, podocytes were incubated with primary antibodies 
overnight at 4 °C, followed by incubation with secondary antibodies for 2 h at 37 °C. Nuclei were stained with 
4′,6-diamidino-2-phenylindole (DAPI). Laser scanning confocal microscope (Leica, Germany) was used to 
examined the stained podocytes. The following primary antibodies were used: rabbit polyclonal ZO-1 tight junc-
tion protein antibody (1:100; Abcam), rabbit polyclonal Wilms’ Tumor protein antibody (1:100; Abcam), rabbit 
polyclonal α-SMA antibody (1:50; Abcam), rabbit monoclonal S100A4 antibody (1:100; Abcam), mouse mon-
oclonal desmin antibody (1:100; Abcam), rabbit monoclonal β-catenin antibody (1:300; CST), rabbit polyclonal 
CD31 antibody (1:20; Abcam), and rabbit polyclonal VE-Cadherin antibody (1:200; Abcam).

Real-time RT-PCR analysis.  The total RNA content was extracted from cells and exosomes using TRIzol 
reagent (Invitrogen) according to the manufacturer’s instructions. Relative expression was calculated using the 
2−ΔΔCT method and normalized to the expression of β-actin. For the analysis of TGF-β1 and Wnt 1 expression 
in cells and exosomes, real-time PCR primers were designed as previously described42. TGF-β1 Primer: forward: 
5′-GCCCTGGATACCAACTATTGCTTCA-3′, reverse: 5′-CAGAAGTTGGCATGGT-3′. Wnt1 primer: forward: 
5′-GCCCTAGCTGCCAACAGTAGT-3′, reverse: 5′-GAAGATGAACGCTGTTTCTCG-3′.

Albumin influx assay.  The albumin influx assay was performed to examine the filtration barrier function 
of podocyte monolayers as previously described8, 31. Transwell chambers with a 0.4-μm pore size (Corning, USA) 
were used in the albumin influx assay. Podocytes (3 × 105) were seeded on the upper permeable supports and 
cultured under differentiating conditions for 14 days. The podocytes were serum-starved for 12 h and then incu-
bated with or without GEC (9 × 105)-derived exosomes for 24 h. The upper chamber was then filled with 0.6 ml 
serum-free DMEM, and the lower chamber was filled with 1 ml serum-free DMEM supplemented with 40 mg/
ml of BSA. Total protein concentration in the upper chamber was examined using the bicinchonininc acid (BCA) 
method at different time points.

Cell migration assay.  To determine the effect of HG on the migration ability of GECs, cell migration 
assays were conducted as previously described38. GECs were grown to confluence in six-well plates, and multiple 
scratches were made using a 200 μl pipette tip. The GECs were cultured with or without HG (30 mmol/L) for 24 h 
and then observed and imaged using a Nikon fluorescence microscopy.

Statistical analysis.  SPSS software (IBM, USA) was used to perform statistical analysis. Values are expressed 
as the mean ± SD. Differences between two groups were assessed using Student’s t-tests, and differences among 
more than two groups were assessed using an analysis of variance (ANOVA). p < 0.05 was defined as statistically 
significant.

Data Availability.  The datasets generated and analyzed during the current study are available from the cor-
responding author upon reasonable request.
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